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PREFACE

The purpose of this book is twofold: {1) to provide the reader with fundamental
¢oncepts in the analysis and design of flight structures, and (2) to develop unified
analytical tools for the predittion and assessment of structural behavior re-
gardless of field application.

The text is writlen in a manner which allows the reader to develop a work-
ing knowledge in both the classical and the modern computer techniques of
structural analysis. In addition, it helps the reader develop a thorough under-
standing of the important factors which must be considered in the design of
structurai components.

The scope covers areas that the authors feel are essential fundamentals from
which the reader may progress to the analysis and design of more complex and
larger structural systems. The definitions of structural systems and its con-
slituents, loads, supports and reactions, lhe concepts in statics, and the funda-
mental principles of mechanics are covered in the first portion of the book. The
basic elasticity relationg (stress-strain, strain displacements, etc.), and material
hehavior and selection’ are discussed. Load analysis of flight vehicles and the
analysis and design of specific Right-vehicle structural compenents are presented.
Fatigue analysis, thermal stress analysis, and instability analysis of structures are
also included. Energy methods, finite-difference methods, and the stiffness matrix
metliods in the deflection analysis of structurcs arc provided. Numerous cxamples
are solved in every section of the book to close the gap between the theoretical
developments and its application in solving practical problems.

The book is written for a first course in structural analysis and design. It is
intended for senior-level students. The essential prerequisitcs are strength of ma-
terials and a basic course in calculus. The book also serves as an excellent
relerence for the practicing engineer.

g J. Azar

ix




CHAPTER

ONE

STATIC ANALYSIS OF
STRUCTURES

1.1 iINTRODUCTION

The full understanding of hoth the terminology in statics and the fundamental
principles of mechanics is an essential prerequisite to the analysis and design of
structures, Therefore, this chapter is devoled to Lhe presentation and the appli-
cation of these fundamentals.

1.2 STRUCTURAL SYSTEM

Any deformable solid body which is capable of carrying loads and transmitting
thesc loads Lo other parts of the body is referred to as a structural system. The
constitucnts of such systems are beams, plates, shells, or a combination of the
three.

Bar elements, such as shown in Fig. 1.1, are one-dimensional structural mem-
bers which are capable of carrying and transmitling bending, shearing, torsional,
and axial loads or a combination of all four.

Bars which arc capahle of carrying only axial loads are referred to as axial
ruds ar two-force members. Structural systems constructed entircly out of axial
rods arc called trusses and frequenlly are used in many atmespheric, sea, and
land-based structures, since simple tension or compression members are usually
the lightest for transmitting [orces.

Plate elements, such as shown in Fig. 1.2, are two-dimensional extensions of
bar elements. Plates made to carry only in-plane axial loads are called mem-

1
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branes, Those which are capable of carrying only in-plane shearing loads are
rc'l“crrcd to as shear panels; frequently these are found in missile fins, aircraft
wings, and tail surfaces,

Shells are curved plate clements which occupy a space. Fusclages, building
domes, pressure vessels, etc., are typical examples of shells.

1.3 LOAD CLASSIFICATION

Loads which act on a structural system may be generally classified in accordance
with their causes, Those which are produced by surface contact are called surface
loads. Dynamic and/or static pressures are examples of surface loads. If the area
of contact is very small, then 1he load is said to be concentrated; otherwise, it is
calied a distributed Ioad. (Sec Fig. 1.3))

Loads which depend on body volume arc called hody loads. Inectial, mag-
uetic, and gravitational forces are typical examples. Generally, these loads are
assumed to be distributed over the entire volume of the body.

Loads alse may be categorized as dynamic, static, or thermal, Dynamic Inads
arc ime-dependent, whereas static loads are independent of time. Thermal loads
arc created on a restrained structure by a uniform and/or nenuniform temper-
ature change.

Regardless of the classificalion of the externally imposed loads, a structural
member, in general, resists these Joads internally in the form of bending, axial,
shear, and torsional actions or a combination of the four.

In order o present definitions for internal loads, pass a hypothetical plane so
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that it cuts the face of a structural member perpendicular to the member axis, as
shown in Fig. 1.4. Thus, a bending moment may be defined as a force whose vector
representation lies in and parallel to the plane of the cut, while a torque is a force
whose vector representation is normal (o that cut. On the other hand, shear load
is a force which lies in and is parallel to the plane of the cut, while axial load is a
force which acts normal to the plane of the cut.

1.4 SUPPORTS AND REACTIONS

The primary function of supports is to provide, at some points of a structural
system, physical restraints that limit the freedom of movement to only that
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Figure 1.3 Concentraled and disiributed loads. (al Acteal loads: (b} idealized loads; (¢} wing pressure
load.

inlended in the design. The types of supports that occur in ordinary practice are

shown in Fig. 1.5.
The forces induced at points of support are called reactions. For example, a
hinge support is designed (o allow only retation at the point of connection, and

M

I

¥

M, =T

x

“T>

Figore 14 5 = axial load, Ib; M, = T = 1orque, h-in; M . M, = bending moment(s), Ib-in; ¥,,
V= shear loads, 1b.
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Figure 1.5 Support types. {a} Hinge support; {h) hinge-roller suppert; (c) fixed support; (d) fixed-roller
Support.

thus reactive forces {reactions) are developed in the other directions where move-
ments are nol allowed.

Likewise, a hinge-roller support allows rofation and a {ranslation in only the
x direction, and hence there exists one reactive force (reaction) in the p direction.
A fixed support normally is designed to provide restraints against rotation and
all+translations; therefore, reactive forces and moments (reactions) are developed
along the directions where movements are not permitted.

1.5 EQUATIONS OF STATIC EQUILIBRIUM

One of the first steps in the design of a structural system is the determination
of internal loads acting on each system member. Any solid body in space or any
part cut out of the body is said to be in a state of stable static equilibrium if it
simulianeously satisfies;

LF=0
E M( = U
where T F; = 0 implics that the vector sum of all forces acting on the system or

on part of it must add to zero in any one direction along a chosen set of system
axes x, ¥, and z; likewise, £ M; = 0 means that the vector sum of all momenis at

F=x 2 (1.1)
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any presclected point must add to zero around any ene of the chosen set of axes
x,yand z.

Whilc Eq. (1.1) applics for general space structures, for the case of planar-
type structures it reduces to )

TF=0

M, =0 i=x1} (1.2)

Note that only six independent equatians exist for any [ree body in space and
three independent equations exist for a coplanar frec body. I, for example, an
atlempt is made to find fdur unknown forces in a coplanar free body by using the
two {orcc equations and momcent equations al (wo sclected points, the four
equations cannot be solved because they are not independent (ie., one of the
equalions can be derived from the other three). The foliowing equations cannot
be selved for the numerical values of the three unknowns because they are not
independent:

Fi 4+ Fy+Fy=3
Fy+ F; 4 2Fy=4
2F  +3F; +3F, =7

In mairix form these are as follows.

t 1 11fF ) =(3
t 1 2] jF, =14
22 3]1ir =17

The third equalion may be oblaincd by adding the first two equalions, and
consequently it does not represent an independent condition. The dependence of
these equations Is more readily established if an attempt is made to find the
inverse of the 3 x 3 malrix of cocfficients. It can be shown easily that the deter-
minant of the matrix is zero; hence equation dependence does, in fact, exist. A
matrix whose delerminant is zero is said (o be singular and therefore cannot be
inverted.

1.6 STATICALLY DETERMINATE AND
INDETERMINATE STRUCTURES

A structure is said to be determinate if all its external reactions and the
internal loads on its members can be obtained by utilizing only the static equa-
tions of cquilibrium, Otherwise the structure is said Lo be statically indeterminate.
In the iatler, or what is commonly reférred to as a redundant structure, there are
maore unknown forces than the number of independent cquations of statics which
can be utilized. The additional equations required for the analysis of redundant

- structures can be obtained by considering the deformations (displacements) in the

STATIC ANALYSIS OF STRUCTURES 7
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Figure 1.6 Indeterminate struclures.

structure. This is studied in detail in later chapters. External reactions, internal
loads, or a combination of both may cause a structural system to be statically
redundant. The number of redundancies in a structure is governed by the number
of external reactions and/or the number of members that may be taken out
without the stability of the structure being affected. For example, in Fig. 1.6a if
member 1-3 and/or reaction R, is removed, then the structure becomes stati-
cally determinale and maintains its slability. Likewise, in Fig. 1.65 if members
2-4 and 2-6 and either reaction R,, or Ry, are removed, then the structure
becones determinate and stable, If, on the other hand, additional members such
as 3-5 and 1-5 are removed, then the structure becomes a mechanism or un-
stable. Mechanisms cannot resist loads and therefore are not used as structural
sysiems. :

1.7 APPLICATIONS

While the set of [Egs. (1.1) and (1.2)] is simple and well known, it is very
important for a student to acquire proficiency in the application of these equa-
tions to various types of structural systems. Several typical structural systems are
analyzed as illustrative examples.

Example 1.1 Find thc internal joads acling on each member of the structure
shown in Fig, i.7.

Sorurion First, disassemble the structure as shown in Fig. 1.8 and make a
free-body diagram for each member. Since members 1-2 and 4-6 are two-
force members (axial rods), the forces acting on them are along the line
joining the pin joints of these members. All directions of forces are chosen
arbitrarily and must be reversed if a negative value is obtained; that is, F5, is
assumed lo act to the right on the horizonial member and therefore must act
to the left since its magnitude came to be negative,
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EM,=0(+0)
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Figure 1.8 Disassembled structure.
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Fq, — 1000 =0
Foq, = 1000 Ib

IF,=0(+1)
F,,—1000=0
Fy = 1000 Ib

For member 3-6-7,
IM;=0(+"¥)
1000 x 7 — 24F, =0
Fa=29151b

TF,=0(%)
Fy, + 2915 cos 36.9° — 1000 =0
F,,=—13351b

IF,=0(+1)
F, + 2915 sin 36.9° — 1000 = 0
Fi,=—7501b

Since the magnitudes of Fs, and F;, came to be negative, the assumed direc-
tion must be reversed. A common practice is to cross out {rather than erase)
the original arrows.

For member 2-3-4-5,

1335 x 5— 2915 x 2 cos 36.9° — 4F, =0
F, =500 Ib

TF,=0(%)
Fs, — 2915 cos 36.9° + 1335 — 500 cos 60° =0
Fy — 1250 1b

IF,=0t+1)
F., — 2915 sin 369" + 750 — 500 sin 60" = 0
Fs, = 1433 1b

Now all internal loads have been obtained without the usc of the entire
struclure as a frec body. The solution is checked by applying the three
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cqualions of cquilibrium to the enlire structure: . IF,=0(%)
SF. =0(%) ' 2000 — Ry,
1250 — 1000 — 500 cos 60° =0 . R, = 200015
EF,=0(+1) : LF,=0(+1)
1433 — 1000 — 500 sin 60° = 0 Ry — 4000 — 1060 + 4500 = 0
R, =30Gtb
EMs=0(+0y) * ) )
The directions of unknown forces in each member are assumed. as in
: 1000 x 9 — 1000 x 7 — 500 x 4 = 0 the previous example, and veclors are changed on Lhe sketch when they
This equilibrium check should be made wherever possible to detect any are found to be negative. (Scc Fig. 1.10)
errors that might have occurred during the analysis. Isolating joint 4, we have
Example 1.2 Find the internal load in member 5 of the coplanar truss struc- +
i Fi IF,=0(+ *)
ture shown in Fig, 1.9. i
Fo—-2000=0 000 ;
SoLuTioN Several methods are available for analyzing truss structures; two o F. = 2000 Ib -~— '
are discussed and applied in solving this example. S 4 !
(a} Method of joints. In the analysis of a truss by the method of joints, the SF.—0
two equations of static equilibrium, LF, = 0 and TF, = 0, are applied for ) y=0(+1 560
each joint as a free body. Two unknown forces may be obtained for each i 500 —F, =0
joint. Since each member is an axial rod (two-force member), it exerts F. = 500 Ib
equai and opposite forces on the joints at its ends. The joints of a truss e
must be analyzed in sequence by starting at a joint which has only two Isolating joint 1 gives
members meeting with unknown forces. Then the joints are analyzed in 2000 £,
S . . ; EF. =0(+1} —e
the proper sequence until all joints have been considered, if necessary, y
To find the unknown reactions, consider the entire structure as a free . . 500 - F,sind5° =0
body. F,=7071b 500 Fy
ZM.{_ = 0 (+ (“v ) ! .
- TF,=0(+ %
2000 x 10 4 4000 x 10 + 1000 x 30 — 20R,, =0 * ¢ )
2000 + 707 cos 45" — Fy =10
Rg, = 4500 1b
= F,=25001b
4006 1h
wow ! @) 2 (@ 3 4000
T i 1000 1b ' ; ' w0 1 Fy Yy £y 3

10in (D @ ON® |® - Fy Feo ] Fia J1ooo
LdeN e\l o s

N . 000 4 F Fy
R \ 5 7 — z

Ry |10 in—w4—10 in—rda—10 in—e] ' ' .
Rer Figure 1.9 Truss structure. . 500 4500 ~ Figure 1,10
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14000 b
- b 2 3

e 1000 Ib

2000 i
—_—

2000 1h

300 T 4500 ib

Figure 1.11

Finally, iselating joint 5 to oblain the load in member 5, we get

CIF,=0(+1 707
707 sin 45° — Fs = 0 \j
2000 Fs
Fy = 500 Ib - . -

£g

‘ . )
Arrows acting toward a joint indicale (hat a member is in com-

pression, and arrows acting away from a joint indicate {ension.

(b} Method of sections. As in this example, olten il is desirable to find the
internal loads in ceriain selected members of a truss without analyzing
the entire truss. Usually the method of joints is cumbersome in this case,
since the loads in all the members to the left or right of any member must
be obtained before the force is found in that particular member. An
analysis by the method of sections will vield the internal load in any
preselecied member by a single operation, without Lhe necessity of finding
loads in the other members. Instead of considering the joints as free
bodies, a cross section is taken through the truss and the part of the truss
on either side is considered as a free body. The cross section is chosen so
that it cuts the members for which the [orces are desired and preferably
only three members,

In our example, the internal load in member 5 is desired; the free
body is as shown in Fig. 1.11. The load in member 5 may be found by
summing forces in the y direction on either pari of the cut truss. Con-
sidering the left part as a free body, we get

LF,=0(+1
500 — Fy =0

Example 1.3 Analyze the structural system shown in Fig. 112

SoruTion Quite often. structural systems are made up largely of axial rods
but contain some members which are foaded laterally, as shown in Fig. 1.12.

tem

T
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Figure 112

These structures usually are classificd as trusses, since the analysis is similar
to that used for trusses. As shown in Fig. 1.12, members 1-2 and 2-3 are not
axial rods, and separate free-body diagrams for these members, as shown in
Fig. 1.13a and b. are required. Since each of these members has four un-
known reactions, the equations of static equilibrium are not sufficient to find
all four unknowns. 1t is possible, though, to find the vertical reactions
Ry, =Ry, =Ry, =R;, =100 b and to obtain the relations R;, = R,, and
R,.. = R;, from the cquations of equilibrium.

When the unknown reactions obtained from members 1-2 and 2-3 are
applied to the remaining part of the structure as a free body (Fig. 1.13b), it is
apparent that the rest of the analysis is similar to that of the previous
examples. All members except 1-2 and 2-3 may now be designed as simple
tension or compression members, The horizontal members (1-2 and 2-3) must
be designed for bending combincd with axial and shear loads. '

Example 1-4 Find the reactions at supports 4, B, and C, for the landing pear
of Fig. 1.14. Members OB and GC are two-force members. Member 04
resists bending and torsion, but point A4 is hinged by a universal joint so that
the member can catry torsion but no bending in any direction at this point.

SoruTion First consider the components of the torsional reaction at point A.
The resultant torsional vector Ty, shown in Fig. 1i5h, must be along the
member, and it has components T,y and Tyy.

Any vector force @ acting in space may be resolved into components
along the chosen set of axes by the method of direction cosines.

g.=Qcosu
Q,=Qcos B
Q.=Qcosy (1.3
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The torsional moment T; may be found by taking moments about line
04. Note that all unknown forces act through this iine.
400 1b EM o=1000 x 48 - T, =0
' . T,=4800in - Ib
40016 ©
Figore 1,13

Here o, i, and y are the angles between the x. y, and z axes and the line of
action of the force vector Q, respectivcly.
Thus, from Fig. .15h, utilizing Eq. (1.3}, we have

Toy = Ty cos f = Ty §8) = 03T,
Tix = Ty cos o = T, (3] = 0.6T,
Tiz=Tycosy=T,(5) =0

In the {ree-body diagram for the entire structure, shown in Fig. 1.15q,
there are six unknown reaction forces. The six equations of static equilibrium

are just sufficient to determine these unknown forces. Taking moments about 9 / 100010
an axis through points 4 and B gives ' 000 ¢ ) 4000 1
OOU fb b p—wiu
ZM 4z =4000 x 36 —QBF - x 30=9 @ ) 4.8 in
/3 i

Fe=60001b l Figure 1.15
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K =19,790 b Ey= l})t?‘lu Ity
Fyy = 474010 Eg= 0300 I
,_~ £, =4740 10

16 AIRCRAFT STRUCTURES

The other forces are obtained from the following equations, which are

chosen so that only one unknown appears in each equation. 4
Ey = 6300 1h
IMoy = 2880 — 40F ,; = 0 i
Fa=1721b : Te=at0ib (| B ganegeoson P a0
' Az 0.707011 - 9930 th
The subscript “0, ™ designates an axis through point @ in the x direction. . =3930 - 94401 BIL = 14,050 I
v 0707811 & B 6300 th
IM_ = 1000 + 72 — 6000 x 0.6 + (.371/% =0 } R e ol ja PR
_Fy=68200b ' VL_ VL_
IFy=F, . —6820x0557=0 : 5 5190 1b pif S0
e
F oy = 3800 Ib 4
T = 4000 + 6820 x 0.743 — 6000 x 0.8 — Fy =0 19,300 1 19,300 I
Far=427016 “ .
Check: TM ,y = — 1000 x 36 + 6000 x 0.6 x 30 — 6820 x 0.557 ;
»x 20 + 3840 =0 41720 in1k 2 Lo
: 19,790 h RN
. G300 4 £, =13751b 1740k 5‘“1 o
Example 1.5 Find the internal loads on all members of the landing gear ip=6liSh . 1 o ¥ LT
. . . : - i " ot
shown in Fig. 1.16. ' N Is=0 H@mr 121001 > Lt o ®
- t -=12.1001h oo
SoLuTioN For convenience, the reference axes V, D, and S are taken as femIL0E fadai i I "g( ’ o~ J<'
shown in Fig. 1.16 with the V¥ axis parallel to the oleo strut. Free-body - Aarath 5 (‘7\) P
. [[4] r

diagrams for the oleo strut and the the horizontal member are shown in Fig,
1.17. Forces perpendicular to the plan of the paper are shown by a circled
dot for forces toward the observer and a circled cross for forces away from

J=1L1U01b pd

J Jf
D fp= 13751 1<” 4 in
47,720 in-Ib 9440 1b oot

l s B
1979016 6300 Ih . /

Ie=170301h g0

7, =6l151b

~aj ~
1l Nin \“"..J_\
1°, 200 »
]
(3]
Figore 1.17
the observer. The ¥ component of the 20,000-Ib forec is
e " 20000 cos 157 = 19,300 Ib

The P component is

=19,300 Ib 20,000 sin 15" = 5190 tb

The angle of the side-brace member CG with the ¥/ axis is

tan ' 4 =337

{a} (D]

Figure .16
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The ¥ and S components of the force in member CG are
CG cos 33.7° = 0.832CC CG sin 33.7" = 0.555CG fr

The drag-brace member BH is at an angle of 45° with the ¥ axis, and the
components of the force in this member along the ¥ and D axes are

BH cos 45° = 0.70781 BH sin 45° = 0.707BH

The six unknown forces acting an the olco strut are now abtained from ’
the following equations:
EMey =5190x 8 — T, =0
T,=41,720in - 1b
EZMgs = 5190 x 44 —0.707BH x 20 — 0.707BH x 3 =0
BH = 14,050 |b
0.7078H = 9930 ib |
ZMgp =0.555CG x 20 + 0.832CG x 3~ 19300 x § =0
CG=11L3501b
0.555CG = 6300 1b
0.832CG = 9440 1b
LF, =193004+9930 — 9440 - E, =0
E, = 19,700 1b
ZF. =E —6300=0
E,=63001b
IF, = —5190 + 9930 — E,; = 0 4
E,=4740 1b y
The horizontal member If is now considered as 2 free bedy. The forcg; »
obtained above are applied to this member, as shown in Fig. 1.17¢ and d, and
the five unknown reactions are obtained as follows:
LF,=1,=0
IM;p = 19790 x 3 + 9440 x {8 + 6300 -2 -320J, =0 ' -
J,=121001b

TF, = 19,790 + 9440 — 12,100 — 1, = 0
[,=17130 b

STATIC ANALYSIS OF STRUCTURFS 19

IM,, = 41,720 — 4740 x 3 + 20J, =0
Jy=—13751b

TF,; =440 + {375 - 1,=0
1, =61151b
The reactions are now checked by considering the entire structure as 2
free body, as shown in Fig. 1.17e.
EF,= 19,300 — 17,130 - 12,100 + 9930 =0
TF,= —5190 + 1375 — 6115+ 9930 =0
ZF, =0
TM,, =5190 % 11 —1375x 20 -9930 x 3 =0
TM,p= 19300 x 11— 12,100 x 20 - 9930 x 3 =0
TM,, = 5190 x 44 — 9930 x 23 =0
Example 1.6 Find the loads on the bt and drag-truss members of the exter-
nally braced monoplane wing shown in Fig. 1.18. The air load is assumed to

be uniformly distributed along the span of the wing. The diagonal drag-truss
members are wires, with the tension diagonal effective and the other diagonal

carrying no load.

SoLution The vertical load of 20 Ib/in is distribuled to the spars in inverse
proportion to the distance between the center of pressure and the spars. The

B < —/
WMJ in--*—l‘-w in-’l“#ﬁ in"l

i)

b'(__- _I-.' _M_\'

EI
=]
-

4,.C

20 thfin

. o .
180 i 0 fin l -] 4 [ln‘n -
5 Ib/in "
- —— e
G, - B E

(hy {t'}

Figure 1,18
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load on the front spar is therefore 16 Ibfin, and that on the rear spar is 4
Ibfin. If the front spar is considered as a free body, as shown in Fig. 1.19q, the
vertical forees at A and G may be obtained.

EM, = —16 x 180 x 90 + 100G, = 0

G, = 2590 Ib
G, _25%
100~ 60

G,= 4320 Ib

IF, =16 x 180 = 2590 — A_ =0

"A.=2901b

Force A, cannot be found at this point in the analysis, since the drag-truss
members exert forces on the front spar which are not shown in Fig. 1.19a.
If the rear spar is considered as a free body, as shown in Fig. 1.195, the

180 in

16 lxfin 1001 , {2880 b}
ZP S S S N

ILQ 7, =2590 lb

4,

s [mon < G,=
2 - 4326 tb
-~
~
L~
{a)
4 thfin (720 Ib)
n EX AT I T I T34} g
R = i 9, - —
B=72my £ =10800 Z L ,
NE, =648 1b s
h)
1080 Ib
75M 1500 175t \ 20006 2004 (OO
ZT00 s f+i5504 +553 § -547 +133 0y
+ — = - -
Tt il -+ ] =3
3 RN RS § D ¥ > 3, % =
;‘ el (‘i,l J; % >
sl00b 4 Ri00 - evso ~5950,2  s33 -133
b
122510 =
te) Figure 1.19

-

STATIC ANALYSIS OF STRUCTURES 21

veriical forces at B and K may be obtained:
TMg= —4 x 180 x 50 + 100E, =0
E, =648 1b

E._E, 648

0100 60
E,=3241b  E,=1080Ib

EF.=4x180—-648 —B.=0
B_.=721b

The loads in the plane of the drag truss can be obtained now. The
forward load of 5 Ib/in is applied as concentrated loads at the panel points,
as shown in Fig. 1.19¢, ‘The componcents of the forces at G and E which lie in
the plane of the truss also must be considered. The remaining reactions at 4
and B and the forces in all drag-truss members now can be obtained by the
methods of analysis [or coplanar Lrusses, shown in Fig. 1.19¢.

PROBLEMS

1.1 A 5000b airplase is in a sicady plide with the Dight path at an angle @ below the harizontal {sce
Fig. PL1}. The drag force in the dircclion of the Right path is 750 1b. Find the lift foree L normal o

the Night path and the angle (.

D=7501

W = 5000 1h

Flight

path Figure P1.1

1.2 A jel-propelled airplanc in steady Might has forces acling as shown in Fig. P1.2. Find the jet
thrust T. lift L, and Lhe tail load P.

- 1200 1
1010 {40,000 in-1b

8000 Ib Figure P12

;
i
—
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1.3 A wind-tunnel model of an airplane wing is suspended as shown in Fig. P13 aod PL4. Find the ‘ 200 H: ‘
joads in metmbers 8, C, and £ if the lorcesal A are L = 438 1b, 8 = 342 lb,and M = —206in - b .- —tg?bl;lr-q-..o in
1.4 For the load of Prob, 1.3, find the forces I, D, and M at 4 point 4 i the measured forces are
=402, C = 4.16, and E = 3.74 Ib. LB [
B =402, C = 4.16, an 000 .
in«jb .
i 4 300 b Figure P1,7
§ L8 Find the internal loads in ail members of the truss struclure shown in Fig. PI.8.
- ] L .
; 3
% N 1000 1b 1000 Ib
Figure Pl.3 and 1.4 : 30in 30 in Q
] N A
I8 Find the forces at points A and B of the Fanding gear shown in Fig P1.5. : § I A B §
‘3- ™ 30% k=l \
. i N o N
~—16 mAﬁI 5 N . 3 o :
F ) R E N &
A b 14 12 in I01n4~j 19 I o
) ———— /% 4
I 1000 Ik 500 Ib [ \
= 10in Wi ™
i a :
3 m-—wl P (a} h)
: HIOG th 2000 th 00 1t
- L 800
=
2

1000 1b
"0 m—“—}-‘— 20 in—n

5
. Figure P18 oL
3000 B Figure P15 : :
P 5 1.9 Find the imternal Toads on all members of the fuselage truss structure shown in Fig. P1.9.
L6 Find the forces at points A, B, and € of the structure of the braced-wing monoplane showd in 2 Pl
. - D = o o AN
Fip. 'LG. Y = = =2 _ = a a2 o o /] \
2 i o oo Ttg.e, = o ;=
; 2 8”8 &'~ o e g g/ \
H _=:__.——':r —rt Flr—The 0 \5-.—11' Q'
N 20 in | H {{ ] e0aih L 3 1 1 * 1 '-“ - -{ _:\'
NED Ih!m : A M i 15 in
HWHHH : B EN = )
T—\ e H : I kI o e 15in
EENK ¢ ‘{’ N I P =L = l_
o N ol and .
T i Wwnbys| sz =V s g s Tx!
:1 A Figure P16 ; g8 8t R 2 & 8 7

5
M4

Ry

. I Fi P19
1.7 Fined the forces 17 and A7 a1 the cul cross section of (he beam shown in Fig. P17, ‘gure

g o e i ™ Y e A e R




L10 Al members of the structure shown in Fig. P1.10 are two-force members, excepl member ABC.
Find the reactions on rnember ABC and the loads in other members of the structure,

o P20 in—ny

TSI 77777

& ly
{-—-20 in——sj—20 In—sfe—20 in—»
1000 Ib Figure PL10

L1T The bending moments about the x and z axes in a plane perpendicular (o the spanwise axis of a
wing are 400,000 and 100,000 in-Jb, as shown in Fig. L11. Find the bending moments about the
¥, and z| axes which are in the same plane but rotated 10° counlerclockwise,

3 io° L\
\ Mo,

Figure P1.11

LIT The main beam of the wing shawn in Fig. P12 has a sweephack angle of 30°. First the
moments of 300,000 and 80,000 in - Ib are computed about the x and ¥ axes which are parallel and
perpendicular to the centerline of the airplane. Find the moments about the x’ and ¥ axes.

1.13 Find the forces acting on all members of the nose-wheel structure shown in Fig. P1.13. Assume

the V axis is paralle! to the oleo strpt,
15in (15in
’_’I‘—"I 25
L3 ?\‘B/k m‘/

A m B

™ M, = 300,000 in-b

15,000 b

Figure PL13

Figure P1.12

YUATIC ANALYSIS OF STRUCTURES £2

L.14 Analyze the landing gear structure of Example 1.5 for a 15,000-Ib load up paraliel 1o the ¥ axis
and a 5000-1b load all paralle! to the D axis. The loads are applied at the same point of the axle as the

icad in Example 1.5.
L.15 Write a compuler program Lo calculate the reactions of the beam structure shown in Fig. P115.

F, Iy ¥y ¥,

B

""1-1" '
-—I—Ll
L3

L |
L Figure PL15

1.16 Write 2 compuier program to calculate the internal shear and bending moments af every stalion
of the cantilevered wing shown in Fig. P1.16. Assume 1he center of pressure is at 25 percent of the
chord length measured from the x axis.

Center of pressute

3 Spanwise il
y distribution

- _! L,—o-! x

Figure P1.16




CHAPTER

TWO

FLIGHT-VEHICLE IMPOSED LOADS

2.1 INTRODUCTION

Before the final sclection of member sizes on’ ﬂight vchicles can be made, all load
conditions imposed on the structure must be known. The load conditioas are
those which are encountered both in Right and on the ground. Since it is impos-
sible to invesligate every loading condition which a flight vehicle might encounter
in its service lifetime, it is normal practice to select only those conditions that will
be critical for every structural member of the vehicle. These conditions usually
are determined from past investigation and experience and are definitely specified
by the licensing or precuring agencies.-

Although the calculations of loads imposed on flight-vehicle structures are
the prime responsibility of a specizl group in an engi gering organization called
the loads group, a basic pencral overail knowledge of the loads on vehicles is
essential to stress analysts, Therefore, in this chapter we present the fundaméntals
and terminology pertaining to flight-vehicle loads.

2.2 GENERAL CONSIDERATIONS

Every flight vehicle is designed to safely carry out specific missions, This results in
a wide variety of vehicles relative 10 size, configuration, and performance. Com-
mercial transport aircralt are specifically designed to transport passengers Irom
one airport to another. These types of aircraft are never subjected to violent
intentional mancuvers, Military aircraft, however, used in fighler ot dive-bomber
operations, are designed to resist violent maneuvers. The design conditions u-
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sually are determined from the maximum acceleration which the human body
can withstand, and the pilot will Jose consciousness before reaching the load
factor {load factor is related to acceleration} which would cause structural failure
of the aircraft.

To ensure safety, structural integrity, and reliability of fight vehicles along
with the optimality of design, government agencics, both civil and military, have
established definite specifications and requirements. inregard to the magnitude of
loads to be used in structural design of the various flight vehicles. Terms are
delined below which arc generally used in the specification of leads on flight
vehicles. ’ .

The limit loads vsed by civil agencies or applied loads used by military
agencies are the maximum anticipated loads in the entire service life-span of the
vehicle. The ultimate loads, commonly referred to as design loads, are the Nmit
loads multiplied by a factor of safety (FS);

FS = u]lllm-ate load
limit load
Generally, a facior of safety which varies from 1.25 for missile structures to L5 for
atrcraft structures is used in practically every design because of the uncertaintics.
involving g

1. The simplilying assumption used in the theoretical analyses

2. The varialions in material properties and in the standards of guality control

3. The emergency actions which might have to be taken by the pilot, resulting in
loads on the vehicle larger than the specified limit loads.

The limit loads and uliimate loads quite often are prescribed by specifying
certain load factors. The limit-load factor is a factor by which basic loads on 2
vehicle are multiplied to obtain the limit loads. Likewise, the uitimate load factor
is a factor by which basic vehicle loads are maultiplied to obtain the ultimate
loads; in other words, it is the product of the limit load factor and the factor of
safety.

2.3 BASIC FLIGHT LOADING CONDITIONS

One of four basic conditions will_probably produce the highest load in any part

of the airplane for.anv Bight condition, Usually thesc conditions are called post-
tive mgn angle of attack, posilive low angle of atlack, negative high angle of
attack, and negative low angle of attack. All these conditions represent symmetri-
cal flight maneuvers; ie., there is no motion normal to the plane of symmetry of
the airplane.

The positive high angle ol attack (PHAA) condition is obtained in a pullout
at the highest possible angle of atlack on the wing. The lift and drag forces are
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perpendicular and parallel respectively, to the relative wind, which is shown as
horizontal in Fig. 2.1a. The resultant R of these forces always has an aft com-
ponent with respect to the relative wind, bul will usually have a forward com-
ponent C with respect to the wing chord line, because of the high angle of atlack
& The maximum forward component C will be obtained when  has 2 maximum
value. In order to account for uncertainties in obtaining the stalling angle of
attack under unsteady flow conditions, most specifications arbitrarily require that
a value of a be used which is higher than the wing stalling angle under steady
flow conditions. An angle of attack corresponding to a coefficient of lift of 1.25

times the maximum coefficient of lift for steady flow conditions is often used, and.
acrodynamic data are extrapolated from data measured for steady flow condi-
tions. Experiments show that these high angles of attack and high lift coefficients
may be obtained momentarily in a sudden pull-up before the airflow reaches a
steady condition, but it is difficult to obtain accurate lift measurements during the
unsteady conditions.

In the PHAA condition, the bending moments from the normal forces N,
shown in Fig. 2.1a, produce compressive stresses on the upper side of the wing,
and the moments from the chordwise forces C produce compressive siresses on
the leading edge of the wing. These compressive stresses will be additive in the
upper flange of the front spar and the stringers adjacent to it. The PHAA condi-

tion, Lherefore, will be critical for compressive stresses in the upper forward -

3

LN

LN R

/) NLAA

L r ¥
) N“J\A

Figure 2.1
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region of the wing cross section and for tensile stresses in the lower aft region of
the wing cross section. For normal wings, in which the aerodynamic piiching-
moment coefficient is negative, the line of action of the resultant force R is farther
forward on the wing in the PHAA condition than in any other possible flight
attitude producing an upload on the wing, The upload on the horizontal tail in
this condition usually will be larger thaa for any other positive flight attitude,
since pitching accelerations are normally neglected and the load on the hor-
izontal tail must balance the moments of other aerodynamic forces about the
center of gravity of the airplane.

In the positive low angle of attack (PLAA) condition, the wing has the
smallest possible angle of attuck at which the lift corresponding to the limit-load
factor may be developed. For a given lift on the wing, the angle of attack
decreases as the indicated airspeed increases, and consequently the PLAA condi-
tion corresponds to the maximum indicated airspeed at which the airplane will
dive. This limit on the permissible diving speed depends on the type of aircraft,
but usually is specified as 1.2 to 1.5 times the maximum indicaled speed in level
flight, according to the function of the aircraft, Some spectfications require that
the terminal velocity of the aircraft—the velocity obtained in a vertical dive
sustained until the drag equals the airplane weight—be calculated and the limit
on the diving speed be determined as a function of the terminal velocity. Even
fighter aircraft are seldom designed for a diving speed equal to the terminal
velocity, since the terminal velocity of such airplanes is so great that difficult
aerodynamic and structural problems are encountered. Aircraft are placarded so
that the pilot will not exceed the diving speed limit. '

In the PLAA condition, shown in Fig. 2.1b, the chordwise force C is the
largest force acting aft on the wing for any positive flight attitude, The wing
bending moments in this condition produce the maximwm. compressive-stresses.
on _the upper rear spar flange and adjacent stringers and maximum tensile
stresses on the lower front spar flange and adjacent stringers. In this condition,
ihe Tine of action of the resuitant wing force R is farther aft than for any other
positive flight condition, The moment of this force about the center of gravity of
the airplane has the maximurm negafiveé (pitching) value; consequently, the down-
load on the horizontal tail required to balance the moments of other aerody-
namic forces will be larger than for any positive flight condition,

The negative high angle of attack (NHAA) condition, shown in Fig. Zlc,
occurs in intentional flight maneuvers in which the air loads on the wing are
down or when the airplane strikes sudden downdralils whilc in level flight. The
load factors for intentional negative Right attitudes are considerably smaller than
for positive flight attitudes, because conventional aircraft engines cannot be oper-
ated under a negative load factor for very long and because the pilot is in the
uncomfortable position of being suspended from Lhe safety belt or harness. Gust
load factors are also smaller for negative flight attitudes, since in level flight the
weight of the airplane adds to the inertia forces for positive gusts but subtracts
from the inertia forces for negative gusts.

In the NHAA condition, usually the wing isvassumed to be at the negative
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stailing angle of attack for steady flow conditions. The assumption used in the
PHAA condition—the maximum {ift coeflicient momentarily exceeds that for
steady flow—is seldom used because it is improbable that negative maneuvers
will be entered suddenly. The wing bending moments in the negative high angle
of attack condition produce the highest compressive stresses in the lower forward
region of the wing cross section and the highest tensile stresses in the upper aft
region of the wing cross section. The line of action of the resultant force R is
farther aft than for any other negative flight attitude, and it will probably pro-
duce the greatest balancing upload on the honzontal wit for any negaltive flight
attitude. -

The negative low angle of attack (NLAA) condition, shown in Fig 2.1d,
occurs al {he diving-speed limit of the airplane. This condition may occur in an
intentional maneuver producing a negative load factor or in a negative gust
condition. The aft load C is a maximum for any negative flight attitude, the
compressive bending stresses have a maximum value in the lower aft region of
the wing cross section, and the tensile bending stresses have a maximum value in
the upper forward segion of the wing cross section. The resultant force R is
farther forward than in any other flight attitude, and the download on the hor-
izontal tail will probably be larger than in any other negative flight altitude,

In summary, one of the four basic symmetrical flight conditions is critical for

the design of almost every part of the airplane structure. In the siress analysis ofa

gonventional wing, it is necessary to investigate each cross section for each of the

four conditians, Then each stringer or spar flange is designed for the faximum
tension and the maximum compression obtained in any of the conditions. The
probable critical conditions for each region of Lthe cross seclion are shown in
Fig.2.2. ;

Some specifications requirc the investigation of additional conditions of
medium-high angle of attack and miedium-low angle of attack which may be
critical {or stringers midway between the spars, but usually these conditions are
not considered of sufficient importance to justify the additional work required for
the analysis, The wing, of course, must be strong enough to resist loads at
medium angles of attack, but normally the wing will have adequate strength if it
meets the requirements for the four limiting conditions.

rd

Compression PHAA | Compression PLAA
Tension NLAA Tension NHAA

e
zz L_ZJ———L/>

B e
Compression NHAA | Compressinon MLAA
Tension PLAA Tension PIIAA

Figure 2.2
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For aircrafts such as transport or cargo aircrafts, in which the load may be
placed in various positions in the gross-weight condition, it i5 necessary to deter-
ncing tail loads for the most forward and most rearward center-of-
ons al which 1he APANG May be Hown at the gross weight., Euch of

r_itysi

The TouT ATeht conditions must be investigated 107 €ach. SRtraime. position of the

center of gravity.[For smaller aircraft, in which the vseful load cannot be shifted

appreciably, there may be only one position of the center of gravity at the

gross-weignt condition. To accodnt for gredler balancing (a1l joads  Willch
may OCCUr IOt anoihcr location Of The center Of giavity, if may be possible to
Take some conservative assumption and siil compute balancing fail loads for
only one location.

The gust load factors on an aircraft are grealer when it is flying at the
minimum flying weight than they are at the gross-weight condition. While this is
seldom critical for the wings, since they have less weight to carry, it is critical for
a structure such as the cngine mount which carries the same weight at a higher
load factor. It is therefore necessary to calculate gust lpad factors at the minimum
weight at which the aircraft will be Rown.

For aircraft equipped with wing flaps, other high lift devices, or dive brakes,
additional Right loading conditions must be investigated for the flaps extended.
These conditions usually are not critical for wing bending stresses, since the..
specified load factors are not large, but may be critical for wing torsion, Shear ia
the rear spar, or down tail loads, since the ncgalive pilching moments may be
quite high. The aft portion of the wing, which forms the flap supporting structure,
will be critical for the condition with flaps extended.

Unsymmetrical loading conditions and pitching-acceleration conditions for
commercial aircraft are seldom of sufficient importance to justify extensive analy-
sis. Conservative simplifying assumptions usually are specified by the licensing
agency for use in the structural design of members which will be ¢ritical for these
conditions. The additional structural weight required tc meet conservative design
assumplions is not sufficient to justify a more accurate analysis. Some military
aircraft must perform violent evasive maneuvers such as snap rolls, abrupt rolling
pullouts, and abrupt pitching motions. The purchasing agency for such airplanes
specifies the conditions which should be investigated. Such investigations require
the calculation of the mass moment of inertia of the airplane about the pitching,
rolling, and yawing axcs. The acrodynamic forces on (he airplane arc calcuiated
and set in equilibrium by inertial forces on (he airplane.

2.4 FLIGHT-VEIIICLE AERODYNAMIC LOADS

Extensive aerodynamic information is required to investigatc the per-
formance, control, and stability of a proposed aircraft. Only the information
which is required for the structural analysis is considered here, although normally
this would be obtained as part of a much more extensive program. The first
aerodynamic data required for the structural analysis are the lift, drag, and
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pitching-moment force distributions for the complete aircraft with the horizontal
tail removed, through the range of angles of aitack from the negative stalling
angle to the positive stalling angle. While these data can be calculated accurately
for a wing with a conventional airfoil section, stmilar data for the combination of
the wing and fuselage or the wing, fuselage, and nacelles are more difficult to
calevlate accurately from published information because of the uncertain effects
of the aerodynamic interference of various components. It is therefore desirable
to obtain wind tunnel data on a model of the complete airplane less horizontal
tail. It is often necessary, of course, to calculate these data from published infor-
mation in order to obtain approximate air Joads for preliminary design purposes.

Wind tunnel tests of a model of the complete airplanc with the horizontal tail
removed provide values of the lift, drag, and pitching moment for all angles of
allack. Then components of the lift and drag forces with respect to airplane
reference axes are determined. The aircrall reference axes may be chosen as
shown in Fig. 2.3. The force components are C, ¢S and C, g5 along these axes,
where g = pV?/2 is the dynamic pressure and § is the surface wing area. The
nondimensional force coefficients €. and C, are obtained by projecting the lift
and drag coefficients, respectively, for the airplane less horizonial tail along the
reference axes by the following equations:

C.=Cpcos 8+ Cp,5in 0 (2.1
C,=Cpcos 1~ Cpsin 0 (2.2)

The angle # is measured from the Right path to the x axis, as shown in Fig. 2.3,
and is equal (o the difference between Lhe angle of atiack a and the angle of wing
incidence i.

The pitching moment about the airplanc’s center of gravity is obtaincd from
wind tunnel data and is C,,__ &S, where C,__, is the dimensionless pitching-
moment coelficient of the airplane less tail and © is the mean aerodynamic chord
of the wing. The mean aeradynamic chord (MAC) is a wing reference chord
which usually is calculated from the wing planform. If every, airfeil section along
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the wing span has the same pitching-moment coefficient ¢,,, the MAC is deter-
mined so that the total wing pitching moment is ¢, &gS. For a rectangular wing
planform the value of ¢ (lhe MAC) is equal to the wing chord: for a trapezoidal
pianform of the semiwing, the valuc of ¢ is equal to the chord at the centroid of
the trapezoid, The MAC is actually an arbitrary length, and any reference length
would be satisfactory if it were used consistently in all wind tunncl tests and
calculations, For irregular shapes of planforms, some procuring or licensing
agencies require that the mean chord (wing area divided by wing span) be used as
the reference chord.

The balancing air load on the horizontal tail, C,¢5, is obtained from the
assumption that there is no angular acceleration of the airplane. The moments of
the forces shown in Fig. 2.3 about the center of gravity are therefore in equilib-
rium: .

CqSL, =C,,_ tq8
L., 23

C =
or ) L‘ -t

where C, is a dimensionless tail force coeflicient expressed in terms of the wing
area and L, is the distance from the airplane’s center of gravily fo the resultant
air load on the herizontal tail, as shown in Fig. 2.3. Since the pressure dis-
tribution on the horizontal tail varics according to the altitude of the airplane, L,
theoretically varies for different loading conditions. This variation is not great,
and it is customary to assume L, contant, by using a conservative forward pos-
ition of the center of pressure on the horizontal tail. The total aerodynamic force
on the airplane in the 2 direction, C_ 48, is equal to the sum of the force C, S on
the airplane less tail and the balancing tail load C, g5:

C.qgS5=C.q8+CqS
or C.=C. +C {2.4)

For power-on flight conditions; the moment of the propelier or jot thrust
about the center of gravity of the alrplanc should also be considered. This adds
another term to the Eq. (2.3).

Now the aerodynamxc coefficierits can be plotted against the angle of attack
#, as shown in Fig. 2.4. If more than one position of ke center of gravity is
considered in the analysis, il is necessary to calculate the curves for C,,, |, C,, and
C., for each cenier-of-gravity position. The right-hand portions of the solid
curves shown in Fig. 2.4 represent the aerodynamic characteristics after stalling
of the wing. Since stalling reduces the air loads on the wing, these portions of the
curves are not used. Instead, the curves are extrapolated, as shown by the doited
lines, in order to approximate the conditions of a sudden pull-up, in which high
lift coefficients may exist for a short time. For the PHAA conditioh, the angle of
attack corresponding to the force coefficient of 1.25 times the maximum value of
C., is used, and the curves are extrapolated to (his value, as shown in Fig. 2.4.
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s [
\ Figure 2.4

2.5 FTLIGHT-VEHICLE INERTIA LOADS

The maximum load on any part of a flight-vehicle structure occurs when the
vehicle is being acceleraied. The loads produced by landing impact, maneuvering,
gusls, boost and staging operations, launches, and dockings are always greater
than the loads occurring when all the forces on the vehicle are in equilibrium.
Before any structural component can be designed, it is necessary to determine the
inerlia loads acting on the vehicle.

In many of the loading conditions, a flight vehicle may be considered as
being in pure translation or pure rotation. The inertia force on any element of
mass is equal to the produst of the mass and the acceleration and acts in the
direction opposite to the acceleration. If the applied loads and inertia forces act
on an element as a free body, these forces are in equilibrium, For example, 2 body
of mass m under the action of a force vector F moves so as to satisfy the equation

F=ma (2.5)

ra
where m is the mass and «a is the acceleration relative to a newtonian frdfne of
relerence. If a cartesian system of x, y, and z axes is chosen in this frame, then Eq.
{2.5) gives, upon resolving into components,

F_=mj, F,=mj, F. = mi (2.6}

L ]
where F,, F,, and F, are the components of F along the x, y, and z axes,
respectively, and ¥, # and ¥ are the components of acceleration along the x, y,
and z axes. In the preceding discussion, all paris of the rigid body were moving in
straight, parallel lines and had equal velocilies and accelerations. In many engin-
eering problems, it is necessary to consider the inertia forces acting on a rigid
body which has other types of motion. In many cases where the elements ol a
rigid body are moving in curved paths, they are moving in such a way that each
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element moves in only one plare and all elements move in parallel planes, This
type of molion is culled plane motion, and it oceurs, for cxample, when a vehicle is
pitching and yet has no rolling or yawing motion. All elements of the vehicle
move in planes parallel to the plane of symmetry. Any type of plane motion can
be considered as a rotation aboul some instanlaneous axis perpendicular to the
planes of motion, and the following equations for inertia forces are derived on the
assumption that the rigid body is rotating about an instantaneous axis perpen-
dicular to a planc of symmetry of the body, The inertia forces obtained may be
used for the pitching motion of a vehicle, but when they are utilized for rolling or
yawing motions, if is necessary Lo first obtain Lhe principal axes and moments of
inerlia of the vehicle.

The rigid mass shown in Fig. 2.5 is rotating about peint O with a constant
angular velocity . The acceleration of any point a distance r from the center of
rotation is e?r and is directed toward the center of rotation. The inertia force
acting on an element of mass dM is the product of the mass and the acceleration,
or wir dM, and is direcled away from the axis of rotation. This inertia force has
components w?x dM parallel to the x axis and w?y dM parallel to the y axis. If
the x axis is chosen through the center of gravity C, the forces are simplified. The
resultant inertia force in the y direction for the entire body is found as foliows:

F,= J.wzy dM = wZJ}! dM =0

The angular velocity e is constant for all elements of the body, and the integral is
zero because the x axis was chosen through the center of gravity. The inertia
force in the x direction is found in the same munner;

F.= Jruz.\' dM = (:JZJ,V dM = w?iM 2.7

The term ¥ is the distance from the axis of rotation & to the ceater of gravily C,

as shown in Fig. 2.5,
If the body has an angular acceleration o, the element of mass dAf has an
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additional incrtia force er dM acting perpendicular to r and opposite to the
direction of acceleration. This force has components «x dM in the y direction and
ay dM in the x direction, as shown in Fig. 2.6, The resultant inertia force on the
entire body in the x direction is

Fx=J‘aydM=aJ'ydM=0

The resultant inertia force in the y direction is
F,= Jnrx aM = J.dM = aiM (28)

‘The resultant inertia torque about the axis of rotation is found by integrating the
lerms representing the product of the tangeniial force on each element ar dM and
its moment arm r:

Ty = farz M=o J' r2 dM = aly (2.9)

The term Iy represents the moment of inertia of the mass about the axis of
rotation. It can be shown that this moment of inertia can be transferred to a
parallel axis through the center of gravity by use of the following relationship:

Io=Mz* 41, ‘ (2.10)

where [, is the moment of inertia of the mass about an axis through the center of
gravity, oblaired as the sum of the products of mass clements JM and the square
of their distances r, from the center of gravity:

I‘=jr3 aM

By substituling the value of Iy from BEq. (2.10) in Bg. (2.9), the following ex-
pression for the inertia torque is obtained:

*

To= M3 + 1.« (2.1
P

- Figure 2.6
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Figure 2.7

The inertia forces oblained in Egs. (2.7), (2.8), and (2.11) may be represented as
forces acting at the center of gravity and the couple I, «, as shown in Fig. 2.7. The
force «&M and the couple 7, & must both produce moments about point & which
are opposite to the dircction of a. The force w?%M must acl away from point O.

It is seen from Fig. 2.7 that the forces at the centroid represent the product of
the mass of the body and the components of acceleration of the center of gravity.
In many cases, the axis of rotation is not known, but the components of acceler-
ation of the center of gravity can be obtained. In other cases, the acceleration of
one point of the body and the angular velocity and angular acceleration are
known. If the point 'O in Fig. 2.8 has an acceleration ag, an inertia force at the
center of gravity of Ma,, opposite to the direction of 4, must be considered in
addition to those previousiy taken into account.

2.6 LOAD FACTORS FOR TRANSLATIONAL ACCELERATION

For flight or landing conditions in which the vehicle has only translational accel-
eration, every part of the vehicle is acted on by parallel inertia forces which are
proportional to the weight of the part. For purposes of analysis, it is convenient
to combine these inertia forces with the forces of gravity, by multiplying the
weight of each part by a load factor n, and thus to consider the combined weight
and inertia forces. When the vehicle is being accelerated upward, the weight and
inertia forces add directly. The weight of w of any part and the inertia force wa/y
have a sum nw:

a
nw =W+ w—

or n=1+2 (2.12)
g

The combined inertia and gravity forces are considered in the analysis in the
same manner as weights which are mulliplied by the load factor n.

In the case of an airplane in flight with no horizontal acceleration, as shown
in Fig. 2.9, the engine thrust is equal to the airplane drag, and the horizontal
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Figure 2.8

components of the inertia and gravily forces are zero. The weight and the inertia
force on the airplane act down and wili be equal to the lift. The airplane ift L is
the resultant of the wing and tail lilt forces. The load factor is defined as follows:

Load facior = ll_rt
weight
L
= 2.13
or . n W { )

This value for the load factor can be shown to be the same as that given by Eq.
(2.12) by equating the hift nW to the sum of the weight and incrtia forces:

Le=nWeW+ w2
g

or n=1+-
g

which corresponds to Eqg. (2.12).

Flight vehicles frequently have horizontal acceleration as well as vertical
acceleration. The airplane shown in Fig. 2.10 is being accelerated forward, since
the engine thrust T is greater than the airplane drag D. Every element of mass in
the airplanc is thus under the action of a horizontal inertin force equal to the
product of its mass and the horizontal acceleration. It is also convepient to
consider the horizontal inertia loads as equal 1o the product of a load factor n,
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Figure 2.10

and the weights. This horizontal load factor, often called the thrust Inad factor, is
obtained from the equilibrium of the horizontal forces shown in Fig. 2.10:

nW=2W=T-p
g

ar n, = (2.14)

A mare peneral case of translational acceleration is shown in Fig. 2.11, in
which the airplane thrust line is not horizontal. It is usually convenient to obtain
components of forces along x and z axes which are parallel and perpendicular to
the airplane thrust line. The combined weight and inertia load on any eiement_
has a component along the z axis of the following magnitude:

a
mw=wcosd+w—

g
a;
or n= cos 0+ Z" {2.15)
From summation of all forces along the = axis,
: @
L= W(cos ¢+ -5) (216)

Figure 2.11
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By combining Eqs, {2.15) and (2.16),
L=Wn

or n=

=l

which corresponds with the value used in Eq. (2.13) for a level attitude of the
airplane. .

The thrust load factor for the condition shown in Fig. 2.11 is also similar to
that obtained for the airplane in level attitude. Since the thrust and drag forces
must be in equilibrium with the components of weight and inertia forces along
the x axes, the thrust load factor is obtained as follows:

W
an=—g—a,-—Wsin8=T—D

or n,=—

This value is the same as that obtained in Eq. (2.14) for a level attitude of the
airplane,

In the case of the airplane landing as shown in Fig. 2,12, the landing load
factor is defined as the vertical ground reaction divided by the airplane weight.
The load factor in the horizontal direction is similarly defined as the horizontal
ground reaction divided by the airplane weight:

= @2.17)

and n, = (2.18)

§ ikx % L:JU

In the airplane analysis, it is necessary to obtain the componenis of the load
factor along axes parailel and perpendicular to the propeller thrust line. However,
perodynamic forces are usually obtained first as lift and drag forces perpendicular
and parallel 1o the direction of flight. If load lactors are obtained first along lift
and drag axes, thcy may be resolved into components along other axes, in_the
same manner as forces are resolved into components. The force acting ol any
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weight w is wn, and the component of this force along any axis at an angle 2 to
1he force is wa cos 0. The component of the load factor is then # cos 8.

As a general definition, the load factor n along any axis i is such that the
product of the load factor and the weight of an element is equal to the sum of the
components of the weight and inertia forces along that axis, The weight and
inertia forces are always in equilibrium with the external forces acting on the
airplane, and the sum of the compenents of the weight and inertia forces along
any axis must be equal and opposite to the sum of the componernts of the
external forces along the axis ZF;. The load factor is therefore defined as

= W {2.19)

" where ZF, includes all forces except weight and inertia forces.

2.7 VELOCITY-LOAD-FACTOR DIAGRAM

The various loading conditions for an airplane usually are represented on a
graph of the limit-load factor n plotted against the indicated airspeed V. This
diagram is often called a V-n diagram, since the load factor & is related to the
accelcration of gravity g. In all such diagrams, the indicated airspeed is used,
since all air loads are proportional to g or pV?%/2. The value of g is the same for
the air density p and the actual airspeed at altitude as it is for the standard
sea-level density po and the indicated airspeed, since the indicated airspeed is
defined by this relationship. The V-n diagram is therefore the same for all alti-
tudes if indicated airspeeds are used. Where compressibility effects are considered,
they depend on actual airspeed rather than indicated airspeed and consequently
are more pronounced at altitude. Compressibility effects are not considered here.

The aerodynamic forces on an airplane are in equilibrium with the forces of
gravity and inertia. If the airplane has no angular acccleration, both the inertia
and gravity forces will be distributed in the same manner as the weight of various
items of the aircraft and will have resuitants acting through the center of gravity
of the aircraft, It is convenient to combine the inertia and gravity forces as the
product of a load factor # and the weight W, as described previously. The z
component of the resultant gravity and inertia force is the force nW acting at the
center of gravity of the airplane, as shown in Fig. 2.13. The load factor n is
obtained from a summation of forces along the z axis:

C. g5 = nw

_ C,,pSv?

2.20
or n W (2.20)

The maximum value of the normal force coefficient €., may be obtained at
various airplane speeds. For level flight at a unit-load factor, the value of V
corresponding to

Tu. oy

would be the stalling speed of the airplane. In acceler-
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ated flight, the maximum cocificienl might be obtained at higher specds. For
C., ma: (0 be obtained at twice the stalling speed, a toad factor n = 4 would be
devcloped as shown by Eq. (2.20). For a force cocfficient of 1.25C_ . represent-
ing the highest angle of altack for which the wing is analyzed, the value of the
load [actor # is obtained from Lq. {2.20) and may be plotted against the airplane
velocity ¥, as shown by line OA in Fig. 2.13. This line OA represents a limiting
condition, since it is possible to maneuver the airplane at speeds and load factors
corresponding to points below or to the right of line 04, but it is impossible to
mancuver at speeds and load factors corresponding to points above or to the left
of line OA because this would represcnt angles of attack much higher than the
stalling angle.

The line AC in Fig. 2.13 represénts the limil on the maximum maneuvering
load factor for which the airplane is designed. This load factor is determined from
the specifications for which the airplane is designed, and the pilot must restrict
mancuvers so as not (o exceed (his load faclor, At speeds below that correspond-
ing to point 4, it is impossible for the pilot to exceed the limitl load factor in any
symmetrical maneuver, because the wing will stall at a lower load factoi}f or
airspeeds between those corresponding to points 4 and C, #t is not practical to
design the airplane structure so thal it could not be overslressed by violent
maneuvers. Some types of airplanes may be designed so that the pilot would have
to exert large forees on the controls in order to exceed the limit-load factor.

Line CD in Fig. 2.13 represents the limit on the permissible diving speed for
the airplane. This value is usually specified as 1.2 to 1.5 times the mazimum
indicated airspeed in level flight. Line OB corresponds o line G4, excepl that the
wing is at thc negative stalling anglc of attack, and the air load is down on the
wing. The equation for line @B is obtained by substituting the maximum negative
value of C__ into Eq. (2.20). Similarly, line BD corresponds to line AC, except that
the limit-load factor specified for negative maneuvers is considerably less than for
posilive maneuvers.
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The aircrafl may therefore be maneuvered in such a manner that velocities
and load factors corresponding to the coordinates of peints within the area
OACDB may be obtained. The most severe structurai load ng conditions will be
represented by the corners of the diagram, points A, 8. C, and D. Points 4 and B
represent PHAA and NHAA conditions. Point C represents the PLAA condition
in most cases, although the positive gust load condition, represented by point F,
may occasionally he more severe. The NLAA condition is represented by point D
or by the negative gust condition, point E, depending on which condition pro-
duces the greatest negative load factor. The method of obtaining the gust load
factors, represented by points E and F, is explained in the following section.

2.8 GUST LOAD FACTORS T

When an airplanc is in level flight in calm air, the angle of altack a is
measured from the wing chord line to the horizontal. If the airplane suddenly
strikes an ascending air current which has a vertical velocity KU, the angle of
attack is increased by the angle Ae, as shown in Fig. 2.14. The angle Ax is small,
and the angle in radians may be considered as equal to its tangeni:

KU
Ao = v (2.21)

The change in the airplane normal force coefficient C_ . resulting from a change ’
in angle of altack Aa, may be obtained from the curve of C, versus of Fig. 2.4.
This curve is approximately a straight line, and it has a slope } which may be
considered constant:

_4c, (2.22)

Aa -

After striking the gust, the airplane normal force coefficient increases by an
amount determined from Eqgs. (2.21) and {2.22):

_BKU 2.23
ac, =25 2.23)

The increase in the airplane load factor An may be obtained by substituting the
valuc of AC_ from Hg. (2.23) into Eg. (2.20):

Chord line

Figure 2.14
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pSBRUY .
oW - (2.24)

where p = standard sea-level air density, 0.002378 slug/it®
S = wing area, fi? '
B = slope of the curve of C,, versus a, rad
KU = effective gust velocity, ft/s
V = indicated airspeed, fi/s
W = gross weight of airplane, Ib

or An =

For purposes of calculation, it is more convenient lo determine the slope B
per degree and the airspeed ¥ in miles per hour. Introducing the nccessary
constants in Eq. (2.24) yields

BRUV
W/s

where § is the slope of C,, versus « per degree, V is the indicated airspeed in miles
per hour, and other terms correspond to those in Eq. (2.24).

When the airplane is in level flight, the load factor is unity before the plane
strikes the gust. The change in load factor An from Eq. (2.25) must be combined
wilh the unit-load factor in order to obtain the total gust load factor:

KUV
W/s (2.26)

An=20.1 (2.25)

n=1+01

Equation (2.26) may be plotled on the V-n diagram, as shown by the inclined
straight lines through points F and H of Fig 2.13. These lines represent load
factors obtained when the airplane is in a horizontal attitude and strikes positive
or negative gusts. Equation (2.25) is similarly plotted, as shown by the inclined
lines through points G and E of Fig. 2.13. These lines represcnt load factors
obtained when the airplane is in a vertical attitude and strikes positive or nega-
tive gusts in direclions normal to the thrust line. . .

The gust load factor represented by point F of Fig. 2.13 may be more severé
than the maneuvering load factor represented by point C. In the case shewn,
however, the mancuvering load factor is obviously greater and will represenit the
PLAA condition. The negative gust load factor represented by point £ is greater
than the negative mancuvering load factor represented by point D and will
determine the NLAA condition. It might seem that the gust load factors should
be added to the maneuvering load factots, in order to provide for the possibility
of the airplane’s striking a severe gust during a violent maneuver. While this
condition is possible, it is improbable because the maneuvering load factors are
under the pilot’s control, and the pilot will resirict maneuvers in gusty weather.
Both the maneuvering and gust load factors correspond to the most severe condi-
{ions expected during the life of the airplane, and there is little probability of a
combined gust and maneuver producing a condition which would exceed the
limit-load factor for the design condition.
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The “eflective, sharp-edged gust™ velocity KU is the velocity of a theoretical
gust which, if encountered instantaneously, would give the same load factor as

. the actual gust. Actually, it is impossible for the upward air velocity to change

suddenly from zero to its maximum value. There is always a finite distance in
which the air velocity changes gradually from zero to the maximum gust velocity,
and a short time is required for the airplane to move through this transition
repion. Most specifications require that the airplane be designed for a gust ve-
locily U of 30 fifs with Lthe gust effectiveness factor K of 0.8 to 1.2, depending on
the wing loading W/S. Airplancs with higher wing loadings usually are [aster and
pass through the transition region from calm air o air wilh the maximum gust
velocity in a shorter time, and hence they must be designed for larger values of K.
The design values of KU are obtained from accelerometer readings for airplanes
flying in turbulent air and represent the maximum effective gust velocities which
will ever be encouniered during the service life of the airplane. Some specifi-
cations require gust velocitics of 50 ft/s, with corresponding gust reduction factors
K of about 0.6. Since the values of KU in this case are also about 30 ft/s, the net
effect is equivalent to a gust velocity U/ of 30 ft/s with a K of 1.0. The actual
maximum vertical air velocities probably exceed 50 fi/s, but the transition is
gradual, corresponding to the values of K = 0.6. High gust load factors exist for
only a fraction of a second, and the airplane cannot move far in this time.

In order to undéerstand the effect of gusts, it is necessary to study the motion
of the airplane after it encounters a gusl. I the gust is encountered instanta-
neously, the factor K is 1.0, and the effective gust velocity is U. The airplane is.
accelerated upward with an injtial acceleration a, and attains a variable vertical
velocity v. The gust angle of attack (Ax of Fig. 2.14) has a maximum value of U/V
at the time the gust is encountered {t = 0}, but this angle of attack is decreased to
(U — v)/V afler the airplane attains an upward velocily. When the upward ve-
locity v is equal to U, the refative wind is again horizontal, and the airplane is no
longer accelerated. The variable vertical acceleration a is therefore

do U—v

a=-—"=dy U

= (2.27}

Separating the varinbles and inlsgraling, we have

" dv ay {"
w2 J. dt

4] ’U - U 0

U o agf
or log U - " U

By using the exponential form and substituting the value of a from Eq. (2.27), the
following expression for the acceleration a at time { is obtained:

a

- = e-nntlu (2.28)

g

As a numerical cxample, consider a gust velocity U of 30 ft/s and an initial
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acceleration ag of 5g, correspondmg to a gust load factor of 6.0. By substituting
these values into Eq. (2.28) and plotting a versus ¢, the curve of Fig. 215 s
obtained. The gust acceleration is seen to approach zero asymptotically in an
infinite time, but it decreases greatly in the first 0.1 s. Thus, if the airplane had a
forward speed of 500 ft/s (340 mi/h) it would move forward only 50 ft in 0.0 s. It
seems logical to expect that atmospheric conditions are such that it is more than
50 ft from any region of calm air to a regior in which the gust velocity is 30 ft/s.
The actual gust acceleration probably is represented more accurately by the
dotted line of Fig. 2.15, which would indicate an cffectiveness factor K of about
0.6. However, since airplane accelerometer readings have shown effective gust
velocities KU of 30 ft/s, the true conditions probably are represented by gust
velocities U of more than 50 fi/s with efectiveness factors K less than 0.6.

29 EXAMPLES
Example 2.1 When landing on a carrier, a 10000-1b airplane is given a

deccleration of 3y {96.6 ft/s?) by means of a cable engaged by an argesting
hook as shown in Fig, 2.16.

Figare 216
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{a) Find the tension in the cable, the wheel reaction R, and the distance e
{rom the center of gravity to the line of action of the cable.

(b) Find the tension in the fuselage at vertical sections 44 and BB il the
portion of the airplane forward section 44 weighs 3000 1b and the por-
tion aft of section BB weighs 1000 1b,

(¢} Find the landing run if the landing speed is 80 ft/s.

SoLuTion
{a) First consider the entire airplane as a frec body.
Ma =E a= 10,000 3 = 30,000 Ib
a

ZF,=Tcos 10°—30,000=0
T = 30,500 1b

EF, = R — 10,600 — 30,500 sin 10" =0
R =153001b

IM,, =20 x 15300 — 30,500¢ = 0
e=10in

{b) Consider the aft section of the fuselage as a free body, as shown in Fig. '
2.17. It is acted on by an inertia force of

Ma = 1000

3g = 3000 Ib

The tension on section BB is found as follows:
EF,=30000 3000 - T, =0
T, = 27,000 b

Since there is no vertical acceleration, there is no vertical inertia force.
Section BB has a shear force ¥, of 6300 1b, which is equal to the sum of
the weight and the vertical component of the cable force.

Consider the portion of the airplane forward ol section A4 as a frec

AMu = 3000 b
V<6300 (8
....._T 30,000 Ib 3_
T, = 27000 b 1"
5 5300 1b 7‘
1060 1h Figure 2.17




HO ALHLKAPL DIKUCTURES

Mg =9000 b

3000 Ib Figure 2.18

body, as shown in Fig. 2.18. The inerlia force is the following.

=

Ma=% 3g = 9000 Ib

IF, =T, — 9000 =0
T, = 9000 Ib

The section A4 must also resist a shearing force ¥, of 3000 Ib and a
bending moment obtained by taking moments of the forces shown in Fig.
2.18.

The forces Ty, T3, V;, and ¥, may be checked by considering the
equilibrium of the center portion of the airplane, as shown in Fig. 2.19.

Ma=§999—039= 18,000 1b

IF,=27000 - 18,000 — 9000 =0
ZF, = 15300 — 3000 — 6000 — 6300 =0

(¢} From elementary dynamics, the landing run s is obtained as follows:

v} — v} = 2as
0 — (80%) = 2(—~96.6)s
s=330

Example 2.2 A 30,000-1b airplanc is shown in Fig. 2.20a at the time , of
landing impact, when the ground reaction on each main wheel is 45,000 5.
(«) If one wheel and tire weighs 500 Ib, find the compression C and bending

5000 b

73 = 5000 In
¥y = 3000 Ib

M =

15.300 1b
18,000 b Figure 2.19
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| 312 = 60,000 b
|

W =306.000 It
A

A

45,000 1 45,000 Ih
) |
v l__l 20 in—sj M2¢=3000 1
Gin ¥
| 1 A W =1500 b
] m I'g
Mya= m,, (
wuom | |
1 A
¥, =500 b ; ©
C
45,000 Ih

Figure 2.20

moment s in the oleo strut if the strut is vertical and is 6 in from the
centerline of the wheel, as shown in Fig, 2.20b.

{h) Find the shear and bending moment at section AA4 of the wing if the wing
outboard of this seclion weighs 1500 1b and has its center of gravity 120
in outboard of section A4,

(¢} Find the required shock strut deflection if the airplane strikes the ground
with a vertical velocity of 12 ft/s and has a constant vertical deceleration
until the vertical velocity is zero. This neglects the energy absorbed by the
tire deflection, which may be large in some cases.

(d) Find the time required for the vertical velocity to become zero.

Sorurion
{a) Considering the entire airplane as a free body and taking a summation of
verticul forces yield

ZF, = 45000 + 45,000 — 30,000 — Ma =0

Ma = 60,000 1b
_ 80000 _ 600009 _
“=vM 0000

Consider the landing gear as a free body, as shown in Fig. 2.20b. The
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inertia force is

Ma="02=® 2 _ 10001

] g
The compression load € in the oleo strut is found from 2 summation of
vertical forces:
EF, =45000 — 500 — 1000 - C =0

C=435001b

The bending moment m is found as follows:
m=45000x6— 1000 x 6 — 500 x 6 =261,000in - b
{b) The inertia force acting on the portion of the wing shown in Fig. 2.20c is

w 1500
M2a=?za=—é—2g=30001b

The wing shear at section 44 is found from a summation of vertical
forces. £F, =V — 3000 — 1500 — 0

¥V =45001b
The wing bending moment is found by taking moments about section
AA. m, = 3000 x 120 + 1500 x 120 = 540,000 in - Ib

(¢) The .shock strut deflection is found by assuming a constant vertical accel-
eration of —2g, or —64.4 ft/s?, from an initial vertical velocity of 12 ft/s
to a final zero vertical velocity.

v? — v = 2as
0~ (12%) = 2(— 64.4)s

s=1121
{d) The time requircd te absorb the landing shock is found based on cf-
ementary dynamics, V'
P — bg = at
. 0— 12 = —64.4t
t=0186s

Since the landing shock occurs for such a short time, it may be less
injurious to the structure and less disagreeable to the passengers than
would a sustained load.

Example 2-3 A 60,000-1b airplane with a tricycle landing gear makes a hard
two-wheel landing in soft ground so that the vertical ground reaction is
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270.000 1b and ihe horizontal ground reaction is 90,000 1b. The moment of
inertia about the cenler of gravity is 5,000,000 Ib - s? - in, and the dimensions
are shown in Fig 2.21.

(a} Find the inertia forees on the airplane,

(b} Find the tnertia forces on a 400-ib gun turrct in the tail which is 300 in aft
of the center of gravity. Neglect the moment of inerlia of the Lurret aboul
its own cenler of gravity.

(¢} If the nose wheel is 40 in from the ground when the main wheels touch
the ground, find the angular velocity of the airplanc and the vertical
velocity of the nose wheel when the nose whee! reaches the ground,
assuming no appreciable change in the moment arms. The airplane’s
center of gravity has a vertical velocity of 12 ft/s at the moment of
impact, and the ground reactions are assumed constant until the verticai
velocity reaches zero, at which time the vertical ground reaction becomes
60,000 b and the horizontal ground reaction becomes 20,000 Ib.

SoLuTioN
(a) The incrtia forces an the entire airplane may be considered as horizontal

and vertical forces Ma, and My, respectively, at the center of gravity
and a couplc /., as shown in Fig. 2.21. These correspond to the inertia
forces shown on the mass of Fig. 2.7, since Lhe forces at the center of
gravity represent the product of the mass and the acceleration com-
ponents of the center of gravity.

TF, = 90,000 — Ma, =0
Ma, = 90,000 Ib

IF,=270,000 — 60,000 ~ Ma, =0
Ma, = 210,000 1b

TM,, = —270,000 x 40 — 90,000 x 100 + [, =0
[, 2= 19,800,000 in - ib

A 1

b 500 i ‘1
T

W =60,000 Ib
Ve,
it E
i 0 IUH’ in

t 90,067 1hi 4 170,000 ib
tt—— 20U in—s1— 40 in

Fipure 2.21




TNV Rl ARG TR L S R AT

o = 2000 _ 90000

*T M “eopon? T Y

L 210000 _ 210,000 g3

r=T M " eoo00 YT
e 19,800,000 .

o= I = 5000000 = 3.96 rad/s

(b) The acceleration of the center of gravily of the airplane is now known,
and the acceleration and inertia forces for the turret can be obtained by
the method shown in Fig. 2.8, where the center of gravity of the airplane
corresponds to point O of Fig. 2.8 and the center of gravity of the turret
corresponds to point C. These forces are shown in Fig. 2.22 and have the
following values:

4
Ma, ——-2-9155, 600 Ib

4
Ma, = % 3.Sg.= 1400 Ib

400
= — =2050tb
aXM = 396x500x386 20

In calculating the term a¥M, X is in inches and g is used as 386in/s% If%
is in feet, g will be 322 ft/s®. The total force on the turret is 600 Ib
forward and 3850 b down. This total force is seen to be almost 10 times
the weight of the turret.

(c) The center of gravity of the airplane is decclerated vertically at 3.5g, or
112.7 ft/s?. The time of deceleration from an initial velocity of 12 fi/s to a
zero vertical velocity is found from the following.

v=vg=at
0—12=1127t
t=0.106s ~

A,

~600Ih/ La=0
L

o n‘ =l_5g__._._.—-q-— \m—o—wliﬂi=0
e - Ciiw=a00ib
i
{ 2, = 140016
|
I
*u.ﬂ = 2050 Ib Figure 2.22
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During this time, the center of gravily moves through a distance found
from

5 = pgt + tar®
=12 x 0.106 — & x 1127 x 0.106?
={.636 ft, or 7.64 in

The angular velocity of the airplanc at the end of 0.106 s after the landing
is found from

W — = &t
w—0=396 x 0106
o =042 radfs

The angle of rotation during this time is found from
0, = wyt + la?
&, =0 + £{3.96)(0.106%) = 0.0222 rad

The vertical motion of the nose wheel resulling from this rotation, shown
in Fig, 223,15

5, = 0,x = 0.0222(200) = 4.44 in

The distance of the nose wheel from the ground, after the vertical velocity
of the cenler of gravity of the airplane has become zero, is

. 5;=40 -~ 764 —444=2792 in
The remaining angle of rotation 8, shown in Fig. 2.23, is
0, === —— = (1396 rad
Since the ground reaction decreases by the ratio of W alter the

vertical acceleration of the airplane becomes zero, the angular acceler-
ation decreases in the same proportion, as found by equating moments

71.04 in

s=7.64 in

5120y x = 4 bin L

L
P #; O
5,50,¢=2702in 40 in = 200 e e

Figure .23 :
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about the center of gravity:

60,000
© 270,000

oy 3.96 = 0.88 rad/s?
The angular velocity of the airplane at the time the nose wheel strikes the
ground is found from the following equation.

w? — wi =200,
0! — (0427 =2 x 0.88 x 0.1396
i} @ = 0.65 rad/s

Since at this time the motion is rolation, with no vertical motion of the
center of gravity, the vertical velocity of the nose wheel is found as
follows:

v =wx
v=065x 32 =108 /s

This velocity is smaller than the initial sinking velocity of the airplane.
Consequently, the nose wheel would strike the ground with a higher
velocity in a three-wheel level landing.

1t is of interest to find the cenirifugal force on the turret @XM at the
time the nose whee! strikes the groand. This force was zero when the
main wheels hit because the angular velocity @ was zero. For the final
value of w, the following value is obtained: -

@XM = (0.65%) x 500 x 432 =219 1b

This force is much smaller than other forces acting on the turret, and
usually it is neglected, In part ¢, certain simplifying assumptions are made
which do notl quile correspond with aclual landing conditions. Aerody-
namic forces are neglected, and the ground reactions on the landing gear
are assumed constant while the landing gear is a combination of the tire
deflection, in which the load is approximately proportional to the defor-
malion, and the oleo strut deflection, in which the load is almost consgdnt
during the entire deformation, as assumed, The tire deflection may be as
much as one-third to one-half the total deflection. The aerodynamic
forces, which have been neglected, would probably reduce the maximum
angular velocity of the airplane, since the horizontal tail moves upward
as the airplane pitches, and the combination of upward and forward
motions would give a downward aerodynamic force on the tail, iending
to reduce the pitching acceleration.

The acrodynamic eficcts of (he lifl on the wing and tail surfaces are
not shown in Fig. 2.21, but they will not affect the pitching acceleration
appreciably if the ground reactions remain the same. Just before the
airplane strikes the ground, the lift forces on the wing and tail are in

e s bk St
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equilibrium with the gravily force of 60,000 1b. Since the horizontal ve-
locity of the airplane and the angle of attack are not appreciably changed
(0 = 0.0222 rad = 1.27°), the lift forces continue {o balance the weight of
the airplane when the center of gravity is being decelerated. Instead of the
weight of 60000 b shown in Fig. 2.21, there should be an additional
inertia force of 60,000 lb down at the center of gravity. The moments
about the center of gravity and the pitching ucccleration are not changed,
but the vertical deceleration g, is increased. At the end of the deecleration
of the center of gravily, the ground reactions are alimost zero, since mast
of the airplane weight is carried by the lft on the wings. The airplane
then pitches forward through the angle 0,, which appreciably changes
the angle of attack (¢, = 0.1396 rad = 8°). The wing lift is then decreased,
and most of the weight is supported by the ground reactions on the
wheels. For the structural design of the airplane, usually only the loads
during the nitiad impact are significant.

Example 2-4 Construct the ¥-n diagram and determine the wing internal
lead resulting from aerodynumic forees for the airplanc {(Fig 2.24) whose
wing planform is shown.in Fig. 2.25. The following conditions are specified:
W = airplanc gross weight = 8000 1b
hY

airplanc wing arca = 266 {12
KU = effective gust velocity = 34 ft's
Py = design diving speed = 400 mi'h
n = limit-load lactor = +6.0 and —3.0

The aerodynamic charactedstics of the airplane with the horizonlal tail
removed have been abtained from corrected wind tunnel data and are given
in Table 2.1. The moment coefficient C,, is aboul the center of gravity of the
airplane and is expressed in terms of the wing area and the mean acrody-
namic chord for the wing, & = 86 in. The stalling angle of the wing is 20°,
corresponding to a maximum lift coeflicient of 1.67. The acrodynramic data

Figure 2.24
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2.049 2.087 2.085 1.053 1,972 i.859  {h {total normal
0} 24 A 1 0357 203 7
2020204 206 208 2052 Warr 2522055 1908 1P | e cnicenn
0 20 40 60 80 DO 120 140 160 B0 200 220 240
§tationl | |
-J_ ‘
102 in
63.75In
i S
| 240 in ~!
Figure 2.25

are extrapolated to the angle of attack of 26°. The negative staliing angle is
— 17 : :

The force coefficients acting normal to the thrust line are calculated in
Table 2.2. The components of C,, and Cp are calculated in columns 2 and 3.
The tail load coelficient C, is calculated in column 4 by means of Eq. (2.3).
The final values of C__, the normal force coefficient for the entire airplane, are
obtaincd in column 5 as the sum of values from columns 2, 3, and 4.

The V-n diagram is constructed from the calculated data for C,, . For the
0A portion of the curve of Fig. 2.13, the value of C,, is assumed Lo be £.25
times the value at the stalling angle for the wing, or

C., = 1.25(1.656) = 2.070

This corresponds with the angle of attack of 26°, within the accuracy of the
data, and this angle is assumed. The equation for the curve 04 of Fig. 2.13 i

Table 2.1 v
- a=( deg Cr. Ch Cur

26 2132 03 0.0400
20 1.670 0.207 0.0350
15 1.285 0131 0.0280
16 0900 0076 0.0183
5 0.515 0.040 00670
0 0.130 0.023 —-0.0105
-3 -0255 0026 —0.0316
—ift ~0640 0049 —00525
--15 -1025 0092 —-0.0770
—17 ~ 1180 0115 —0.0860
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Table 2.2
U, deg Cpzmp C, cos C, C
( 2 G @ %]
2 0.143 1.918 007 2078
20 G071 1.570 00ts 1.656
15 0.03d 1.240 0002 1.286
10 0013 0L887 0.008 0.908
5 0.004 0512 0.003 0.519
] e 0130 -00M 0.126
-4 —0.002 —-{)354 —0013 —0.269
-0 —0.008 —0.630 —0.022 —0.660
-5 ~Qu24 —0.99) —-0.032 — 1.046
-7 —0.034 1,130 —-0.036 ~1.200

found as fallows:

Sy?
n=207% £ = Eﬁ.
W 2078 x 0.00256 ( 2000 p2
= 0.000L77212

For point 4, n = 6 and V = 184 mith. The e .
: . = - uation fi .
2.13 is Found as follows: / quation for the curve OB of Fig,

2
n=—1200 "— = —0.0001024}2

For point B, n = —3 and ¥ = 172 mi/h. Points C j
: A F . and D are plotted with
coordinates (400, 6), and (400, —3). The diagram is shown in Fig. 2.26.
The gust load factors are now obtained from Egs. (2.25) and {2.26). The

slope f may be obtained [rom the exireme coordinates of the curve for C, if
we assurne a straight-line variation: *

2078 + 1.200

#= = 0.07
26+ 17 0763 per degree
sl i n=6 3
n=0000177212
o \ ' 11 ODQHG" -1
2= A ¥y =400
= a u;m 200 300
0 1 L ¥, mi/h
o=
a2k 0053 )
= n
- Fii n= 3
1= -0.0001021 1 £

Figure 2.26
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Table 2.3
Chord
Station length Foree cocflicient Shcar Bending moment
no. Y, «; Ca v M 1000
o 240 0 0 0
[ 220 50 1.85¢ 560 5
2 200 o6 1903 1.880 29
3 LRO 732 1972 3510 83
4 161 04 2035 5310 X2l
5 140 796 2053 7.230 96
6 120 428 oy 9.250 461
7 100 B6.£Y 2085 11.370 667
8 80 89.2 2095 13.5R0 917
9 60 924 2.087 1587 L2112
10 40 95.6 206 18220 1.553
11 20 988 2049 20,630 1.942
12 0 102 202 23.090 2379
From Eg. (2.26),
KUV  010.0763) (34
Aan.Iﬁ, - Q100763 ),
W/S 30
= 0.00865V

For ¥ = 400 mi/h, An = 3.46. Points F and E represent gust load factors of
446 and — 3.46, respeclively. .

The wing internal bending and shear loads are now calculated for the
PHAA condition, which is represented by point 4 on the V-n diagram. The
wing has an angle of attack of 26" at an indicaled airspeed of 184 mi/h.
The total force coeflicients normal to the wing chord are given in Fig. 2.25.

The shear and bending loads are calculated based on

g GCu +C1Chioy

V.= ¥ g Y
f P;-1'1'14‘,\‘ 5 (.. — 1 .
P
1% ¥
and M, =M, l“*'—""'-‘t:';"”"""“(}'; 1— ¥

where § indicates the station number and ¢ is the dynamic pressure in pounds
per square fool. All results are summarized in Table 2.3

PROBLEMS

2.t An airplanc weighing 5000 1b strikes an upward gust of air which produces 2 wing lilt of 25000 T
fsee Fig. P1.1). What tail load P is required to prevent a pilching acceleration il the dimensions are as
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shown? What will be the vertical acceleration of the airplane? IT this lifi force acts until the airplane
obtains a vertical velacity of 20 M1/s, how much time is required ?

25,000 1b

I¥ = 5000 1b

Figure P2.1

2.2 An airplane weighing 8000 Ib has an upward acceleration of 3¢ when landing. If the dimensions
are as shown in Fig. P22, what are the wheel reactions R, and R,? What time is required lo
decelerate the airplane from a vertica! velocity of 12 M/s? Whai is the vertical compression of the
landing gear during this deceleration? What is the shear and bending moment on a vestical section
44 il the weight Torward of this scetion s 2000 b and has & center of gravily 40 in from this cross

section?
A = 24200 [1s
i

]
4 g

40 in W = &00Q Ib

. “;_’l
R, ) in R,

240 in

Figure P2.2

2.3 The airplane shown in Fig. P23 is making an atrested landing on a carrier deck. Find the load
factors 7 and n_, perpendicular and paraltel o the deck, for 2 point at the center of gravity, a puint
200 in aft of the center of gravity, and a point 18 in forward of the center of gravity. Find the relative

W=10,000 b

1Sin /\
e [~

& Uenter of gravily

10i
n 20000

e ‘

3000 b Fipure P2.3
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vcnif:al _w:loci!y wilh which the nose wheel strikes the deck if the vertical velocity of the center of
gra}rlly is 12 H!s and the angular velocily is 0.5 rad/s counterclockwise for the posilion shown. The
_rad:us ctl' gyration for the mass of the airplane about the center of gravily is 60 in. Assume no change
in the dimensions or loads shown.

X4 An airplane is ying at 550 mi’h in level Night when it | i
) 35 & ght when it is suddenly pulled upward into 2 curved
path of 20001 radius. (See Fig. P2.4.) Find the load factor of the airplane. ’

R = QT

Cenler ol \\
Zavily ..

W=10.000 Ib

Figure P2.4

25 1f the airplane in Prob. 2.4 is given a pitching acceleration of 2 rad/s%. find its foad factor,
assuming that the change in lift due 1o pitching may be neglected.

26 A large transport aircraft is making a level landing, as shown in Fig. P2,6. The gross weight of the
aireraft is 150,000 1b, and its pilching mass moment of-inertia is SO x 16" Ib - in - s about the center
ol'- gravity. The landing rear-wheel reaction is 350,000 tb at an angle of 15" with the verlical. Deter-
mine whether passenger 4 or 8 will receive the most load. Assume that each passenger weights 170 1b
and neglect the airplane hift. .

Passenger <1
Cenler ol I*:fmengur I
Erivity Center of
gravity 4

\ fe——240in 400 in
i N 7
ﬂDDEJDDDDD

Center of gravily 1"0 in

15°

Figore P26

i i <
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2.7 Assume thai Lhe cenler of gravity of the zirplane in Example 2.4 is moved forward 8 in without
changing the external acrodynamic configuration. The distance L, is now 208 in, ani the values of the
aerodynamic pitching mements about the center of gravity are Cpy — 8C./86, where values of Cyy are
given in Table 2.1.

{a) Calculate curves for C and C, .

{h} Construct a }'-a diagrany, using the conditions specified in Sec. 2.7,

{c) Calculate the wing bending-moment dingram for air loads normal to the wing chord for the
PHAA condition.

o) Caleulile the wing bending-moment diagran for chordwise air boads.

{c} Caloulale the air-load lersionat moments about the wing's leading edge if the leading edge is
straight and perpendicular to the plase of symmetry of the airplane. Assume the airfoil at any section
to have an acrodynamic center at the quarier-chord point and to have a negligible pitching moment
about this poiat.

18 Caleulate the wing normal and chordwise bending-moment diagrams for the PLAA condition for
the airplane analyzed in Sec. 2.7,

29 If the airplune wing of Example 2.4 weighs 4.01b/ft2, which is assumed distributed vniformly over
the area, calculate the wing bending momenis resulting from gravity and inertia forces normal Lo the
wing chord for the four primary loading conditions.




CHAPTER

THREE

ELASTICITY OF STRUCTURES

3.1 INTRODUCTION

This chapter defines stresses and strains and their fundamental relalionships. The
stress behavior of structures undergoing clastic deformation that is due to the
action of external applicd loads is also discussed. The term elusticity or elastic
hehavior is used here to imply a recovery property of an original size and shape.

3.2 STRESSES

Consider the solid body shown in Fig. 3.1 which is acted on by a set of external
forces @, as indicated. If we assume that rigid-body motion is prevented, the
solid will deform in accordance with the external applied forces; as a result,
internal loads between all parts of the body will be produced.

Il the solid is separated into two parts by passing a bypothetical planc, as
sltown in Fig. 1.ih, then there exist internal forces whose resultants are indicated
by Qy and @, acling on parts t and 11, respectively. v

The forces which hold together the two parts of the body are ndfmally
distributed over the entire surface of the cut plane. If we consider only an ink-
nitesimat area 84 acted on by a resultant force §Q, then an average force per unit
may be expressed as

80
O =35 (3.1

In the limit as § 4 approaches 7ero, Gq. (3.1) becomes

og=— (3.2}

dA
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453

{a}

M

H

- W}

Figure 3.1

where ¢ now is the limiting value of the averape lorce per unil area and, by
definition, the stress at that point. A siress is completely defined if its magnitude
and direction and the plane on which it acts are all known. For instance, it is not
appropriate to ask ibhout the stress at point 0 of the solid shown in Fip. 3.2 unless
the plene on which the stress is acting is specificd. An infinite number of planes
may be passed through point 0, thus resulting in an infinitc number of different
slresses.

In the most genvral three-dimensional stale of siress, nine stress components
may exist:

o O O
tel =] o, &, o, {3.3)
rr:.\' a’:)‘ o’::‘
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Figure 2.2

where g, (i = x, y. z) are the norma! stresses and gy=a; (I #j=x 7y 2)are the
shearing stresses. The first subscript on ay; (i, j = x, y, =) denotes the planc at a
constant i on which the stress is acting, and the sccond subscript denotes the
positive direction of the stress. Figure 3.3 illustrates the stress notation.

In the case of the two-dimensional state of siress, or what is commonly
referred to as the plane stress problem (7,, = 5., = 6., = W), Eq. (3.3) becomes

Tyx oy . _
[e] = [JN a’_:] (0 =10,) (3:4]

z

Figure X3
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3.3 STRESS EQUILIBRIUM EQUATIONS IN A
NONUNIFORM STRESS FIELD

In general, a solid which is acted on by a sct of external applicd loads experiences
u state of stress that is not uniform throughout the body. This condition gives rise
to a set of equations which are referred to as the equations of equilibriam.
Consider the three-dimensional solid shown in Fig. 3.4

Using the equilibrivm equations of statics yiclds the following:

XF, =0
Xdxdydz+ (o, + 06, dx)ly dz — 6, dy dz + {0,, + 0, dyMx dz
—6 dxdet{o, +o,.  deldxdy—o. dedy=0

or Cirat Oyt 0 -+ X =0 (3.5)
Similarly,
IZF, =0 et Opp g+ 0, .+ Y =0 {3.6)
ZF. =0 O ot Oy, + 0. +Z=0 (3.7

—_—— e — e X

M
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wfu:rc X, ¥, and Z are body forces. The comma denotes partial dilferentiation
with respect to the following subscript:

da, © o
Crp x = —éfx Cyp p = 3;2 efc.

.In a cylindrical coordinate sct of axes, the equilibrium cquations may be
casily derived from Fig. 3.5;

— Owg

| -
a’rr,r+;ar0,ﬁ+_r_*+ffrz.z+R=o (3.8)
I 20',.9
;O'nu.s““"ra.r +T+”:n.:+®=0 (3.9)
i a,.
0::.:+;aﬂz.ﬂ+arz_'+‘;':+2=0 {3_10)

where again R, @, and Z are body forces.
. For plane stress problems, the equilibrium equations simplify to the follow-
ing:

O‘.‘L\’.I + axj'._v + X= n

(3.1
Cpx+ 0, ,+Y =0
or, in eylindrical coordinales,
1 Ty ™ OF,
rJ"rr.r"_"—'H‘M.ll""_"“""""_Em‘I" R=10
r r
(312}

! 26,4
= Mg g+ O, +
r r

+@=0

34 STRAINS AND STRAIN-DISPLACEMENT RELATIONSHIPS

Struins are nondimensional guantities associated with the deformations (displace-
ments) of an element in 2 solid body under the aclion of external applied loads.

¥

o~

Figure 35
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To arrive at a mathematical definition of the strain components, take the solid
body shown in Fig. 3.6 and consider only the infinitesimal elements 04, OB, and
ocC.

If, after deformations take place, the displacements of point @ are denoted by
gy, 4y, and g, in the x, ¥, and z directions, respectively, then the displacements
of points A, B, and € which are dx, dy, and dz away from point @ will be g, +
Gy o X, o, + g, , dr. and ¢, + g, . dz, respectively. Figure 3.7 shows all the
displacements resulling from the application ol external applicd loads, When
these relalive displaccments occur in a solid body, the body is said to be in a state
of strain. The strains associated with the relative change in length are referred to
as normal strains, and those related Lo relative change in angles are called shear-
ing strains.

The normal slrain is defined as

AL
€= lim — {3.13)
.0 L
where AL is the change in length of an clement whose original Icngtl} was L
before deformation took place. On the basis of Eq. {3.13), the normal strain in the
x direction, for instance, is obtained as follows:

. B0A) 04 —04
S04 T 04

0A =dx
QA = [(dx + ¢y« dX + g, dx) + (42, 5 dxy’]'?

The normal steain in the x dircction is then

€5 = [(l + qx, x)z + (q_r. x)z + (Q:.x)zluz -1

Figure 3.6
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i "
C : ety o dz

s
a1y, ‘IIJ_““J
Gy Ty, dz

z

Figure 3.7

which reduces to the following by using the binomial expansion technigue:

€ax =y, x + %.{(q.r. x}l + (qj'. _t}z + (Q:. 3)23 +--

For smal]_ displacements, the terms involving the squares of derivalives may
be pcgl?cled_ in comparison with the derivative in the first term. Therefore, the
x-direction linear normal strain becomes

ex.t = ‘f:r.a: (3. ] 4([}

In §:m1|ztr manuer. the linearized normal strains in the y and z directions may be
derived and are given by

€y =d,, (3.13h)
REG! - €.=q. . (3.14c)

The S]lcaring.strains may be derived by finding the relative change in the
angle between a given pair of the three line segments shown in Fig. 3.7,

€.\'_r = q,\'.y + qy. x
E.t: = Q.\'. H + Qz.x . (3.1 5}
ey: = (’J'. B + q:._r

The (!&:rin_iinn of Fig. {3.15) may he found in Refs. 11, 12, and 13.
Thus, in a three-dimensional state of strain, the strain fick! components may

i
»
&
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be compacted in a maltrix [orm:

€ex €y Exz

[E]l=1] €x €& %
€ €y €

(3.16}

where €; = €, for [ # j is a shearing strain and for i = j is the normal strain.
In the case of two-dimensional state of strain {planec-strain probiem),
€, = € = €, = 0, Eq. (3.16) reduces to

€ €
el =[ > x’jl (3.17)
€yx  Epy
In cylindrical coordinates, Egs. (3.14) and (3,15) may be written as
€r =G,y g = 'q_::g T+ Qa.,
Dn=m+& €u=4:.r+qn: {3-18}
r r
€. T Yok Erﬂ=q:o+qmr_%

where q,. g, and . are the displacements in the 7, f), aund z dircctions, respec-
tively. o

3.5 COMPATIBILITY EQUATIONS FOR PLANE-STRESS
AND PLANE-STRAIN PROBLEMS

The strain-dispﬁccment relationships for plane-strain problems are given by the
following.

€ = x, x

(3.19)

€y =4y y
€y =G,y T 9.5

By examining Fq. (3.19), it is apparent that there exist three components of
strain which arc expressed in terms of only two components of displacements.
Thus, it may be concluded that not ali these strain components are independent
of one another. This may be easily verified by differentiating twice the first and
the second eguations of (3.19) with respect to v and x, respectively, and the last
equation with respect to x only.

€y 5y = x. xyy
ey;'. xx = qy. Fxx

€ap,xy = Gz, ayy T Dy.nxy
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Substituting Lhe first two equations into the third viclds

Exy. Xy = Exx. ry + e_'r;r. xx (3.20)

which is the compatibility equation of deformation.

Thus, 1he choice of the thiee strain components cannot be arbitrary, but,

musl be such that the compalibility equation is satisfied. This compatibility
cquation ensures the existence of single-valued displacement functions g, and g,
for a solid, Tn fact, when Fq. (3.20) is expressed in terms of stresses, it ensures the
ciislence of a unique solution for a stress problem, as is ilfustrated in later
chapiers. -

For threc-dimensioral state of stress, the compatibility equations may be
derived in similar manner 1o Lhat of By, (3.20) and are given by the foliowing.

€y, x5 = €rx. » + Erp. xx

E.\':. s = EII. T + E:z. rx

€pmpr 7T €pr oo be, o 121
26_\.\-. vz = €y a: €y a7 Senax (20
2¢

e xs = E.\_l" ¥z ex::. ry + Ey:

\ xy

2t 0= €xpzz b gz, e + €y

Xz

3.6 BOUNDARY CONDITIONS

Boundary conditions are those conditions for which the displacements and/or the
surface furces are prescribed at the boundary of a given solid. For instance, if the
displacements ¢,. g, and q. are prescribed at the boundary, then conditions are
referred to as displacement houndary conditions and may be written as

G=dq0m qo=q0m  g.=§0n) (322)

where g, . ¢, and §, arc known lunctions of displacements al the boundary.
On the other hand, if 0. 7,,. and &, are prescribed at the boundary. fhen
the conditions are called force boundary conditions and are normally expressed as

N

1
t

Y Tex xy LS Ha
N..| =16, &, T, 1, {323}
N:: =X d]': ﬂ:: )I:

where the N; (i = x, ¥, £) are the surfacc boundary forces, the dy; (1. = x, . z) are
the prescribed stresses at the boundary, and #,, #,. 7. are the direction cosines.
o the desivation of Eq. (3.23) see Refl, 14,

1L is appropriale to note al this point that in order (o obluin the exact stress
ficld in any given solid under the action of cxiernal loads, the equations of
cquilibrium, compatibility cqualions, and the boundary conditions must all be
satislied.
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3.7 STRESS-STRAIN RELATIONSHIPS

Structural behavier may be classified inle three basic catcgories based on the
functional rclalionship between siresses and strains:

. Inelastic nonlinear
. Elaslic nonlinear
. Linear elastic

-

Consider a steadily loaded bar as shown in Fig. 3.8. If upon loading the func-
tional relationship belween the stress and its corresponding strain takes on a
curved path, and upon unloading it takes a different curved path, as in Fig. 3.94,
then the structural behavior is referred to as inelastic nonlinear behavior. if such
relationship follows the same curved path upon both loading and unloading the
bar as in Fig. 2.9b, then the hehavior is said to be elastic nonlinear behavior. Last,
il such relationship takes on the same straight path as in Fig. 2.9¢, then the
behavior is termed linear elustic behavior.

In the most general case for a lincar clastic anisotropic solid, Hookes law,
which relates stresses to strains, may be written in a matrix form as follows, in
which € = strain, o = stress, and a;; (i, j = x, y. z) are the material elastic con-
stants {a;; = ay).

€y dyy Oy @iy the Gys Oy xx

L €y, Uz dz3 O34 25 Oip Oy

€} _ {¢x @3 O3y dia s Gse Gz (3.24)
€ps Qyy M4z Aa3 Qag Q45 Oae Oy

€z sy sz sy 854 fss fse Tz
| €or | | te1 fo2 Gay fas Oas Gea ] | Tx )

If there exist three orthegonal planes of elastic symmetry through every point
of the solid bedy, then Eq. (3.24) becomes

=

€., -a. , a2 a3 G 0 0 Oy

€ 3 daz ¢z 0O Y 0 Tyy

€] _ los @ a5 0 0O O Gaz (3.23)
€] 0 0 0 a O O Ty

Lo { 0 1} 1} tlss 0 o,

€. | O 0 £] 0 0 du) Lokl

The elaslic constants «;; in Eq. (3.25) may be defined in terms of the’
engincering-material constants as follows:

J -

N Figure 3.8
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Loading
] 3 vl?,
Eoading md X .
Unloading wiloading [.oading and unioading
Slmin . Sirain Strain
{o) ) ©

Figure 39 {a} Inelastic nontinesr: (h) elastic nonlinear; {r) linear elastic.

a ! a 1 1
1t =5 22 = 4 33 = =
E"" E}T E::
| ¥
y=dy= ——F= -2
Exx Eyy
Yoy Mz
Gy =ds;= —7° =~ (3.26)
¥y =z
Yoz Vox
3 = dy; = — = e
E:: Ex-\'
a —1 a ! !
44 = 55 = Aap =
G.N’ G:z G_‘-y

where E;;. Gy, and vy, (i, j = x, », 2} are the modutus of clasticity, shear modulus,
and Poisson’s ratio, respectively.

A body which obeys Eq. {3.25)—i.e., at ecach point there exist three mutually
perpendicular planes of elastic symmetry—is commonly referred to as an orthe-
tropic body. Plywood, for instance, and meost reinforced plastics may be des-
ignated as orthotropic materials,

If all directions in a sclid are elastically equivalent and any plane which
passes through any point of the body is a plane of elastic symmetry, then it is
culled an isotrepic body. In this case, the elastic constants in Eq, (3.25) simplify to

1
E

d44 = sy = dgg = G

Ay =8fyy =da3 =

(U

E

Ay =03y = (33 = @033 = 013 =31 =

- £
Tl )

G
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where E = Young's modulus, G = shear modulus, and v = Poisson’s ratio.

Most metals, such as aluminum, steel, and titanium, are isotropic materials.

It is important to nole here that in an anistropic body, normal strains will
induce not only normal stresses but also shearing stresses; likewise, shearing
strains will produce normal strcsses, as may casily be scen from Eg. (3.24). How-
ever, normal strains in an isolropic or orthotropic body will cause only normal
stresses, while shearing sirains will cause shearing stresses. This may be verified
by examining Eq. (3.25).

For planc-stress problems where o, 7., and o, arc vero, il we assume
isotropic material, Eq. (3.25) becomes

.e.\.i l - ‘. 0 6.\.\
1
€ | = —E- —v 1 0 [ (3.28}
1
Eye 6 0 TR ay,

By subslituting Eq. (3.28) into Fq. 3.20) and utilizing Eq. {3.11), the compalibility
equation in terms of stresses alone becomes

a + 20 + 0, ,,=0 (3.29)

XX, XX Xy X¥

The body forees are assumed to be zere.

38 TRANSFORMATION OF STRESSES AND STRAINS

A stress ficld (G, @y, . 7, Such as shown in Fig. 3.10, which is known in one set
of systems axes may be transformed to any other arbitrary set of axes such as gff.

i
/
: /
Oy //
bbb A A/
O
- Ak
il /
- 8 -
/
—~ -
7 -
. / .
Uyy X
~
—t ~ o
~ —
- Y
- L
b r— \
A ~
~
FYtr ey Yy ~

1 Figare 314
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For instance, assume that at a given point in a solid, the stresses (s, L.

and @) are known in reference to the x and y axes, as shown in Fig. 3.11. The -

object is 1o [ind the set of stresses in reference to a new set of axcs, #f8, which are
tolated through an angle A as shown. The stress ¢, may be found by considering
the frec-body diagram which is cut by a plane along the £ axis at an angle 8 from
the vertical, as shown in Fig, 3.11b. If side OB is assumed to have area A, then
sides OC and CB will each have an arca of A cos 0 and A sin 0, respectively.
Since equilibrium conditions prevail, the summation of forces along each of the
and # directions must be zero, or

1F,=0 .

O A — g A cOs 0 cos 6 — a4 sin §sin § —o6,, A cos @ sin 0

—a, Asinlfcos §=90
By simplifying and noting that o, = g, the foliowing is obtaincd:

Ty =0, c0s% 0 + o,, sin? 0 — a,, sin 20

TFp=0+
Gyp A + 7. A cos Ufsin ) — o, A sin Ocos ) + o,, 4 cos Hcos 1)
—a,.Asin sin §) == 0 {3.30a}
or
in 2 i

O = — T s:;n g 4 Zo czm 20 + (I — 2 cos® fo,, (3.305)

In a similar manner, oz, may be oblained and is given by
Ggp = b, 5in* 0 + g, cos® 0 + o, sin 20 (3.300)

]
¥ Typ A Py d '/;

| JXV
4 R
/',8 Tyx
./
L _w Uox Oue
//
T i I O

n
".V.v\
(b}

Figure 311
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Equations (3.30a). (3.30b), and (3.30¢) may be assembled in a matrix form as

. | cos’f  sin®g —sin 24 a
a | o= ] sin’@  cos®d sin 20 ,.,“ (3.31a)
sin 200 sin 20 2 '
T " 3 = 2 cos“l o,
where {# is the angle of rotation and is positive in (he dockwise direction.
In compact maltrix form, Eq. (3.28) becomes
Ehe =0T}z, (3.315)
where [ 7] is referred to as the transformation matrix.
I a similar manner, the strains may be transformed as follows:
¢ €un €y
Emp | = (71 Ers (332)
an IV

where v, (lensor shearing strain) = 2g;; (engineering shearing strain) and the

matrix [ 7] is the same as that in Eq. (3.31).

PROBLEMS

3.1 Derive the compatibility equation in cylindrical eoordinates for a two-dimensional state of stress.
3.2 Find the direction aleng which a hole may be drilied in the solid shown in Fig. P3.2 such thal no
shearing stresses exist along the hole direction.

ey ..

L
T

Fipure P32

3.3 Find the maximum and misimum normal stresses and the planes on which they act for the black
shown in Fig. L2 Also, determine the magimum shear stress and the plane on which it acts in
Proh. 1.2

34 Derive [, {3.30¢).
35 For a twodimensional state of stress, show that the stress-strain relationship is

Taa Y 82 O [
T | = |52 822 O Epr
[ 0 1] Sm- €,

where §;, ure the sliffiiess constanis, defined as follows.
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23 LTF LY
5, =22 == g
.1I ﬂ Slz & 22 A

- 2
Siu=upy A=amy—ai,

2.6 Find the matrix of the stiffness constants if a new, arbitrary set of chosen axes is taken as shown
in Fig, P3.6, Assumc that the stiffness constants with respect Lo the x and y axes are as given in
Prob. 3.5,

~
~

“~
T Figure P36

3.7 A narrow camtilever beam has unit width and is loaded with u force @3, as shown in Fig. P3.7. The
deformations in the x and y directions are

g, = EI- 0%y - 3Oyt 4 QI + 1614QY - Q™5

g, = JENvQxy? + 3Qx" — QPx + 3011

{e) Il 7, = 0, find the stress fields for the beam under consideration at any point {x, ¥).

{7 Show that the stress fiekds in part (@) are the stress ficlds for the given beam.

()10 =10001b,¢=2in, L= 1Min, EI = 10?, and v = .25 and by utilizing 1he stress fields
in part {a}, find the principal normal stresses and the maximum shear stress al a point on the beam
given hyx = LiZ y= —cf2

{e) Could the following stress ficlds be possible stress fields Jor the given beam?

0 = QL + 1t = 33
= QL + 15 = x7)]

a, = —2Qrxy

N1

tigure P17

Iy i

e
I

AR You are given o rectangular plate with positive applicd stresses{o,, and o). Whal m.usl he 1hf:
in order far the contraction in the x direction to be prevented? IF this plate is

magnitude of & |
: ; and 4,,, in what direction should the plate be drawn in

subjecicd to the positive SUESSEs Fey. T
arder to proserve ils angles during streiching?

g

—
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3.9 A plate of wnil thickness is subjected to a set of loads P, and Py uniformly distributed over the
sides a and h, respectively. (Sce Fig. P3.9) What must be the ratio of magnitudes ol P, and Py in
order for the contraction of the plale in the x direction to be prevented?

Fy

Figure P3.9



CHAPTER

FOUR

BEHAVIOR AND EVALUATION
OF VEHICLE MATERIAL

4.1 INTRODUCTION

It is of utmost importance for the structural analyst to have a full understanding
of the behavior of vehicle materials and be able to intelligently evaluate and
sclect the material best suited to the constraints and operational requirements of
the design.

The materials used in various parts of vehicle structures generally are selee-
ted by different criteria. The criteria are predicated on the constraints and oper-
ational requirements of the vehicle and its various structural members. Some of
these more important requirements involve

. Environment #
. Fatigue

. Femperalure

. Corrosion

Creep

. Strength and stiffness

., Weight limitation

. Cost

. Human [actor

R I T

This chapter familiarizes the reader with the roles thal some of these requ%re-
menis play in the final selection and evaluation of materials 10 be used in vehicle

siructures.

i)
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4.2 MECTIANICAL PROPERTIES OF MATERIALS

Materials, in gencral, may be classified according to their constituent com-
position as single-phase or multiphase. All metals, such as aluminum, steel, and
titanium, are referred (v as single-phase materials. All composites, which are made
out of filaments (fibers) embedded in a matrix (binder), are called multiphase
materiedy. Plywood and reinforced fiber glass are cxamples of multiphase
materials, .

Almost all important structural properties of single- or muitiphase materials
arg obtained by three basic tests: tensile test, compression test, and shear tesl
The American Socicty for Testing Materials (ASTM) sets all the specifications
and lest procedures for materials testing,

Tensile Test

Figure 4.1 shows the basic configuration of a tensile test specimen. The load P is
applied gradually through the use of a tensile testing machine. The normal strain
e, usually is measured cither by utilizing electrical strain gage techniques or by
measuring the totai elongation 8 in an effective gage length L for various values
of the tension load . For small loads, the elongation is assumed to be uniform
over the entire gage length 7. and therefore the normal strain may be mathemat-
wcally expressed in the form

d
&@=7 “@4.n

where ¢ and L are both measured in the same unils of length. The corresponding

normal stress o, is also assumed to be uniformly distributed over the cross-
scctional area A of the lest specimen and is obtained as follows:

P

o= “.2)

For common engineering units, the load P is in pounds, the area A4 is in

square juches, and the stress & is in pounds per square inch, The siress-strain

diagram for a materia! is obtained by plotting values of the stress ¢ against

_ corresponding values of the strain ¢, as shown in Fig. 42. For small values of the

P P
~-.— (] LI .
{— &
la)
- (h Figure 4.1
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stress, the stress-strain curve is a straight line, as shown by line 0A of Fig. 4.2.
The constant ratio of stress to strain for this portion of the curve is called the
modulus of elasticity E, as defined in the following equation:

E==" {4.3)
E-ﬂ

where E has units of pounds per square inch.

A material such as plain low-carbon steel, which is commonly used for bridge
and building structures, has a stress-strain diagram such as that shown in Fig
4.2a. Al point B, the elongation increases with no increase in load. This stress at
this point is calted the yield point, or yield stress, o, and is very easy tc;g detect
when such materials are tested.

The stress at point 4, where the stress-strain curve first deviates from a
straight line, is called the propertional limit ¢,, and is much more difficult to
measure while a test is being conducted. Specifications for structural stecl usually
are based on the yicld stress rather than the proportional limit, because of the
ease in obtaining this value.

Flight-vehicle structures arc made of matcrials such as alominom alloys,
high-carbon stecis, and composites which do not have a definite yield point, but
which do exhibit stress-strain behavior similar to that shown in Fig. 4.2b. It is
convenient 10 specify arbitrarily the yield stress for such malerials as the stress at
which a permanent strain of 0.002 infin is obtained. Point B of Fig. 4.2b rep-
resents this yield stress and is obtained by drawing line BD parallel to 0A

S —
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through point D, representing zero stress and 0.002-in/in strain, as shown. When
the load is removed from a test specimen which has passed the proportional limit,
the specimen does not return to its original length, but refains a permanent
strain. For the material represented by Fig. 42qa, the load might be removed
gradually at point C. The stress-strain curve would thea follow line CD, parallel
to 04, until al point D a permanent sirain equal to 0D were obtained for no
siress. {Jpon a subsequent application of load, the stress-strain curve would
follow lines DC and ¢, Similarly, if the specimen represented by Fig. 4.2b were
unloaded at point B, the stress-strain curve would follow line BD umtil a per-
manent strain of 0.002 in/in were obtained for no siress.

It is customary to use the initial area A of the {ension test specimen rather
than the actuai area of the necked-down specimen in computing the unit stress .
While the true stress, calculated from the reduced area, continues to increase uniil
failure occurs, the apparent stress, calculated from the initial area, decreases, as
shown by the dotted lines GH of Fig. 4.2. The actual failure occurs at point H,
but the maximum apparent stress, represenled by point G, is the more imporiant
stress lo use in design calculations. This value is defined as the ultimate strength
6,- In thc design of tension members for vehicle structures, it is accurate to
employ the initial arcu of the member and the apparent ullimate tensile strength
a,,. In using the stress-strain curve to calculate the ultimate bending strength of
beams., as shown in a later chapter, the results are slightly conservative because
Lthe beams do not neck Jdown in the same manner as tension members.

Compression Test

The compressive strength of materials is more difficult to identify from stress-
strain curves than the corresponding tensile strength. Compressive failures for
most structural designs in engineering applications are associated with instabil-
ities which are related to yield stress rather than ultimate stress. Yield-stress
values which arc obtained based on the 0.2 percenl offset mcthed (0.002-in/in
permanent strain) have been proved to be relatively successful for correlating
instabilities in most nietals: however, the correlation is less satisfactory for non-
metals, specifically composites. Specimen geometry and means of supports seem
10 have considerable cilfect on compression test results. The compressive stress-
strain diagrams for most materials are similar to the tensile stress-strain curves.

Shear Test

In-plane shear propertics are the most difficult to obtain and have the least
standardized testing procedures of all major mechanical properties. The design of
a shear-test specimen having a test section subjected to a uniform shearing stress
is impassible. The closest practical approach is probably a thin-walled circular
cylinder loaded in torsion, as shown in Fig. 4.3. For small displacements, the
shear strain is expressed as

AS

€ =7 (4.4)
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Figure 4.3

where €, = shear strain
AS = change in arc length
L = effective page length

The shear stress may be calcufated {rom the well-known strength-of-material
torsional equation as

Tr
o= (4.5)
where g, = shear stress
= cylinder radius
J = cross-sectional polur moment of inertia
Faor very thin-walled cylindrical test specimens, Eq. (4.5) may be wrilien as ~
TR,
o, = 4.6
= @

where R,, = mean radius = (R, + R}/2and J,, = 2ni} 1.
The shear modulus of elasticity may be obtained from the shear stress—shear
strain diagram as

G=2 (47)

43 EQUATIONS FOR STRESS-STRAIN CURVE IDEALIZATION

In the design of vehicle structural members, it is necessary to consider the proper-
ties of the stress-striin cueve at stresses higher than the elastic limit. In other
types of structural and machine designs, it is cuslomary to consider only siresscs
below the elastic limit; but weight considerations are so important in flight
vehicle design that it is necessary (o calculate the uldmate strength of each
member and to provide the same factor of safety against failure for each part of
the entire structure. The ultimate bending or compressive strengths of many
members are dilficull to calculate, and it is necessary to obtain information from
destruction tests of complete members, In order to apply the results on tests of
members of one material to similar members of another material, it is desirable to
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obtain an idealized analytical expression for the stress-strain diagrams of various
materials.

Ramberg and Osgood'” have developed a method of expressing any stress-
strain curve in terins of the modulus of elasticity £, a stress a; (which is approxi-
mately equal to the vicld stress), and a material shape factor n. The cquation for
the stress-sirain diagram is

HEYES {4.8)
where & and & are dimensionless terms defined as follows:
€= Ee 4.9
= 4.9
7
and G =—
5= (4.10)

The curves expressed by Bq. (4.8) are plotted in Fig. 4.4 for various values of
i A malerial such as mild steel, in which the stress remains almost constant
above the yicld point, is represented by the curve for n = 0. Qther materials,
wilh various types of stress-strain diagrams, may be represented by the curves for
other values of #. In order Lo represent the stress-strain diagrams for all materials
by the single equation. it is necessary to use the reference stress value of o, rather
than the yield stress. The value of ¢, is oblained as shown in Fig. 4.5 by drawing,
the ine o = 0.7Ee lrom Lhe origin Lo the siress-strain curve and oblaining the
stress coordinate ay of this point of intersection. The stress o, is approximately
equal to the yicld stress for typical llight vehicle materials. The value of n may be

‘determined so that Eq. (4.8) fits the experimental stress-strain curve in the desired

region. Romberg and Osgood show that for most materials the value of n may be
accurately determined from the siress ¢, and a similar stress o, on the line
o = 0.85Fe,

Fipure 4.4
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a=FEe o=0.7E

Iy

"ry

o 0 0.002 ¢ [igure 45

It is appropriate to note here that similar equations for idealizing shear
stress-shear strain curves may be formulated and fitted into various materials’
shear test data.

44 FATIGUE

Futigue is a dynamic phenomenon which may be defined as the initiation and
propagation of microcracks into macrocracks as a result of repeated applications
of stresses. It is a process of localized progressive structural fracture in material
under the action of dynamic stresses. A structure which may not ever {ail under a
single application of load may very easily fail under the same load if it is applied
repeatedly, This failure under repeated application of loads is termed fatigue
Juilure.

In spilc of the many studics and vast amount of experimental data accumu-
lated over the years, fatigue is still the most common cause of failure in machin-
ery and various struclures as well as the least understood of all other structural
behavior. This lack of understanding is atiributed to the fact that the initiation
and the propagation of microscopic crucking are inherently statistical in nature.
[n fact, the analyst often is confronted with the wide variations in the statistigs of
what may be estimated as (1) type of service and environment, (2) magnitude of
service ltoads and frequency of occurrence, (3) the quality control during the
fabrication operations, {4) the exient and accuracy of Lhe analyses in determining
stresses. and (5) the applicability of the material strength data.

The main objective of all latigue analyses and testing is the prediction of
faticue life of a given structure or machine part subjected to repeated loading.
Such loads may have constant amplitude, as indicated in Fig. 4.6; however, in
flight vehicle structures, the load history is usually random in nature, as shown in
Fig. 4.7.

Fatigue-life prediction Most of the {utigue-life prediction methods uscd in the
design of structures have been based on fatigue allowable data generatcd by sine
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max

o A= -

O gy = Maximum siress; g, =alternating {cyctlic) stress
| i = MINHMLN SETRSKT A, = medn stress

Time

Figure 4.6 Sine loading.

wave excilation. Only recently closed-loop, servo-controlled hydraulic machines
have become available for true random loading testing. Fatigue test data usually
are presented graphically (Fig. 4.8) and the curves are referred to as the
allowable S-N curves. The curves in conjunction with the “cumulative damage”
concept Torm the basis for most of the methods used in the prediclion of fatiguc
life, :

Among the several theories proposed for fatigue-life prediction, the
Palimgren-Miner theory,”® because of its simplicity, seems to be the most widely
used. The method hypothesizes that the useful life expended may be expressed as
the ratio of the number of applied cycles #; to the number of cycles N; to failure
at a given constarnt stress level ;. When the sum of all the fractions reaches 1,
failure should oceur. Mathematically this failure criterion is written as

'h) (fh) 7 . ('7:)‘
L +| 2 SR =1
(Nl | =const N2 a2 =consl Nr oy =const l

. - (i
or — =1 4.11
i=zl (N i)wansl. [ }

It is important to note that in Palmgren-Miner theory no provisions are made to
take into account the various effects on fatigue life, such as notch sensitivity
effect, loading sequence effect (high-low or low-high), and the consequences of

AR Y

Stress

Tine

Figure 4.7 Random stress loading.
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Cyclic stress

S-N curves for
vatious mean

scress Jevels

Number of cycles to lsilure

Figore 4.8 S-N fatigue curves.

different levels of mean stress. In fact, the theory has been shown to yield un-
conscrvative results in some test case studies conducted by Gassner®
Kowalewski,?! and Corten and Dolan.??

To illustrate Lhe use of Eg. {(4.11), consider a bracket which supports an
electronic box in the aireraft cockpit. In a typical mission, the bracket encounters
a stress history spectrum idealized as shown in Fig. 4.9. The faligue allowable of
the bracket material is given in Fig. 4.10. The problem is to find the number of
missions the aireraft may accomplish before the bracket fails.

From Figs. 49 and 4.10, Table 4.1 may be easily constructed. Therefore, in
gne mission 0.433 percent of the useful life of the bracket is expended. This mears

24 |-
50 4z ’ix
:;_.E 18 l- 56.5 1z
£ )
3
g kb 65 1z
£
2 7011z
=
£ 6
< 100 Hiz
120 iz
[ 1 1 1 1 1 ] 1
2 4 [ 8 iu 12 14
Time, s

Figure 49 Bracket stress history spectrum per mission.
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Figure 4.18 5- N curves.

that the aircraft might accomplish about 200 missions without bracke! failure,
based on Eq. (4.6).

FFatigue test data: S~V curves Fatiguc tests are conducted for a wide variety of
teasons, one of which is 1o establish materials’ Tatigue allowables, or what is
commonly referred to as the S- curves. Contrary Lo results of stalic tests, it has
been obscrved that the scatter in fatigue test results can be quite large. This
inherent scatter characteristic leaves no choice but to treat the results statistically.
One of the more widely used slatistical distribution functions is the log-normal
distribution, whose mean value is (aken as

1 n
M == 73 log N; (.12

i=1

where n = total number of specimens tested at the same stress level and N; =
number of cycles to failure for specimen i

Table 4.1

i, cyeles a,. kipstin’ N, . cveles N

200 i} A [\
14] 20 SD400 000282
105 10 b3 1)
260 4 it 0.00026
25 22 Y 1y 0.00125
244 4 i 0
e 0,00433
Ny
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The unhiased standard deviation of M is defined by

i=1

i {log N, — M)z 12
5= I:——'———] 4.13)

n—1

In order to calculate the number of cycles to failure, based on some confidence
level, the standard variable { is taken as

log N - M
. =T (14
or log N=M4+{5 (4.15)
The probability of surviving log N cycles is
] <
Probability(log N} = P(log =—f e 2 gr 4.16
y(log (log N} Jon ) (4.16)

Equation {4.16) may be used to tabulate the probabilities of survival for various
vatues of the standard vartable {, as shown in Table 4.2.

To illustrate the procedure, consider the following actual fatigne test results
for seven tested specimens:

Specimen no.,, Cycles Lo failure N,

61,318
39,695
62,803
51,039
83910
35631
96,500

=1t B B

From Eq. (4.12) the mean value is
1 & 17
M==7Y logN;== 7 log N;
Hg=} 7 =1

= ilog 61,318 4 log 39,695 + -+ + fog 96,500)

= 4.76463
Table 4.2
e Probability of survival, %
—-1.280 900
~1.645 950
—2330 9o
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From Egq. (4.13) the unbiased standard deviation is

7 s N — A2 iz
5=[zﬂogm6 M)]

il

" (log 96,500 — 4.‘76463)1]”2

= [(log 61318 ~ 4.76463)% + - G

= 0.0503
From Eg. (4.15), if we assume u probability of survival of 95 percent,
log N = M + {d = 4.76463 + (— 1.645)0.0503) = 4.68189

Therclore the number of cycles to failure for a 95 percent probability of survival
is

N = antilog 4.68189 = 48,100 cycies

45 STRENCTH-WEIG"'I‘ COMPARISONS OF MATERIALS

The criterion commonly uscd in the sclcction of structural malcrials for acro-
space vehicle application is that which yields minimum weight. This involves
selecting the proper combination of material and structural proportions with the
weight as the objective function to be minimized to yield an optimum design.
Although weight comparisons of maierials may be based on several factors, such
as resistance to corrosion, fatigue behavior, creep characteristics, strength, and so
on, the only treatment given here is with respect to strength.

As an illustration, let us consider the three loaded members shown in Fig.
4.11; for simplicity, it is assumed thal there exists only one free variable (the
thickness t. in this case) to be chosen in the design. The criteria which govern the
design of members in Fig. 4.1ta, b, and ¢ are ultimate uniaxial tension, ultimate

W iy «y

Figure 4.11 Losded menbers, ) Pure tensioa; () pure compression ; (¢} pure bending.
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uniaxial compression or buckling, and ultimate bending. The expressions relating
the applicd external loads to the induced actual stresses are

. P
Tension: o, = 1 {A = bt} (4.17)
. n2 ki hr‘)
C £ buckling): = ——— =—-
ompression {buckling) o= (I ) {4.18}
Mt
Bending: =— .
ending T {4.19}

where 7, ¢, o, = ultimate lensile, compression, and flexural stresses, respectively
A = cross-sectivnal area
I = moment of incriia of member

The weight of the member may be expressed in terms of the material density
{p pounds per cubic inch) and the fixed and [ree geometric dimensions as
W = Lhip {4.20)

Solving for the free variable ¢ from Eqs. (4.17) through (4.19) and substituting intc
Eq. (4.20} yields the material weight required to meet each specified design cri-
terion. Thus

L
W =—* (tension) (4.21)
T
2hp (122\'12 .
W= Lhp ( ;‘) {compression) {4.22)
z ;
Mh\ 12
W=Lp (Gcr ) (bending) {4.23}
b

Wilh Egs. (4.21} to (4.23) available, weight comparisons of dilferent materials may
be conducied. Thus the weights of two different malterials required lo carry the
axial load P may be readily obtained from Eq. (4.21} as

W= Plp, W, = Pl e
U G2

where the subscripts 1 and 2 refer to materials T and 2, respectively, and o, and
.3 are the ultimale tensife stresses of maierials T and 2, respectively.

W_pon (4.24)
W, paon

Similarty, the ratio of weights of two members of 1wo different materials resisting
the same bending moment may be easily obtained by utilizing Tiq. (4.23):

Wi pifon 1z
"o (_) 4.25)

Op2

3

i i
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Likewise, the ratio of weights for two members of two different materials resisting
the samec compressive {buckling} load may be written immediately by using Eq.

(4.22):
Wi _p (B2 426
W,  pa \E, (4.26)

Typical acrospace vehicle sheet materinls are compared in Table 4.3 by
means of Egs. (4.24) through (4.26). The weights of the various materials are
compared with the aluminum alloy 2024-T3. The weight ratios for tension mem-
bers, shown in column 5, do not vary greatly for the different materials. For
members in bending, however, the lower-density materials have a distinet advan-
tage, as shown in column 6. Similarly, the lower-density materials have an even
greater advantage in compression buckling, as indicated in column 7. Values of ¢
vary with sheet thickness, and those shown are used only for comparson.

The computations of Table 4.3 indicate that the last three materials, having
lower densities, are superior to the aluminum ailoys. However, it is important to
note that magnesium alloys are more subject to corrosion than aluminum alloys,
while wood and plastic materials are less ductile. Brittle materials are undesirable
for structures with numerous bulted connections and cutouts which produce local
high-stress concentrations. Ductile materials, which have a large unit elongation
at the ultimate tensilc strength, will yicld slightly at points of high local stress and
will thus relicve the stress, whereas brittle materials may fail under the same
conditions. Fiber-reinforced plastics have been used successfully for acrospace
vehicle structures as long ago as the late 1940s and early 1950s. In those days, the
main rcinforcement was glass fiber in fabric form with polyester resin as the
bonding agent. Since then and primarily in the last few years, development of
new high-modulus fibers {such as boron, silicon carbide, graphite, and beryllium)
in combination with high-modulus, high-temperature-resistant resins {such as
cycloaliphatic epoxies, polymeric and polybenzimidazole resins) has added a new
dimension to materials for applicalions in aerospace and marine- and land-based
structures. These new fibers and resins arc being combined in a unidirectional,

Table 4.3 Strength-weight comparisons of materials

Ratio of weight to weight
of 2024-T3 aluminum alloy
Tension: Bending:  Buckling:

a. ki in” oY moes o \/f’} ” Jﬁ'z

Shcet material average . lbvin?  kipsin® gy ey pa Vo PV E,
n (2 » 14) (5 (8) {7
Staindess steet 185 0.286 26 1.23 1.72 2i2
Afumingm alloy 2024-T3 1] NG 10.5 1.00 1.00 1.00
Alumimum alley 7075-Th 7 LL101 10.4 0.87 0.93 1.01
Magnesium afloy 40 0063 3 1.07 0.83 0.77
Luminated plastic n 0450 2.5 LiO 0.74 0383
Sproce word v4 D56 13 109 042 0.1
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preimpregnated form which gives the analyst complete freedom to tailor the
composite (a composile is made of a certain number of unidirectional plies} to
meet the imposed load requirements in both magnitude and direction. Studies
have indicated that through the use of composite materials, the total weight of an
acrospace vehicle could be reduced by more than 35 percent.

4.6 SANDWICH CONSTRUCTION

The problem of increasing weight which accompanies increasing muierial thick-
ness is being met frequently by the use of sandwich construction in application to
agrospace vehicles. This type of construction consists of thin, outer- and inner-
facing layers of high-density malerial separated by a low-density, thick core
material.

In acrospace applications, depending on Lhe specific mission requircments of
the vehicle, the material of the sandwich facings may be reinforced composites,
titanium, aluminum, stecl, clc. Several types of core shapes and care matcrials
may be utilized in the construction of the sandwich. The mosl popular core has
been the “honeycomb™ core, which consists of very thin foils in the form of
hexagonal cells perpendicular to the facings.

Although the concept of sandwich construction is not new, only in the last
decade has it gained greatl prominence in the comstruction of practically all
aerospace vehicles, including missiles, boosters, and spacecraft. This is primarily a
resull of the high structural cfficiency that can be developed with sandwich
construction. Other advantages offered by sandwich construction are its excellent
vibration and futter characteristics, superior insulating qualities, and design ver-
satility.

An element of a sandwich beam is shown in Fig. 4.12. For simplicily, the
facings are assumed {o have equal thickness ¢, and the core thickness ist, . It is
also assumed lhat the core carries no longitudinal normal stress ¢. Let us con-

sider the case where it is desired to find the optimum facing thickness which

results in a minimum weight of the sandwich beam carrying a bending moment
M. Without any loss in generality, b and L may be taken as unit values, ;r}d thus

i i

h’/'l o [t e séress)

L :
N Al s D
i ]

<

H b J [ —
{ |~

, ] -
} ~ L~
iy Core Faging

Figare 4.12 Sandwich beam clement.
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the resisting bending moment can be expressed as
M=ot lt;+1)

If we assume that t; is small compared to 1,, which is normally the case, then the
above equation reduces to

A1=0'fffr

or
M = op? (4.27)

where t is expressed in terms of ¢, by the equation ¢, = pt..
The weight of & unit element of the beam is approximately

W =p.t. +2p;pt (4.28)

where p_ and p, equal the core and facing densities, respectively. Eliminating the
variable 1, [rom Eqs. (4.27) and (4.28) yields

W= +2p.H) \/EJE (4.29)

The value of § for the minimum weight may be obtained by differentiating Eq.
(4.29) with respect to fI and cquating lthe derivalive 1o sero. Performing the
differentiation and solving for f§ yield

_pe 4.30)
b=3 | (

Equation {4.30) indicatcs that for a sandwich material resisting bending moment,
the minimum weight is obtained when the two layers of the face material have
approximately the same total weight as the core. Note that this condition dges
not yicld minimum weight if the beam element is under the action of compressive
(buckling) load. )

It is now possible 1o compare the weight of a sandwich-construction beam
element with that of 2 solid element corresponding to the sandwich face material,
if we assume that they both resist the same loads. A sandwich element dcsigpcd
to resist bending moments will have a total weight equal to twice the total weight
of the fucings, if the face and core materials have equal weights. Thus, from Eqg.

(4.28)

W = dpft (4.31)

By solving for { from Eq. (4.27) and substituting into Eq. (4.31}, the following
weight for the sandwich element is obtained:

W = 4pp \/[% 432)
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The weight W, of a solid beam element from Eq. {4.23) is

W.=p f—@’i (4.33)
/2

Hence. the ratio of the weight of a sandwich beam element to that of a solid
element of Lhe corresponding sandwich facc material is

W _ 4B M)
st N/ oMja TV

It is important to note that Eq. (4.34) is valid onty for a sandwich in which
the total weight of the facings is cqual to the weight of the core. In order to
compare the weights of a sandwich with solid elements studied in Table 4.3,
consider a sandwich whose facings are made of 2024-T3 aluminum alloy and a
core material whose density is 0.01 1b/in®. From Eq. (4.30)

(4.34)

From [g. (4.34)

W
— = 163 05 =0.
e 0 0:5_ 0.37

5

Thus, the sandwich has only 37 percent of the weight of a solid clement resisting
the same bending moment. Also note Lhat the value of 0.37 is less Lthan any of the
other values in column 6 of Table 4.3.

In the preceding discussion, it was assumed that the proportions for the
sandwich clement were limited only by theoretical considerations. In actual struc-
tures, practical considerations are much more important. The thickness of the
face material, for example, usually is greater than the theorctical value, because il
might not bc feasible to manufacture and form very thin sheets. Likewise, the
core was assumed to support the facings sufficiently to develop the same unit
stress as in a solid element, whereas the actual low-density materials rnigh_l not

5

provide such support. g

47 TYPICAL DESIGN DATA FOR MATERIALS

ln the manufacture of malerials, it is not possible to oblain exactly the same
structurad properties for alf specimens of a material. In a large number of tested
specimens of the same material, the ultimate strength may vary as much as 10
percent. In the design of an aerospace vehicle structure, therefore, it is necessary
to use stresses which are the minimum values that may be obtained in any
specimen of the material. These values are lermed Lhe minimum guaramteed valies
of the manufacturer. The licensing and procuring agencies specify the minimum
values to be used in the design of aerospace vehicles. These values are contained

\
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Table 4.4 Typical mechanical data for

materials
Tension
G Ultimale stress
a,, Yickh stross
a, Praportional fimil
E Madulis of elasticity
4 Elongation
Campression
[ Ultimate (block) stress .
a, Yield stress
Top Proportional limit
L. Column yield slress
E. Maduius of elasticity
Shear
- Ulimvite stress
ag Torsional medulus of rupture
Tep Proportivnal limit [torsiv.fn)
¢ Maokulus of rigidity (torsion)
Bearing
T Uiltimarte stress
Bppy Yicld stress

in Military Handbooks, such as MIL-HDBK-3A, MIL—HDBK-S, Mi-L-H].)BK.-
17, MIL-HDBK-2B. Table 4.4 shows the typical mechanical data rt.zqmred in the
design of acrospace structurcs, Normally these data are prescnted in accordance
with onc of the following bascs:

A basis: Al lcast 99 percent of all mechanicul property values are expected to fall
above the specificd property values with a confidence of 95 percent.

B hasis: Al least 90 pereent of ajl mechanical property values are expected to fall
above the specificd property values with a confidence of 95 percent.

S basis: Minimum mechanical property values as specificd by various agencics.

PROBLEMS

. « . - SRR L .
4.1 The buckling load for & saadwich coluinn s approsimaiely given by {’ ! Kl I: . Find the
thickness ratio of facing 10 the core which resulls in an optimum design {minimum weight) for the

column. See Fig. P41

Sk

Figure P41
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4.2 Find the weight ratio of 2 sandwich i
25 that of the mmich o ich column to that of a solid column whose material is the same

4.3 Wor o1
ma(e;i;u:(: Prob. 4.2 for a core density of 0015 Ihfin? and the following specific eases of facing
(e 2024-T3 aluminum alloy (density = 0.1 Ib/in?)
(b) GAL-4Y titanium (densily = (.16 Ibfin%)
() 321 stainless steel {density = 0.286 Ib/in®)
() Inconel (density = 0.3 Ihfin"}
{e} Berylliom (densily = 0.06Y Ibfin?)
(/) Reinforced composite (unidirection)
(1) Glass fiber {density = 0.09 [bfin”)
{2} Boron fiber (density = 0.095 lbfin)
(3) Graphite (density = 1.053 Ib/in%)
44 A missile-holding fature on an airerafi is subject during each MNight to the stress-load history

showa in 1ig. P4.4. After how mz i i i il i . .
shown in Fig, 4.107 many fights will the lixtwre fil if the material fatigue allowable is that

¢

58 3
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g 30}

£

™

10l
1 1 1 t t ! 1
2 4 6 8 10 12 14 16
Time, s
Figure P4.4

4.5 Ten narts were Tatipue-tested dame siress lev Wi
cd at the sam i fai
ported: Jid tress level, and the follo 1ng ailure cyclm were

Specimen no. Cycles to failure

300,600
190,000 &
225000 ’

350,000

260,000

280,000

490,000

310,000

360,000

390,000

DM 00 N b b b e

Aller how many cycles should th E i :
e rgpla.xme“:; part he replaced so that only the following percenlage of the paris
(o)t !
i3
() 10

CHAPTER

FIVE

STRESS ANALYSIS

5.1 INTRODUCTION

In order to select sizes of structural members to meet the design load require-
ments on a specific acrospace vehicle, it is necessary to find the unit stresses
acting on the cross scction of cach structural element. The unit stress referred lo
here is the force intensity at any point, and it bas units of force per unit area, or
pounds per square inch in common engineering units.

{t was shown in Chap. 3 that there exist two distinct components of stress,
normal and shear stress. A normal stress is a unit stress which acts normal to the
cross section of the structural clement, while the shear stress is parallel and in the
plane of the cross section. A normal stress is induced by bending moments and
axial forces. A shear stress, however, is caused by torsional moments and shear
forces. This chapler discusses the theory and the application of these two funda-

mental stress components.

5.2 FORCE-STRFSS RELATIONSHIPS

The stress ficld at any chosen point in a solid beam may be entirely defined by
the components of force resultants or stresses acting along the directions of some
“gaussian”™ coordinate system. as shown in Fig. 5.1. The forces and stresses are
taken 1o he positive if they act in the positive dircction of the corresponding

coordinate axis.

97
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Figure 5.1 Stresses and force resuliants.

From Fig. 5.1 the force resultants may be related o the stresses as follows:

s

P=1 o,dA

Vb= a,d4
up-

Vo= | @ dA
Ja

where P = axial force
¥,. V. = shear forces
M_, M = bending moments
T = torque
7., = normal stress
G, . @, = shearing stresses

M. = w—j yao. dA
4
M, =J‘ 20, dA
4

T = J‘ {yo.. —z0,,) d4
4

!’.

5.1

N

2
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5.3 NORMAL STRESSES IN BEAMS

The normal stresses in beam clements are induced by bending and/or extensional
actions. Two approaches may be used to determine stresses; the first is based on
the thcory of elasticity, and the second is based on strength-of-materials theory.
The latier, which is used here, assumes that plane sections remain plane alter
extensional-bending deformation takes place. This assumption implics that the
deformations due (o transverse shear forces (V. and V) arc very small and there-
fore may be neglected. In addition, this assumption allows the displacements
(deflections) of any point in the beam to be expressed in terms of the displace-
ments of points located on the beam axis.

Assume that the displacement in the x direction of any point in the beam is
represented by g.{x. y. z). If we take u,(5) to be the extensional displacement of
any point on the beam axis (y =z=190) and ¥. and ¥, lo be the rotational
displacements of the beam cross section, then

goda. ¥ 2) = nfx} — y @ lx) + 2 (x) (52)
The axial strain from Eq. (3.14a) is defined by

E.l.l' = ‘!.t. X
Henee, from Eq. (4.2}
€on =, v — _}'PI’:. Tt z'l’_v. x (5'3)
At any given cross section X = X,
du {2
duxdxo) = const = B,
dx
dr_(x,
M =const = B,
dx

g%(—\i) = const = B,
A

where Eq. (3.3) becomes
exx=Bl + Bz}'+B3Z (5.4}

[n order to determine the stresses which correspond to the strains in Eq. (5.4),
the stress-strain relationship in Chap. 3 15 utilized. By assuming that the stresses
6. and ¢, arc negligible compared to o, the following relationship for an
isotropic material may be obtained easily from Eq. (3.25):

O = By (5.5)

where E = modulus of clasticity of the material.
Substituting Eq. {54} into Eq.(5.5) yields

T =FE(B 4 By + B3z} (5.6)
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Constants B,. B,, and B; may now be determined through the use of Eq. (5.1), or
or

P =J‘ E(Bl + Bz}' + B_\Z) d.‘[
4
M_ = —IE}*{BI + B,y + B3z} dA
M, =JEZ(31 + By + Byz)dA
Carrying oul the integrations yiclds

P
F=BiA+ B2+ Bz

E ==B|P+IZBZ+IJ‘ZB3 (5-7)
M
-I.?[:‘ Blf‘f']:___Bz"i- rj.B_g

where 4 = cross-sectional area

I.=1 »*dA = moment of inertia of cross section about x axis  (5.8a)
oA
r~
I = 22 dA = moment of inertia of cross section about ¥ axis {5.8h)
A
dn
I,. =1 yzdA = product moment of incrtia of cross seclion (5.8¢)
oJA
F=1| ypdd
A
I=| zdA A5.9
1, 159

If the z and » axes arc taken through the geometric centroid of the cross
section, then § and 2 become identically zero. Hence Eq. (5.7) reduces to

p
i B A

M

- M,
= 1By + 1.8, (5.10)

M,
2 =Bt 1By

i

‘}
%
:
i
;
4
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Solving figs. (5.10} for the unknown constanis yields .

P
B'_Ah‘
IM_+I_ M
B, = -y = ¥y ¥ 3
. z E(l I - 1% G.1)
IM, 1, M,

By =4t —_F __=
TR - 1A
Substituting Egs. {5.11) into Eq. (5.6) yiclds the general expression of the normal
slress:
P 1M +I_M LM+ 1. M,
e N LI
»iz 7 R ¥z
When Eq. (5.12) is used, it is important to observe the sign convention used in the
derivation. See Fig. 5.1. In cases where y and z axes are principal axes of the

cross-sectional area, the product of the moment of inertia I,, about these axes is
zero. For this condition, Eq. (5.12) reduces to

P M, M
—_—— _ = -2 1
ey = I y+ I, z (5.13)
If there is no axial foree acting on the beam and bending occurs about the z axis -
only, then Eq. (5.13) reduces to the familiar strength-of-material pure bending

equation

(5.12)

= 5 (5.14)

54 SHEAR STRESSES IN BEAMS

The shear stresscs in beams are induced by pure shear force action and/or tor-
sional action. In this section, only shear stresses due to shear forces are con-
sidered, while the latter are dealt with in a separale section.

Consider a small section of a beam, as shown in Fig, 5.2, For simplicity,
assume Ihat the beam cross seclion is symmetrical and the theory of strength of
materials holds. The shear Torce ¥, parallel to the beam cross section produces
shear siresses a,, of varying inlensity over the cross-sectional area. Correspond-
ing to the vertical shear stress o there exists a shear siress o, in the xz plane
which is equal to o, at the points of intersection of the two planes. Thus, the
expression of the vertical shear stress o,, at any point in the cross section is
obtained by defermining the shear stress o, on a horizontal plane through the
point.

The bending stresses on the left and right sections of the beam clement (Fig.
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5.2) arc shown in Fig. 5.3. Al any point a distance y from the neutral axis,_lhe
bending stress will be M_ /1. on the icft face and M_ y/I, + ¥, i/, on the right
face. In order to obtain the shear stress at a distance y = y, above thc neulral
axis, the portion of the beam ubove that point is considered as a free body, as
shown in Fig. 53c¢. For equilibrium of the horizontal forces, the force produced
by the shear siress o, on the horizontal area of width ¢t and Ienglh x musl.be
cqual io the difference in the normal forces on the two cross sections. Summing
forces in the horizontal dircction yiclds

€ 37 4
et .—.J LUy (5.15)
’ ¥ IZ_
Equalion (5.15) may be written in standard form as
V [
Gy = }—f; 3 ydA {(5.16)

where the integral represents the moment of the arca of tf.m cross section above
the point where the shear stress is being determined. with .lhe m?mem arms
measured from the neutral axis. The cross-sectional area considered is shown b.y
the shaded portion in Fig. 5.3a4. It is important to notc that Eq. (5.16) is appli-

v
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cable valy to beams of unilorm, symmetrical cross sections. Tapered beams and
heams of unsymmetrical cross section are considered later.

Exampi: 5.1 Tind the maximum normal stress in the beam in Fig. 5.4 and
the shear stress distribution over the cross section.

SorurTion The maximum normai stress due to bending will occur at the
point of maximum bending moment, or at the fixed end of the beam. Since
the shear force is constant throughout the beam span, the shear stress dis-
tribution will be the same at any cross section. The moment of inertia for the
cross is obtained as follows:

1? s 4? _—
I.=2 BXE +3x25 1+ IXE =433 in

[.=P=M,=0
The maximum normal stress is
oo M:y: _40 x 200+ 3)
e I, 433

= F554 kips/in?

For a point | in below the top of the beam, the integral of Eq. {5.16) is equal
io the moment ol the arca of the upper rectangle about the neuiral axis:

J- ydA =253} =75in" .
¥

H

The average shear stress just above this point, where t = 3in is

Vois 40,000
== dd=—"—""15= 2
Trx =7 L Y dA 33 <3 3 = 2310 Ib/in

- _f\
The average sheur stress just below this point, where ¢ = { in is

ot 40,000
U ) =75 =§ 2
. y L} dA 733 ] 5 = 6930 Ibfin

For a point 2 in below the top of the beam, the integral of Eq. (5.16} is

J. PdA=253x3+15%x1=90
¥

2}

M in i l-sm-—]wj_ '

M oF l
i ] ———

o

1

LLS AL

40 kips

Figure 5.4
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This shear stress at this point is

v, [ 40,000 )
= X s dAd =——-~00 =83 in?
Gy - -L ¥ B3x1 9.0 = 8320 lb/in
At a point on the neutral axis of the beam, the shear stess is
V, | 40,600
— 2 . e : - s 2
o= J; ¥ dA = == (25 % 3 4 1 % 2) = §780 ibfin

The distribution of shear siress over lhe cross section is shown in Fig. 5.5.
The stress distribution over the lower half of the beam is similar 1o the
distribution over the upper half because of the symmetry of the cross section
about the neutral axis.

Alternative Solutions for Shear Stresses

Tn some problems it is more convenicnt to find shear stresses by obtaining the
forces resulting from the change in bending stresses belween two cross sections
than it is to use Eq. (5.16). Portions of the beam between two cross sections a unit
distance apart are shown in Fig. 5.6. The bending moment increases by ¥, in this
unit distance, and the bending stresses on the left face of the beam are larger than
those on the right face by an amount ¥ #,//., where 7= 1. At the top of the
beam, this difference is

V.yp 40(3) .
p¥ A " 2
T 833 2.77 kipsfin

“The differences in bending stresses at other points of the cross scction are
obtained by substituting various values of y and are shown in Fig. 5.6b. Cotting
sections and utilizing the equations of static equilibrium in each case (Fig. 5.6c, d,
and ¢) yicld {he shearing stresses at these various poinis:

&, = 6930/3 = 2910 Ibfin? at 1 in below top of beam
g, = 8320/1 = 8320 Ib/fin® at 2 in below top of beam Y
- o, = 8780/1 = 87RO Ihfin® at neutral axis

Note that these shear stress values are the same as shown in Fig. 5.5.

10 ih/in?
4930 Ihfin?
£330 1bfin?
8780 Ibfin?
$320 Ib/fin?
| 230 Thfin?
2310 fvfin? Figure §.5
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277 lin
kips,‘in’ H
- 03
~ = 6930 1h D 6930 th 6930 b
ST S —_—— lxgi_llb_,__ 13961 i
0.2 o, = 6930 460 1b
. A, =8320
G_!'.\" = s.'rso
sl 1l (el )

Tin
3] h)

Figure 5.6

Example 5.2 In the beam cross section shown in Fig. 5.7, lhe webs are
considered to be ineffective in resisling normal stresses but capable of trans-
mitting shear. Fach stringer area of 0.5 in? is assumed to be lumped at a
point. Find Lhe shear stress distribution in the webs.

SowuTion 1f we neglect the moments of inertia of the webs and of the string-
ers about their own centroids, the cross-seclional moment of inertia about
the neutral axisis )

I. = 20.5)6%) + 2(0.5)2%) = 40 in*

If two cross sections | in apart are considered, the difference in bending
siresses ¥, p/1. on the Lwo cross seclions will be 8(%5) = 1.2 kipsfin® on the
outside stringers and () = 0.4 kips/in® on the insidc stringers. The differ-
ences in axial foads on the stringers at the (wo cross seclions are found as the
product of these stresses and the stringer arcas and are shown in Fig. 5.7¢.

The shear stress in the web at a point between the upper two stringers is
found from the equilibrium of spanwisc forces on the upper stringer.

a,.(0.04)(1) = 600

or )
6, = 15,000 1bfin?

3N
™

]
W
Y

h]
© .
3\3:@«1\‘ e = 15000 W/in®

0.5 in?
0.0 in-
0.5’

@\\1‘(@4 P oy 0,000 b/in’

P ol
4 P ea® »
g AN £5.000 lfin®
o

TSI Ar

OGO

Wl thy (6] {1

Figure 5.7
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l:l ::ew\:;b:srezlsl no bei:ding stress, the shear stress will be constant aléng
sach » as shown in Fig. 5.7d. If the webs resist bending stresses, the shear
stress in each web will vary along the tength of the web and will be greater at
the end nearer the neutral axis. The shear stress in the web between the two

"'Nd(lic Slr”IBEIs 15 iou"d h}‘ <o 14 8 wiseE I rces on lhe IWQ ul)l’EI
nSld Ing span
g p 1 o

o, (0.04)1) = 600 + 200
or

6, = 20,000 Hb/in?

In problems involving shear stresses in thin webs, the shear force per inch
!ength of web often 'is oblained rather than the shear stress. The sl?ear pet
l;lf:h, or shear flow, is equal to the product of the shear siress and the web
thickness. The shear flow for each web, shown in Fig. 5.7, is equal to th
sum of the longitudinal loads above the weh, T ? o

The shear stresses may aiso be obtained by usi
us] (5. i
between the two upper stringers, Y using B (316) For pomt

v, < 8000
. x — —x ] dA - — = 1
; nil, ¥ 40 x 0‘049 (0.5 x 6) = 15,000 Ib/in?
For a point between the two middle slrivngcrs,
Vv, |* 8000
. VA = M H
Oy ydd = x 0.040 (05 < 6 -+ (.5 x 2) = 20,000 Ibfin*

12t )y,

Example 5._3 Find expressions for the normal stress for all beams whose
unsymmetrical cross sections are given in Fig. 5.8a and b.

¥
M, = 10 kipsin ¥
4 m&’) ! 4;"
. | i L2 o3 M, =4L5 kip-in
Zim ! | 2 3 4177
. ——— 3 4
R -~ i
- TR
z \ - A, = dull kip-in
AL, = 100 kip+in ~-— N
: P ] 15713 13 | i 10
2 iﬂ—4 o—
L =6933 0 1, = [73.3 i ;=723 in" 4, = 91371 in*
=093 3in, £, = 173.31n [.=53in
fyp = 240 inf ’
@ {#}
Figure 5.8
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Sorure From Dg. (5.12) with P set to zero, the normal stress for the beam
in Fig. 5.8a is
IAMC VI M, LM +1.M,
Ty z
1,0, - 1% R
~173.3100,000 + 2404 10,000) + §93.3(10,000) -+ 240(100,000)
693301733 — 2402 7 (693.3)(173.3 — 240°

=385 1 A94:

('TA\(= -

Similarly, for the beam in Fig. 5.8h, the normal stress expression is

O = — 6457y + 9.062

55 SHEAR FLOW IN THIN WEBS

Shear Mfow is defined as the product of the shear stress and the thickness of the
web. For all practical purposes, it is sufficiently accurate to assume that shear
stresscs in thin webs ate always parallel to the surfaces for the entire thickness of
the web. In Fig. 5.9. a curved web representing the leading edge of a wing is
shown. and the shcar stresses are paraliel to the surfaces of the web at all points.
Air loads normal to the surface must, of course, be resisted by shear stresses
perpendicular o the web, but Lhese stresses usually are negligible and are not
considered herc. It might appear that a thin, curved web is not an efficicnt
structure for resisting shearing stresses, but this is not the case. The diagonal
tensile and compressive stresses g, and o, are shown in Fig. 5.9 on principal
planes at 45° from the planes of maximum shear o,. From Mohr’s circle for a
condition of pure shear, it may be shown that the diagonal compressive stress o,
and the diagonal tensile stress 6, are both cqual to the maximum shear stress o, -
If the diagonal compression alone were acting on the curved web, it would bend
the web to an increased curvature. The diagonal tensile stress, however, tends to
decrease the curvature, and the two effects counteract each other. Consequently,
the curved web will resist high shear stress without deforming from its original

curvature.

Figure 5.9
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The shear flow g, which is the product of the shear stress o, and the web
thickness f, usually is more convenient to use than the shear stress. The shear
flow may be obtained before the web thickness is determined, bul the shear siress
depends on the web thickness. Often it is necessary o oblain the resullant force
on a curved web in which the shear fiow ¢ is constant for the length of the web.
The element of the web shown in Fig. 5.10 has length ds, and the horizontal and
vertical components of this length are dz and dy, respectively. The force on this
element of length is g ds, and the components of the force are g dz horizontally
and ¢ dy vertically. The totai horizontal force is

F==J.-qd:=q:: (5.57)
[1]

where z 15 the horizontal distance between the ends of the web. The total vertical
force on the web is

¥
F,-—-—J; qdy=qy (5.18)

where y is the verlical distance belween the ends of the web, The resultant foree is
gL, where L is the length of the siraight line joining the ends of the web, and the
resultant force is parallel to this line. Equaltions {5.17) and (5.18} are independent
of the shape of the web, but depend on the components of the distance between
the ends of Lhe web. The induced torsional moment of the resultant force depends
on the shape of the web. The torque induced at any point such as 0, shown in
Fig. 5.11a, is equal to rgq 4s. The area dA of the triangle formed by joining point 0
and the extremities of the element of length ds is r ds/2. Thea the torque induced
by the shear flow along the entire web may be obtained as follows:

T=J'qrds=J. 2qd’A=2qJ- dA
s A A

or (5.19)
T =2Aq

Figare 5.10

2wt seniiabin

i et

T

st i e s R

s-rms( ANALYSIS 109

Figure 5.81

where 4 is the arca encloscd by the web and the lines joining the ends of the web
with point O, as shown in Fig. 5.115 The distance ¢, shown in Fig. 5.11b, of the

resultant force from point © may be oblained by dividing the torque by the force:

£ = "&*E' =7 (5.20}

It is important to note that the shear flow g is assumed to be constant in the
derivation of Egs. 15.19) and (5.20).
5.6 SHHEAR CENTER

Open-scction thin web heams, such as in Fig. 5.12, are unstable in carryi
us tf 4 beam cross section is symmemcal about a vertical axis,

" then the vertical loads must be applied in the plane of symmetry in order to

produce no torsion on the cross section. However, if the beam cross section is not
symmetrical, then the loads must be applied at a point such that they produce no
torsion. This point is called the shear center and may be obtained by finding the
position of the resuftant of the shear stresses on any cross section. The simplest
type of beam for which lhe shear center may be calculated is made of two
concenirated flunge areas joined by a curved shear web, as shown in Fig. 5.12.

73] 1} Figure 5.12
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The two fanges must lie in the same vertical plane if thé beam carries a vertical
load. If the web resists no bending, the shear flow in (he web will have a constant
value g. The resuitant of the shear low will be gL = V, and the position of this
resultant from Eq. (5.20) will be a distance e = 24/L to the left of the fanges, as
shown in Fig. 5.12a. Therefore, all ioads must be applied in a vertical plane which
is a distance e from the plane of the flanges.

A beam with only two flanges that are in a vertical planc is not stable for
horizontal loads. The vertical location of the shear center would have no signifi-
cance for this beam. For beams which resist horizontal loads as well as vertical
loads, it is necessary to defermine the vertical location of the shear center. if the
cross section is symmetrical about a horizontal axis, the shear center must lic on
the axis of symmetry. Il the cross section is not symmetrical about a horizontal
axis, the vertical position of the shear center may be calculated by taking mo-
ments of the shear forces produced by horizontal leads. The methed of calcu-
lating the shear center of a beam can be illustrated best by numerical examples.

Fxample 5.4 Find the shear flows in the webs of the beam shown in Fig
5.13a. Each of the four flange members has an area of 0.5 in?. The webs are
assumed to carry no bending stress. Find the shear center for the arca.

Sorution Two cross sections | in apart are shown in Fig. 5.13h. The in-
crease in bending moment in the l-in lergth is equal to the shear ¥. The
increase of bending stress on the flanges in the i-in length is

¥,y _ 10,000 x 5
1. 50

The load on each 0.5-in? area resulting from this stress is 500 1b and is shoﬁr/n
in Fig. 5.13h. The actual magnitude of the bending stress is not needed in the
shear-flow analysis, since the shear flow depends on only the change in
bending moment or the shear. I each web is cut in the spanwise direction, as
shown, the shear forces on the cut webs must balance the loads on the

= 1000 Ibfin®

S s d
’ 7

] } soowfin @

1000 Ibfi ; l ﬁi cﬁ'

27 2 22%

500 lofin ¢
{in

-—

[T}

10 kips

Figure 5.13
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flanges. The force in web ab must balance the 500-1b force on flange 4, and
since this spanwise [orce acts on 4 L-in length, the shear flow in Lhe web will
be 500 ib/in in the direction shown. The shear iow in web bc must balance
the 500-1b force on Hange b as well as the 500-1b spanwise force in web ab,
and consequently the shear flow has a value of 1000 Ibfin. The shear flow in
web ¢d must balance the 1000-b spanwise force in web be as well as the
500-1b force on lange ¢, which is in the opposite direction. The shear flow in
web ¢d is therelore SO0 ih/in and is checked by the equilibrium of flange d.

The directions of the shear flow on the vertical beam cross section are
oblained from the directions of the spanwise forces. Since each web has a
constant thickness, the sheur flow, like shear siresses, must be equal on
perpendicular planes. The shear {low on.a rectangular element must form
two equal and opposite couples. The directions of all shear flows are shown
in Fig. 5.13b and the back section in Fig. 5.13a. The shear ceater is found by
taking moments about point ¢:

YT, =0
— 10,000¢ 4+ 500(4)(10) =0
or . e=2in
The shear center will be on a horizontal axis of symmetry, since a horizontal

foree along this axis will produce no twisting of the beam.

Example 5.5 Find the shear flows in the webs of the beam shown in Fig.
5.14q, Each of the four {langes has an area of 1.0 in®. Find the shear center
for the area.

SoLUTION The moment of incrtia of the area about the horizontal centroidal
axis is

I, =41 x 4%) = 64 in*

in

16.000 b
, L

R
& 106G hfin {in
1000 fbfin
{1 [1:]]

Figore 544
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The change in axial load in each flange between the two cross sections 1 in

apart is
|4 16,000
Y5 g = 2N -
I, yA x4 x1=10001b

The axial loads and shear flows are shown in Fig. 5.14h, The shear flows in
the webs are obtained by a surmmation of the spanwise forces on the cl-
ements, as in Example 5.4,

The distance e to shear center is found by {aking moments about a point
below ¢, on the junctire of the webs. The shear flow in the nose skin pro-
duces a moment equal to the product of the shear flow and twice the area
enclosed by the semicircle. The shear flow-in the upper horizontal web has a
resultant force of 6000 |b and a moment arm of 10 in. The short vertical webs
at @ and d each resist forces of 1000 Ib with a moment arm of 6 in. The
resultant forces on the other webs pass through the centers of moment:

Y T.=0%
— 16,0002 + 2(39.27)2000) 4+ 6000{10) + 2{1000}{6) =0

or e=1432in

5.7 TORSION OF CLOSED-SECT]ON‘BOX BEAMS

The thin-web, open-section box beams previously considered are capable of re-
sisting loads which are applied at (he shear center but become unslable under
torsional loads. In many structures, especially in aerospace vehicles, the resultant
load takes on different positions for different loading conditions and conse-
quently may produce torsion. On an aircraft wing, for example, the resultant
aerodynamic load is farther forward on the wing at high angles of attack than at
lIow angles of attack, The position of this load also changes when the ailerons or
wing flaps are deflected. Thus a closed-section box beam, which is capable of
resisting torsion, is used for aircraft wings and similar structures. Typical types of
wing construction are shown in Fig. 5.15. The wing section of Fig. 5.15¢ has“onty
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Figure 5.56 Box beam loaded in torsion.

one spar, and the skin forward of this spar forms a closed section which is
desipned Lo resist the wing torsion, whereas the portion afi of the spar is lighter
and is designed not to resist any loads on the wing but Lo act as an aerodynamic
surface. The wing scclion shown in Fig. 5.15h has two spars which form a
closed-section box beani. In some wings, two or more closed boxes may act
together in resisting torsion, bul such sections are statically indeterminate and
are considered in a laler chapler,

The box section shown in Fig, 5.16 is loaded only by a lorsional moment T.
Since the axial loads in the stringers are produced by wing bending, they are zero
for the condition of pure lorsion. If the upper stringers are considered as a free .
body, as shown in Fig. 5.16h, the spanwise forces must be in equilibrium; that is,
ga = q,a or q = q,. If similar sections conlaining other flanges are considered, it
becomes obvious that the shear flow at any point must be equal to g. The
constant shear flow g around the circumlerence has no resultant horizontal or
vertical force, since in 1he application of Eqgs. {5.17) and {5.18) the horizontal and
vertical distances hetween the endpoints of the closed web are zero, The resultant
of the shear flow is thus a lorque equal Lo the applied external torque T, taken
about any axis perpendicular to the cross section. If we take point @ in Fig. 5.16¢
as a reference, the following may be immediately written from Eq. (5.19):

T =3 2AAd)g = 24g (5.21)

where A is the sum of the (Hungular areas AA and is equal to the fotal arca
enciosed by the bux section. The area A is the same regardless of the position of
point O, since the moment of a couple is the same about any point. If point O is
chosen oulside the section. some of Lhe triangular areas A4 will be negative,
corresponding (o the direction of the moment of the shear flow about point O,
but the algebraic sum af all arcas A4 will be equal to the enclosed area 4.

58 SHEAR FLOW IN CLOSED-SECTION BOX BEAMS

Consider a box beam containing only two stringers, as shown in Fig. 3.17. Since
ihis seclion is stable under the action of torsional loads, the vertical shear force V'
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r

fa) )

Figure 5.17 One-cell-two-stringers hox beam.

may be applied at any point in the cross section. Notc that this beam is unstable
under the action of a horizontal load, since the two stringers in the same vertical
plane cannot resist 2 bending moment about a vertical axis. If two cross sections
! in apari are considered, as shown in Fig. 5.17h, the difference in axial load ¢n
the stringers, AP, between the two cross sections may be found from the differ-
ence in the bending stress o, = —M_y/I. = V(lly/l., or |AP[ =0,Ar=
VAR, =V A  hy[I,, where A, and A, are stringer arcas. These loads must be
balanced by the shear flow shown in Fig. 5.17h. I we consider equilibrium, the
summation of forces on the upper stringer in the spanwise direction must be zero:
ay(1 in) + g1 in) — 2 ;“’" -
2

V A h
g =""1—g, (5.22)

I

The shear flow g, may be found by summing torsional moments for the back
section about a perpendicular axis through the lower stringer:

or

V,.C — 24ge =0

v.C
or Go =1~ .
24 P

where A is the total area enclosed by the box.
Substituting this value in Eq. (5.22) yiclds

I
LA, VC 523

=L T 24
The shear flows in box beams with several siringe.; may be obtained by a
method similar to that previously used. From a summation of spanwise loads on
various stringers lhe shear flows may all be expressed in terms of one unknown
shear fiow. Then this shear Row may be obtained by equating the moments of the
shear flows to the external torsional moment about a spanwise axis. For the box
beam shown in Fig. 5.18, all the shear flows 4,q;, ..., g, may be expressed in
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Figure 5.18

terms of the shear flow g, by considering the spanwise equilibrium of the string-
crs between web 0 and the web under consideration:

¢, = o+ AP,
g2 = ¢o + APy + AP,
(5.24)

or qn:qﬂ'FZAPu M
[A]

wlicre E{', AP, represcnts the summation of loads AP between 0 and any web n.
Alter all the shear fows are expressed in terms of the unknown ¢y, the value of
{p may be obtained from the summation of the torsional moments, Note that the
shear flow in any olher web could have been considered as the unknown g,. For
the case of general bending, the difference in axial Ioad on the stringers AP
between lwo sections | in apart may be found from Eq. (5.12). Making the
substitutions M, = ¥{1 in}, M = V(I in), and P = 0 yields

FLV.+1. ¥ LV.+I1,V
A!‘,=(— Mt ’"V‘y+ 2 Vet 1y yz)A; {5.25)

2 z
11, — 1% LI —I%

where y and z are the coordinates of the stringer area A, .

Example 5.6 Find the shear flow in alf webs of the box beam shown in Fig.
5.49a.

So1unioN The moment of inertia of the beam cross section aboul the nsutral
axis is I =(4 x 0.5+ 2 x [}5%) = 100 in®. The dilference in bending stress
between the two cross sections | in apart is V{1)y/1 = 10,000 (1){5)/100 = 500
ib/in?. This produces compressive loads AP of 500 Ib on the 1-in® upper
stringer ureas and 250 th on the 0.5 in? stringer areas, as shown in Fig. 5.1%h.
The shear fiow in the leading-edge skin is considered as the unknown g,
although the shear ltow in any other web could have been considered as the
unknown. Now the shcar llow in all other webs may be obtained in terms of
Go by considering the equilibrium of the spanwise forces on the stringers, as
shown in Fig. 5.19A.

The valuc of ¢, is oblainced by considering the equilibrium of torsional
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Flgure 5,19

moments due to the shear flow and the external applied loads in reference to
any axis normal to the back crass section of the beam. Tuking the axis
through point 0, for example, as shown in Fig. 5.[9¢, and summing torquus
to zero yield

940 2T%o=0
— 10,0008} + {g0 — iOO)(IOO) + {go — S00K100) + qo(278.5) =0
or = 324 Ib/in

The shear flow in the rest of the webs may be computed easily from Fig.
#5.19¢.

Example 5.7 Find the shear flow in the webs of the box beam shown in Fig.
5.20. ’

SoruTion The change in bending stress between iwo cross sections is ob-
tained from Eq. {5.25). The terms to be used in this equation are obtained as
follows:

=(2x3+2x 1){5%) = 200 in*
I, =1{2 x 3+2 x 1)10% = 800 in*
ID)= 13— 10) + 3(~ 5K--10) + 1(10)(—5) + 3(5)}0) = 200 in*

“ V. =4 kips
a, b
\l) = |0 kips

gi

g

»
! ;
N — 3in? 1int
3 I
N ) ¥, =4kips
X —_ - 10 in -'_‘_—L
A
‘ I
k4 \ L L in 3in?
N e ;,/ " l-——m in— 10 ]

¥, =10 kips

Figure 5.20 Dox beam. Section CL

The substitution in {ig. (5.25} yiclds
AP = {2333z — 73.33y)A;

With the above equation, the AP on each stringer may be obtained easily by
making the proper substitution for the flange area and its corresponding
coordinates. The resulls are shown in Fig. 5.21¢. Now the shear flow in each
web can be obtained from the increments of the flange loads, as was done in
Example 5.6 for the symmetrical box beam. The shear flow in the left-hand
web is designaled g,. The shear flows in the rest of the webs are obtained by -
considering the cquilibrium of forces in the spanwise direction and are given
in Fig. 5.21a. Now the unknown shear flow g, is obtained from the equilib-
rium of torsional moments. Taking point O as a reference point and sum-
tring moments about the x axis through O yield

{tga — 400)( 100} + o(100) -+ (g — 600)(100) + (go — 10GOK100) =
or 400q,, — 200,000 = 0
¢o = 500 lbfin

i, — 400 = 100

a0 g p 1000

Lo R i~ =t~}

—-;'fu
i \@
‘l §~ { i ‘*\* S0G = ¢ ~
do AL ,’//g’[‘/( ;‘_ol Lx=1oo/%+<’"::1=1oo ;q“vIDOG=_S(}O
— = - -~ — ~
-~ 24 = [H) ~—
12:.._'::@@/* 1_.___.___
!f/\'t“ G r‘m}:nmnT
) '

y
ter) {b)

Figure 5.21

|
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The final shear-flow results are indicated on Fig. 5.21h. The minus sign
implics that the wrong direction of shear flow has bcen assumed.

5.9 SPANWISE TAPER EFFECT

In the preceding analysis of shear stresses in beams, we assumed that the cross
section of the beam remained constant. Since in aerospace vehicle siructures a
minimum weight is always sought, usually the beams are tapered in order to
achieve maximum structural efliciency. While this variation in cross section may
not causc appreciable errors in the application of the fe&ure formula for bending
stresses, often it causes large errors in the shear stresses determined from Eq.
(5.16).

As an illustration, consider the beam shown in Fig. 5.22 which, for simplicity,
is assumed to consist of two stringers joined by a vertical web that resists no
bending. The resultant axial loads in the stringers must be in the direction of the
stringers and must have horizontal components P, = M_k. The verlical com-
ponents of this load which act on the stringers, P (ana, and P tana,, as shown
in Fig. 5.22h, resist part of the external applied shear ¥,. By designating the shear

C
o h N
N
— N
™
S
™,
N
.
A
",
[\
2
(a) ;’”
) _ -~} P lang,
l r
| v
l q= r Ir
. P

[LJ)]

Figure 5,22
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resisled hy the stringers as 1) and that resisted by the webs as V,,,
Vo= 14 ¥, (5.26a)
Pilan %, + tan a,) (5.26h)

r
I'rom the geometry of the heam, tan o, = h,/C, tan oy = h,/C, and tan a, +
tan x; = thy + i) C = k/C Subslituting this value into Eq. (5.26b) yields
h
Vi=P = 5.27
f; c {5.27)

Fguation (5.27) will apply for a beam with any system of vertical loads. For the
present loading, the value of P is ¥, hfh. Substituling this value for P into Eq.
(5.27) yiclds
Vo=V L (5.28)
i C :

From Eqgs. [5.264) and (5.28} and from the geometry,
V,=V — (5.29;

quations (5.28) and (5.29) can be cxpressed in terms of the depths ki, and h of the
beam by making usc of the proportion a/C = hgfh:

V1
v, = —f—h“’ (5.30a)
h—
and : V=V —’h—"’ (5.300)

The shear flow in the wehs now can be found by using Eq. {5.16) in conjunc-
tion with the shear V, in Eq. (5.30a). For instance, if we assume that the areas of
both stringers in Fig. 5.22 are the same, the shear flow al a section where the
distance between the stringers is h may be calculated as follows:

I V, Ah V
el g T e 5.31
Al Rt Ter S sl (5.31)

“‘When the bean has severud stringers. the shear flow may be obtained in a manner
similar to (hat for the iwo-stringer beam as long as the stringer arcas remain
constant along the span. i the stringer arcas vary along the span and not all vary
in the same proportion. Eq. {5.16) cannot be applied.

Example 5.8 Find the shiear flows in the web of the beam shown in Fig. 5.23
at 20-in intervals along the span.

Sortrrion The shear flows are obtained by the use of Egs. (5.30a) and (5.31).
The solution of these cquations is shown in Table 5.1.
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Figure 523

While slide-rule accuracy is suflicient for shear-flow calculations, the values
in Table 5.1 are computed Lo four significant figures for comparison with a
method to be developed later.

Example 5.9 Find the shear flows at section AA of the box beam shown in
Fig. 5.24.

SoruTtioN The moment of inertia of the cross section at 44 about the neu-
tral axis is

F=22+1+ 1)X5%) =200 in*
The bending stresses at section 44 are

_ M.y _ 400000 x 5
e =T =T 000

The horizontal components of the forces acting on the 2-in” stringers are
20,000 1b, and the forces on the 1-in? stringers are 10,000 b, as shown in Fig.
5.25a. The vertical components are obtained by multiplying the forces and
the tangents of the angles between stringers and the horizontal, The sum of
the verlical components of forces on all stringers V¥, is 4000 1b, and the
remaining shear ¥, of 4000 Ib is resisted by the shear flows in the webs. If one
of the upper webs is cut, as shown in Fig. 5.25b, the shear flows in the webs
may be obtained from

= 10,000 tb/in?

v, '
q="" jy d4 :
I
Table 5.1
o _K
X n n T, T
o 10 1 0000 1,000

20 12 0.8333 8333 6944
40 14 0.7143 7.143 5102
60 16 0.6250 6,250 390.6
80 18 0.5555 5,555 308.6
100 0 05 5000 2500
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Figure 5.24

where the integral represents the moment of the areas between the cut web
and the web under consideration. The change in bending stress on a stringer
between the two cross sections 1 in apart is V,, y/{ when the effect of taper is
considered, and the change in axial load on a stringer of arca A is

¥V,
AP=—I—"’yA_,

These axial loads are shown in Fig. 5.25b in the same way as they were
shown previously for beams with no taper. The equilibrium of forces in the
spanwise direction yields the shear flow in terms of go n all the webs, as
shown in Fig. 5.25h. Now the shear flow go can be found by summing
torsional moments about the z axis through point @ for the back section, as
shown in Fig. 5.264. The linat shear flow in each web is shown in Fig. 5.26b.

8000(2) + (g — 100X200} + go(100) + (g + 100)(100)
—2(500)(10)) -- 2(500)20) = 0O

do = 60 ib/in

0T N e
4q + 100 N
a oo
A\ )
LI &&5u o
ot
g+ 300 -~ = /‘:_’

<) S
- t
1 ( oW % g - 100
~ Pt
~T F el I\QQ\»
¢yt 100 \Q\z P/:/@/
dg w2
b}

Figure 5.25
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5.10 BEAMS WITH VARIABLE STRINGER AREAS

In Scc. 5.9, beams were considered which varied in depth but had stringers whose
cross sections were constant. In many aerospace structural beams, the cross-
sectional area of the stringer members varies as well as the depth of the beam. If
the areas of all the stringer members are increased by a constant ratio, the
method of Sec. 5.9 can be used; if the areas at one cross section arc nat pro-
portional to the areas at another cross section, the method would be consid_erably
in error. The airplane wing section in Fig. 5.27 represents a structure in which the
variation in stringer areas must be considered. The stringer areas in this wing are
designed in such 2 manner that the bending stresses are constant along Lhe span,
In order to resist the larger bending moments near the root of the wing, the
bending strength is augmented by increasing the depth of the wing and the arca
of spar caps A4 and B. The stringers which resist the part of the bending moment
not resisted by the spar caps have the same area for the entire span. Since the
axial stresses on these stringers are the same at every point along the span, the
increments of load increase AP will be zero except on spar caps 4 and B. It may
be seen from Fq. (5.24) that the shear flow must be conslant around the entire
leading cdge of the wing and changes only at the spar caps. C‘onsequ}utly. the
methods of analysis previously used are not applicable to this problem.

“The bending stresses und lotal stringer loads may be calculated for two cross
sections of the beam. The aclual dimensions and stringer arcas for cach cross
seclion arc used, so that any changes between the cross sections arc luken inlo

Figore 5.27
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[er) (i)

Figure 5.28

consideration. The stringer loads P, and P, arc shown in Fig, 5.28 for two
sections a distance apart. The increase in load in any stringet is assumed to be
uniform in length a. The increase in stringer load per unit length along the span
is :

ap =tz P (5.32)

a

This typical {orce is shown in Fig. 5.28b. Now the shear flow can be obtained
from these values of AP, as in the previous analysis.

It is seen that the shear force is not used in finding the values of AP;
consequently, it is not necessary to calcuiate the vertical components of the
stringer loads. The cifect of beam taper and changes in stringer arca are im-
plemented automatically when the moments of inertia and bending stresses are
calculated. Since it is necessary to determine the wing bending stresses at frequent
stations along the wing span in order to design the stringers, the terms P, and P,
¢an be obtained withoul oo many additional calculations. Thus this method of
analysis is often simpler and more accurate than the method which considered
variations in depth but not variations in stringer area.

The distance ¢ belween (wo cross seclions may be any convenient value. Il is
common practice to calculale wing bending stresses at intervals of 15 to 30 in
along the span. The intervals are quite satislactory for shear-flow calculations.
Note that for very small values of g, small percentage errors in £, and P, resuit in
large percentage errors in AP. However, if a is loo Jarge, the average shear flow
oblainerd belween two scctions may not be quile the same as the shear flow
midway between the sections.

Example 5.10 Find the shear flows in the beam of Fig. 5.23 by the method of
using dilferences in bending stresses.
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Table 5.2
M _P- P,
x M w P p-p, 7m0 Percentage error
Q@ (3 4 (3) ()] (0
10 100,000 11 9,091
20 12,986 699.3 0.7
30 300,000 13 23,077
40 10,256 5128 0.5
S0 500000 15 33,333
60 7.843 o2l 04
70 700,000 17 41176
80 6,192 3096 03
90 $00.000 19 47,368

Sorumion For this two-flange beam, the axial load in thc flanges has a
horizontal component P = M/h. The values of P for various sections are
calculated in column 4 of Table 52. In computing the shear at any cross
seciion, values of the axial loads at cross sections 10 in on <ither side are
found. The free-body diagrams are shown in Fig. 5.29. The circled numbers
represent stations, or the distance from the cross section to the lefl end of the
beam. The difference in horizontal loads on the upper part of the beam
between the cross sections 20 in apart must bé balanced by the resultant of
the horizontal shear flow, 20q. The differences in axial loads are tabulated in
column 5, and the shear flows g = (P, — #,)/20 are shown in column 6. The
value of the shear flow at stationt 20 thus is assumed to be equal to the
average horizontal shear between stations 10 and 30. Even though the shear

33,333 b

2001 Ih ;23‘077"’ T

R T i
20q = 13.986 I

| { | |

.:*;'.—'_-"—:_'l 1,,____._._#

@TUTJ-I ib @ 11 077 m@ ®—P . d

473048 I
10,000 ib 41176 b ——
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et l
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Fipure 5.19
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does not vary linearly along the span, the error in this assumption is only 0.7
percent, as found by comparison with the exact value obtained in Table 5.1.
This error is even smaller al the other slations.

Example 5..11 Find the shear flows at cross section 44 of the box beam
shown in Fig. 5.24 by considering the difference in bending stresses at cross
sections 10 in on either side of AA.

SoLuTion The moment of inertia at station 40 {40 in from the left end) is

found [rom the dimensions shown in Fig. 5.30a. The bending stresses at
station 40, resulting from the bending momeni of 320,000 in - 1b, are

M, 320,000(4.5)

Rl Sl Lok Wit SN in2

T ex I 162 8888 Ib/in

The loads on the (-in® arcas are 8888 1b, and the loads on the 2-in? areas are

17,777 Ib, as shown in Fig. 531a. The moment of inertia at station 60 is

found from the dimensions shown in Fig. 5.31b:

I, = B8(5.5%) = 242 in*
The bending stresses resulting from the bending moment of 480,000 in - 1b

(1) &)

Figure 531
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are

. = M.y 480000 x 5.5
i 242
The leads on the stringers are 10,909 and 21,818 1b, as shown in Fig. 531w

The increments of flange loads AP in a 1-in lengih are found from Eq. {5.32).
For the area of 2 in?,

= 10,909 Ib/in?

AP = 21,818 - 17,777
- 20

For the area of 1.0 in?

=2021b

_ 10,909 - 8888

AP
20

=101 Ib

The values of AP are shown in Fig. 5.31h The remaining solution is identical
to that of Example 5.9, The values of AP are | percent higher than the exact
values shown in Fig. 5.25b. The reason for this small discrepancy is that the
average shear Now between stations 40 and 60 is | percenl higher than (he
shear flow at station 50. The other assumptions used in the two solutions are
identical. The method of using differences in bending stresses automatically
considers the effects of fhe shear carried by the stringers, and it is not neces-
sary to calculate the angles of inclination of the stringers. It is, however,
necessary to find the torsional moments about the proper axis if the stringer
forces are omitted in the moment equation.

5.11 AIRY STRESS FUNCTION

It is shown in Chagp. 3 that a stress ficld describes the exact state of siress in a
solid il and only if it satisfies the conditions of equilibrium, compalibitity, and
prescribed boundary stresses, For lwo-dimensional stress problems in the absence
of hody forces, Lhe equilibrium and compatibility equations are
c =0 _ “’
ws.x F Tap.y (cquitibrium) 3.11)

B Copxt Oppy = 0
Oux xx t g g+ Opp =10 (compatibility) (3.29)

If a siress function @ (x. v) is assumed such that the stresses in a solid are
delined hy

Tue =Dy
O =0, (5.33)
Oy= -0

basriee
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then Tgs. (3.11) are identically satisfied. Upon substituting Egs. (5.33) into Eg.
{3.29), the following is oblained:

(D.x.\xx + 2¢.xx_vy + q).y_r_vp =0 (534)

The solution of Iq. (5.34) satisfies both the equilibrium and the compatibility
cquations and therefore gives a possible stress field in an elastic solid. In order for
the obtained stress ficld to describe the true state of stress for a specific problem,
ihe prescribed boundary conditions must be satisfied alse.

The solution of Eq. {5.34) may be oblained by two methods: the polyromial
solution and the Fourier series solution.

Polynomial solutien If the stress function ®(x, ) is assumed to have a solution of
the form

N
Bfx, ¥ =D x 9+ Palx, Y+ -+ PUx, ¥ = Z Dx, ¥} (5.35)
n=1
where

n
dfx, )= A X"Y {(5.36)
i=Q
then, by considering various degrees of polynomials and suitably adjusting their
coclficients A, , a number of practical problems may be solved. For instance,
taking

a 4

dx, )= Y bl y= Y (iﬂAi, X""'Y*) (5.37)

=1 n=1

and assuming afl coeflicients Lo be zera A3, and Ag; Yield
a,=0,=24; )
Gpp = @, = 240, (5.38)
a0, =0

By examining Eq. (5.37), it may be shown casily that this is the solution of a
two-dimensional solid loaded as shown in Fig. 5.32a. If, in addition, Ag; is taken
as zero, then the solulion corresponds to that of Fig. 5.32b. Figure 5.32c and b
represents the conditions where 4 and A5, respectively, are the only nonzero
sct of cocflicients in Eq. (5.36).

To illustrate the use of the Airy stress function in the solution of practical
probiems, let us consider the beam problem shown in Fig. 5.33a. It is assumed
that the external shear load ¥ is distributed at the surface x = x4 according to
the strength-of-material parabolic shear-stress distribution, and the axial force §
is applied uniformly over that surface.

Also, it is assumcd that the bending stresses vary linearly, as shown in Fig.
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th w ? Solving Eq. (5.41) simultancously gives
Figare 5.32 i Ay = 3v
5.33b6. Through comparison of Figs. 5.325, ¢, and d and 5.33h, it can be seen that i A _r
ithe loading of Fig. 5.33b may be obtained by superposing the loads shown in Fig. t R
5.32h, ¢, and d. Thus, the stress field for the beam in Fig, 533a is 5
Ay ==
6= 24, + 6454 xy #
g, =0 (5.39) Hence the true bheam stresses are
U_c;=sz-3A34}'2 a_‘,x=%—%’£jxy=%—-l’ixy
The boundary conditions which must be satisfied for the given beam in Fig. 5334 v
are Typ = {5.42)
G, =0 at y==h v o3y, V.2 3
' , = Tan A’ A
- g.dy=V at  x=0 A5.40)
-k

- h
j g.dy=35 at x=0

h
Ulilizing Fgs. {5.39}) in Eqs. {5.40) yiclds
— Ay — 343, h* =0

i
-I' (-A— 314.54}'2) d)" =-V (3.41)
"

h
J 2.422 dj' =38
h

Fourier series solution The Fouricr series technique is used whenever Lhe load
distribution is discontinuous over a porlion of the salid, as shown in Fig. 5.34, for
example. This method assumes that the solulion of Bq. (5.34) may be cxpressed as

Plx, ) = CAx)DLy) (5.43)
where @ (x) may be taken, in the form of Fourier scries, as

@ {x) = sin mnx
A = L
or (5.44}
mmx
M i) = _—
b {x) =cos 1
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Utilizing Eq. (5434} or {5.43h) in Eg. (543) and then substituting into Eq.
(5.34) yield

T di0,
‘_d;f — 27 7}; + B, =0 (5.45)

where ff = mz/L.

Equation (5.45) is a fourth-order homogencous differential equation with
constant coefficients. Its solution can be obtained easily in terms of hyperbolic
functions as

¢, = C, sinh ffy + cosh fiy + Cyy sinh By + €,y cosh fy (5.46}

Constants C,., 5. - - are delermined {rom the boundary conditions of the solid
under consideration. The total solution of Eq. (5.34) thus becomes

®{x, ¥) = {C, sinh Iy + C; cosh fiy + C,y sinh fy
+ Cy v cosh fiy) sin o= (547a)
L s
®fx, ) = (Cy sinh fiy + C, cosh By + Cy ¥ sich fy
mrx

+ Cyy cosh fy cos T (5_47]1)

The choice of the trigonomeiric function depends on the symmetry of the
loading. For instance, if the loading is symmetrical about the chosen v axis of the
beam. as shown in Fig. 5.34a, then the cosine function must be used. For the
beam of Fig. 5.34h. the sine function must be assumed because of the antisym-
metry of the loading about the chosen y axis.

e J |
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PROBLEMS

&1 Find the maximum lensile and maximum compressive stresses resulting from bending of the
heam shown in Fig, P50 Find the distribution of shear stresses over the cross scetion al the seclion
where the shear is  maximum, considering points in the cross section at vertical intervals of 1 in.

4 2000 1n 1in

20 thfin

I O I I
—r

—]
L 30 iui—‘m in——wfe- =30 in-a+—30 inj ‘-——'-l :
3in | 3

Figure P5.1

8.2 Find the maximwm <shenr and bending siresses in Lhe beam cross section shown in Fig. P5.2 if the
shear ¥ is 10,000 1b and the bending moment M is 400,000 in - Ib. Both angles have the same cross
section. Assume the web 1o be effeclive in resisting bending stresses.

10 in

Fipure 5.2

5.3 Find the shear stress and the shear-fow distribution over the cross section of the beam shown in
Fig. PS.3. Assume the web o be incfective in resisting bending and the stringer areas lo be con-
centrated at points.

N Lo
’ N 4in
N Fowl
E‘o.(m n Rin
[
5\\ 10in?
10,000 b Figure P53
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54 Each o.flhc {ivc upper stringers has an arca of 0.4 in®, and each of the five lower slringc;s has an
area of 08 in", Find the shear flows in all the webs if the vertical shearing Joree is 12,000 Ib.

- r—4 in——]

58 Use Fgs. {5.17) and {5.18} (o find the shear flow in the webs of the two-stringer beams shown in
Fig. P5.8 under the action of 2 verticul shear 7. - .

“fin

-1
din
I———o——-——l — ¢+ Figurersg

Figure P5.3

59 Find the shear-flow distribution or (he section shown in Fig, P3.9.

; Tin
4
@F.m:h af the six stringers of the cross section shown in Fig. PS5 and PS.6 has an area of 0.5in2.
‘et the shear Nows in all webs and the location of the shear center for 2 vertical shearing larce of i 1
_1o0001b.
‘%} Find the shear flows in all wehs in Fig. PS5 and P5.6 for a horizontal shearing force of 3008 Ib. i 3 i"\ - ) &in
“ach stringer has an area ol 0.5 in”, oo e
1
B ) ’ 1
6 in—1 4
. ; 12in lin
- N . : L+l fp—— !
in !
: 10,000 b Fi P5.9
h——l— : e
din 2in .
) " - 4 5,10 Find the shear fows in. ihe wehs of the box beam shown in Fig. P5.10 if the area is symmetrical

about a herzontal centerline. -

I Figure P55 and P56 : b m-at-—d |n-—|-—~l in~e-] .
’ ‘ Zin

- -
4ig? 1in? (e l

@Fiml a peneral expression for the shear-Row distribution around the circuiar tube shown i Fig.
5.7, Assumie the widl thickness ¢ 10 be snrall compared with the radius R, . 10in

’ —-I 2 i!\|-'
. 10000 T Figure P5.10
f @ 511 Find the shear flows in the webs of the beam shown in Fig. P5.11 and P5.12. All stringers have

areas of 1.0in%
512 Assume that the two righl-hand stringers in Fig. P5.11 and P5.12 have arcas of 3.0in* and the

v Figure 1’57 other stringers have arens of 1.0 in”. Find the shear flows in the webs by iwo methods.
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|——ro fr—nte—10 in~—s]

L}

e

3000 1B~ figore 5.11 and P52

5.3 Find the shear flows in all webs il the two right-hand stringers shown in Fig. P5.13 have arcas of
1.5 in® and the other stringers have areas of (.3 in’.

Figure I"5.13

5.14 ¥ind the shear-Now disiribution in all webs shown in Fig. P5.14. All pacts of the cross section
resist bending stresses.

as
12in &

—-‘ I"‘—O_'l n D‘I?E" 1 E-Iin
. |

<} ju

12,000 Ib Figure P5.14

815 Solve Example S8 if the beam depth varies from 5 in af the free end Lo 1500 at the suppori. {Sec
Fig, ’5.15.)

anme

i
E
;i
A
Ky
£
¥
3
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3
o
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i
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Zint 1in? R

L 5

‘ iE: . )

|
i Fe20 i 20
1Gin

15,000 b

100 in

Figure 75,15

5.16 Find Lhe shear fiows for the cross section at x = 50 in. Consider only this one cross section, but
calculate the torsional moments by two methods.

{a) Seiect the torsional axis arbitrarily, and calculate the in-planc components of the fange
loads.

{#) Tuke moments about a torsienal axis joining {he centroids of the various cross sections.
517 Repeal Prob, 5.16 il there is an additicnal chordwise load of 6000 Ib acting to Lhe left at the
certer of the Lip cross section.
518 A cantilever heam 30 in fong carries a vertical Joad of 1000 1b at the free end. The cross section
is rectangulur and'is 6 by | in_ Find the maximum bending stress and the location of the neutral axis
i (u} the 6-in side is vertical, (B) the 6-in side is tilted 5° from the vertical, and (¢} the 6-in side is tilted
10” from the vertival.
519 A horizontal besm with 4 square cross section resists vertical loads. Find the angle of the
neutral axis with the herizontul if one side of the beam makes an angle § with the horizontal. At whal
angle should the beam he placed for the bending stress (o have a minimum value?
£20 Find the bending stresses and stringsr londs for the box beam whose cross section is shown in
Fig, P5.20 if M, = 100,000 and A, = —40,000 in - Ib. Assume the areas of the stringer members are
as follows: h

(@a=h=c=d=2in?

thy a=h=23in% c=d=1in?
() p=d ~ 3in* in?
(ha=c=3ink bh=d=1in?
() u=c=1in’ b=d=3in?
¥
[ ]
T
iin
- !
L [nd
d‘
[ S0in {  Figure P5.20

521 A heam with the cross seetion shown in Fig P5.21 resists a bending moment A, < 100 in -1k,
Caleulate the bending stresses al puints 4, B, and C.
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_{_is

.1 in

[ Odin

-
0-1—"| |'— Figare PA21

522 The box beam shown in Fig. P5.22 resists bending momenis of Af, = 1,000,000 and M, =
120,000 in - lb. Find the bending stress in each stringer member. Assume that the webs are ineffeclive
in bending and the wareas and coordinates of the stringers are as follows:

No.  Area.in®  zin v, in
t 1.8 2.62 83
2 04 —~ {0R] g2
3 0B 2470 975
4 23 — 24,70 - 1.3
5 1.0 262 -2

Figure 5.22

5.23 Find the shear flows at the cross section shown in Fig. P5.23 and P5.24 for x = 50 in. Consider
unly 1he ane cross seclion, and caleulate the in-pline components of the stringer loads.

"o 2§ 0000

Sin

10,000 1b

SO0 Ib — -

S
- PS5 in
N
N
N

Figure PS.23 and P5.24

il
£,
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5.24 Repeal Prob. 5.23. using the differences in stringer loads shown in Fig. P5.23 and P5.24 at the
cross section for x = 40 and x = 6l in.

8.25 Calculale the shear flows in the webs of the cross seclion shown in Fig, P5.25 and PS.26 at
x = S0in. Assume the Range arcits as follows:

@ya~=h=3%in% - Jd-1in
Pase -1, h-d 3n?
{) u=¢'=3|nz. bho-d =1in?
Consider only the one cross section, and calculate the in-plane components of the fange loads.

5.26 Repeat Prob. 5.25, using the dilTerences i flange loads at the cross section shown in Fig. P5.23
and P5.26 for x = 40 and 60 in. Use 1 torsional axis joining the centroids of the cross seclions.

Fipure P55 and P5.26

527 Find the shear Bows at station 100 of the fuselage shown in Fig. P5.27. Assume all stringer argas
tobe | in®.

Station 100

e

OF LA
o FJQI J_

i i“_—"l

S

FOLHI0 [0

Figure 1?5227

528 Using the Airy stress function. find The siresses in the beams shown in Iig, P5.28.

T T S T T LIy
| — R G
N : i+ " " 100 in JR

Figure P5.28
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5.29 A circular, thin plate is under the action of uniformly distributed pressure applied around the
ouler edge. Find the siresses, using the Airy stress function. Assume he plate thickness is equal to ¢

(See Fig. P5.29,)
’E CHAPTER
é SIX
‘9 DEFLECTION ANALYSIS OF
Figure P5.29 ' STRUCTURAL SYSTEMS
H

e il

6.1 INTRODUCTION

The most important applications of the methods for calculating displacements
(deflections) are in he analysis of redundant {indeterminalte} structural systems, as
is demonstrated here and in taler chiaplicers.

The deflcetions of most engineering structures are small and very scldom are
g used as an important design criterion. However, the relative rigidity of various
) elements in redundant structural syslems affects the stress distribution in the

unit-foad method for the analysis of simple redundant structures. The energy
methods treated arc derived in accordance with the principles of virtual and
complementary virtual work associated with virtual displacements and virtual
lorces, respectively. We assume small strains and corresponding small displace-
ments in al the develapmeats of this chapter. In addition, the material is assumed
perfectly clastic.

siructurc; therefore, it is ncecssary to consider the deformations in the analysis of '
| such structural systems.
; The methods of dellection analyses presented in this chapter are Castigliana's
method, the Rayleigh-Ritz method, and the finite difference method. The finite-
i element method is presented in a separate chapter. Also presenled here is the
i
i
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6.2 WORK AND COMPLEMENTARY WORK: STRAIN AND
COMPLEMENTARY STRAIN ENERGIES

Consider a structure to be acted on by a set of generalized forces Qfi = I,

2, ..., n) which result in a corresponding set of generalized displacements gfi = 1,
2. ..., n). The force-displacement relationship for a typical force @, and its corre-
sponding displacement g, are shown graphically in Fig. 6.1a. The area under the
curve represents the work W done by force @, in moving throngh the corre-
sponding displaccment g,. The area above the curve is defined as the comp-
lementary work W. For a System which is in a state of static equilibrium, and if
heat dissipation is neglected, then based on the conservation of energy, it can be
stated that the work done on the system is equal to the strain encrgy stored in the
syslem, or

w=U (6.1} -

and W=U (6.2)
where U and 7 are the strain energy and complementary strain energy, respect-
ively. Figure 6.1 shows a graphical representation of these quantitics.

6.3 PRINCIPLE OF VIRTUAL DISPLACEMENTS AND
RELATED THEQREMS

In variational mechanics, a structural system is imagined to have gone through a
set of infinitesimal displacements consistent with the constraints, when, in reality,
no such displacemenls exist. These fictilious movements of the structure are com-
monly referred to as the virtual displacements, and the corresponding work is
called the virtual work.

Consider that a structure is given a small variation in virtual displacement
5q,, as shown in Fig. 6.1. This induces a variation in virtual work W and a

_Lj On A;T ¢ Al’.—f ’;
0. V7777 5a‘L T '
N
. /N . /N
o \‘/Al! \_AU
\ N
e N N
N \

=T

(G

P

Figore 6.1 {a) work and complementary work : (b} strain and complemenlary sirain energies.

e Y

e m gl e R e s s
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corresponding variation in strain energy 6U, as indicated by the vertical strips in
Fig. 6.1. Il we assume that the external applied forces {Q} and the induced
internal stresses {L} remain constant during the virtual displacements, then the
changes in virtual work and virtual strain energy can be obtained readily from
Fig. 6.1 and are given by

AW = W = Q, 8q, 6.3)
AU* = §U* = ode (6.4)

where & denoles 1he first variation, and it operates in the same manner as the
dilferential operator o, and 8U* is the variation in strain energy per unit volume
{cnergy density), i.e.,

ou =J‘ U dV {volume integral) {6.5)
v

1f the variations in 8W and SU are considered for the variation of all displace-
ments ¢; {i = 1. 2. ..., 1) consistenl with the constraints, then

IW=73 Qdq (6.6)
i=1
or, in matrix compact form, £g. (6.6} becomes
' W = 54){Q} 67
where the symbols [ | and | | indicate row and column matrices, respectively.

Likewise, the corresponding varialion in strain energy density can be expressed
as

SU* = | SE|(Z} 6.8)
where the strain and stress fields, in general, are given by
LoE = olen € € €y € S (6.9)
and '
o]
Oy
Gaz {6.10)
m=]
LP¥
.. Ty ]

The principle of virtual displacements states that an elastic deformable struc-
tural system is in a slate of equilibrium if the virtual work 3W done by forces {Q}
is cqual to the virtual strain cnergy &U for every arbitrary virtual displacement
consistent with the constraints of the structure. Mathematically, this principle is
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expressed as

SW == U (6.11)

ur

5q)(0} = f (SEJ(E} v 6.12) -

where the external applied forces {Q} and the inlernal stresses {E} are assumed
to be in equilibrium and the coordinate displacements {3y} and the strains {5E}
satisly the compatibility condition

{6E} = [A1{sq} (6.13)
Substiluting Eq. {6.13) into Eq. (6.12} yields
184512} =J 18gi[A]TE} dV (6.14)
v
or, in cxpanded form, '
0,
2:
[5q: &gz -~ Sq;-- dq.]} " =j£=5q1 gy -+ 8q; -+ 6q,]
v
&
[ 0, .
T
_)11 iz Ais lln- (7]
Aar Aaz Aay Ay, 72
X Aip A3z Azy o dg, oy | dV {6.15)
---------------------- ﬁ‘)”;
_)hl oz Ae3 Aen$ L as

where the superscript T denotes matrix transpose (i.e, rows and corresponding

columns are exchanged).

If every virtual displacement 8q, [{r = I, 2, ... ), » £ {] is set equal to zero
with the ith displacement dq; allowed to be a unit displacement, then it can be
seen easily from Eq. (6.15) that Eq. (6.14) reduces to

1 -Q,.=_[ t-LAHZY aV
¥

B

e ket S 2 i

et s L 1S S R 1 25 R 1 R R

s o

e

BT R A B i W 4 8ol P

& el -
E ] 1oh Al B AW AT B oy BN s
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or
Q; =I (LHZ) dv {6.16)

where the row matrix [ 4,] is defincd by Eq. (6.13), which under the condition

{0 for r # i
dq, = i

forr=i
Al = LOE;] (6.17)

Fquation (616 describes what is commonly referred to as the unit-displacement
wethod. Sce Argyris and Kclsey?® for more detailed information on this theorem.
For conservative structural systems, Eq. (6.11) may be expressed in the form

SU + P)=8V=0 (6.18)

becomes

where 837 is the first variation of the total polential energy and

SW=—dP= Z 0, dq;

Equation (6.18) is the principle of stationary total potential and may be shown
readily Lo be equivalent Lo stating that

o200 (i=L2...n) (6.19) -

which is the basis of the Raylcigh-Ritz method in structural analysis.
~ Another theorem that is based on the principle of virtua! displaccments is
Castigliano's first theorem.
From Egs. (6.3} and {6.11).
s = {8¢}{0} {6.20)
By noting that 807 is u lunction of Lhe coordinate generalized” displacements
(g (i = 1.2, ..., m] and using the Tayior series expansion, Eq. {6.20} becomes

" -\

T = "—-‘u dq; dq; +
] ‘ iz‘l £ ‘l ,zl jgl (-JQI (’]q 4 i
or. in matrix form,
AU i
U = |dy] {'—F;} + 3 og)ISHoq) + - (6.21})

where the sumbol ¢ denotes partial differentiation and the matrix [8] is a stiffacss
matrix whose clements are delined by
nl I_:

S = ﬂt] ﬂq}

Gi=12..n (6.22)
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If only first-order variation in éq is retained in Eq. (6.21). then from Eqg. (6.20),

130110} = La) {aa—g}

3] ({Q} ~ {-;%}) ~0

Since [fg] are independent displacements,

o[-

or

or
au
(0} = {—a;} {(6.23)
For i = r, Eq. (6.23) states that
au
=5 (6.24) -

Equation {6.24} is Castigliano’s first theorem.

6.4 PRINCIPLE OF VIRTUAL FORCES AND
RELATED THEOREMS

The treatment of virtual forces in variational mechanics is analogous to that of
the virlual displacements presented in Sce. 6.3. Thus, from Fig. 6.1 it can be scen
easily that for a given small variation in virtual force 60Q,, consistent with the
static equilibrium conditions, the corresponding variations in complementary
virtual work and complementary virtval strain energy density are

AW = oW = q, 60, (625)
and
AU* = 8U* =€ do (6.26)
where
o0 = J- 80* 4V (volume integral) (6.27)
L4

il we consider the variations in 8W and 8U for the variation of all forces
. {i=12,...,n), Eqgs. (6.25) and (6.26) become

W = [8Q{q} (6.28)

—

ik it

I——
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and

oC -J LOZJ{E} av (6.29)
id

The principle of virtual forces®® {principle of virtual work) dictates that an
elastic structlural system is in a compatible state of deformation if for every
arbilrary virlual force 8Q, the complementary virtual work is equal te the com-
plementary strain energy consislent with static conditions of equilibrivm. Math-
ematically, the principle may be cxpressed as

W = §U (6.30)

or

L30Ny; = L LSZI{E} dV {6.31)

where the displacements {4] and the corresponding strains {E} are compatible
and the virteal forees {3Q) and corresponding stresses {§X} satisly the equilib-
rium condition

{9z} = [¢]{aQ} (6.32)
Substituting Faq. (6.32} into LEq. (6.31) yiclds
[5Q]tq} =j 15QI T E} dV (6.33)
v

In Fq. {6.33). if every virtual force 8Q, "(r = L, 2, ..., n), r # {] is set equal to

- zero with the ith force 3Q; given a unit value, then the equation becomes

i =I (@ L E} dV (6.34)
v
where the row malrix [} is delined by Eq. (6.32), which under the condition
_Jo forr#i _ "@_n;.
2¢, = {l forr=i :
becomes
b = |6Z;] (6.35}

;Equnlion (6.34) is referred to by Argyris and Kelsey as the unit-load-method,

The principle of stationary total complementary potential may be deduced
from fiy. (6.18) and is given by

P+ =68V=20 (6.36)
where
W =—0P= ) gq,8Q; 6.37)
i=1
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Equation (6.36) may be shown to be equivalent to

av
=0
Q;
which represents the compatibility conditions at all coordinates i,
If we consider Eq. {6.30), [rom Eq. (6.28) the complementary strain encrgy can
be expressed as

i=4L2...n {6.38}

5T = 150 }{q} ' (6.39)
Expanding Eq. {6.39) in a Taylor series yields
- - 6{7 5 MU
du=) — 80, 63, +
256,%0+3 5 £ 75,06, %0:00
or, in matrix form,
30U =|6Q] { } + 3 [0QMe}H6Q} + 6.40)

where the matrix [«] is the exibility matrix whose cocfficients are defined by
U

00; "]Q;‘

Il only first-order variation in 4@ is retained in Eq. (6.40), then from Eq. (6.39)

ij=12...,n {6.41)

L6Qtq} = L3Q] { Q}

Logl (nq} {2—3}) =0 {6.42)

Since |4Q] are independent arbitrary forces, for Eq. (6.42) to be satisfied, the
following must hold true:

or

au s
e _Ji 2
@ {3Q} 0 g
or
i
(gl = 4 6.43
[LH) {c@} { }
Fori = r, Eq. (6.43) is equivalent (o
Rl
= 6.44
%= 70 (644)

which is the second thearem of Castigliano,

2 b e s b by cor G i 1 o Sl ¢
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6.5 LINEAR ELASTIC STRUCTURAL SYSTEMS!®

For structural systems whose behavior is linearly elastic, as shown in Fig. 6.2, the
work done on the system is equal to the complementary work ; likewise, the straiu
energy stored is equal to the complementary strain encrey. As can be seen easily
from Fig. 6.2, the expressions for the work and strain energy and their counter-
partsare

41
= 1
W=Wws= 3 g Q. 0.1] 42 (6.45)
9n
or. in compact malrix form,
W= W - 4 0lig) (6:45q)
and
ra’.f.‘l—
O'Y.V
[}

- 1
U=1U =EJ fe€ex €y € € € €.]| 0, dv {6.46)
W

or, in compacl matrix form,
Uu=u =éj LEHZ} dV {6.46a)
v

where Q; (i = 1, 2, ..., n) arc Lhe external applied loads and g, (i= 1,2, ..., n) are

Alr /

Al = A7 L~av=al

i3 €

Fignre 6.2 | inear olastic beliavior,
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the corresponding nodal coordinate displacements; the matrices | K] and {£} are
the strain and stress fields, respectively.

By utilization of Hooke's law, Eq. (6.46) may be expressed in terms of stresses
or strains alone as follows:

U=0U =§J LZI[NI{E} dV (647
or Y
YU=0U= %f LEI[®I(E} a¥ (6:48)
The malrices [N] and [©] are defined by
- -
—v i symmetric
1 —y =
[N} =4 oot (6.49)
* 06 0 0 2(1+v
0 0 0 0 21+ v
| 0 o0 O 0 21 + v |
and
PF—vw ]
v 1—vw symmelry
[@l=4] v v 1-v 6.50
0 0 0 (1-22 (6.50)
0 0 o0 0 (1—2w2
0 0 0 0 0 (1 — 2v)/2

where g = E{(1 + v)(1 — 2%}
E = clastic modulus of elasticity
v = Poisson’s ratio

In structural systems which are constructed From an assemblage of bar el-
emcents, il is more convenicitt to express the strain energy in lerms of the element
internal loads and then sum the contributions of each element to the total stfain
energy of the system.

To derive the strain energy expression, consider a linear elastic bar for which,
al any point { along its length, the inlernal loads are given by M_({), T({). ¥{{),
and S((), where M, = bending moment aboul { axis, T = torque, ¥, = shear [orce
in y dircction, and § = axial force. The normal siresses induced in the bar by the
internal force systcm may be obtained from Chap. 5 and are given as

. 8()
6, .. == hormal stress duec to axial force = —— {a}
AL}
. MOy
¢..» = normal stress due 1o bending = —I% {b)
Fa E
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If we assume thal o, is the only nonzero stress, then Eq. (6.47) reduces to
1 [ o2,
U,= 3 J; E dv (©)

where U, = strain cnergy duc to normal stresses only.

Substituling Egs. {a) and (b} into Eq. (¢} ‘yic]ds

2 2
Uy = [fﬂn+Uﬂh=ifﬁiQ_dy+i.’- M) 2 4y

2 &y EAY) 2E J, E1%) ¥
=%J:_[’ :f:gﬂ)cm d(+ﬁ££%y’ dA di
but J; dA = A(l} = cross-sectional area
and J; 1?2 dA = I{{) = moment of inertia

Thercfore,

1S 1 [ M2
U"=_J. Q) 4o L[ M0
2 ) EA 2 ) EL(Q)
The strain energy due to transverse shear may be obtained by considering
Fig. 6.3. The average shear slress acling on the right face of the bar can be
expressed as

dg )

Vi FD)
Oy = = {e)
AL kAD
where A{(} is the elfective shear area, A({) is the actual bar cross-sectional area,
and k is the shear-form factor which accounts for the shear stress distribution
across the bar depth.
From Hooke's law,

= ]
Utilizing (e). Eqg. { /) becomes
.1 (@)

@ = GrA()

&, W

v ~ )L«-;
.t

b ¢ A48 3 Fl",
--—dg—-l

¥ipure 6.3

3 ;
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The work done on the differential element 4{ by the foree V() is equal to the
strain energy stored, or,

dW =dU, =

Therefore,
1 -
{L)
I
J GlAQ) @
The strain energy due to a torgue T can be shown to be given by

_1 [0 A
U,—ZL o ()

where J = torsional constant.
Thus, for a structural sysiem which is made of m structural bar elements, the
strain energy expression may be written as

SH)  MAD . YR 'rz(a:;] .
- ! 651
Z . [EA(S; e Trean Toug ) @ (6:31)

where m = total number of elements in structure
§ = axial internal load
M = internal bending moment
V = internat transverse shear
T = internal torque
AE, Ef, AG, GJ = extensional, bending, shear and torsional rigidity, respectively
A, I, J = cross-sectional area, moment of inertia, and torsional
constanl, respectively
G = shear modulus
k = shear-form lactor which accounts for distribution of shearing
stresses across bar depth (for wide flange sections, k= 1,
while for rectangular sections, k& =~ 0.833)
& = generalized coordinate axis y

6.6 CASTIGLIANO'S SECOND THEOREM IN DEFLECTION
ANALYSIS OF STRUCTURES

For Iinear clustic structural systems, the sccond theorem of Castigliano may be
writlen as

i _
= (W= (6.52)

g,

This cquation states that the displacement g at any point » on the structure and
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in any direction is cqual 1o the first partial derivative of the total strain energy
with respeet Lo a corresponding force ¢ at r and in the same direction as q. The
following cxamples iliustrate applications of this widely used theorem in the
deflection analysis of structures.

Example 6.1 Find the vertical deflection of point 3 on the structure shown in
the figure. Assume all members 10 be the same material and to have the same
crass-seclional propertics. Points 2, 3, and 4 are pinned.

f
~
DM

oy
1
W

Py

Soruron The total strain energy stored in the structure is
U = U] + Uz + U3

where Uy, U,, and Uj; are the sirain energies in members 1, 2, and 3,
respectively. By noting that members 2 and 3 are axial rod elements, their
strain encrgies may be expressed as

| L S% ~
“z—z‘L AE s
[ s
ba_zJ:, aE P52

where the coordinate x;; denotes the axis being taken along the direction
from i to j. For element 1, there exist internal loads in the form of berding,
shear, and axial londs. Therefore the strain energy expression for this element

is
1 53 .Y £ 1 {? y?
U, == I, - L& - —L dx
! 2_[, 4&“'+2£ g Yty agm

The internal loads in cach clement may be found from statics and are given
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by

8,
M; —FyXZI.
V,=F,

Making the appropriate substilutions yields

1 1 21 4 2L ] L
U=m('§J; .F}z. dxu +§J; F:dxsz-}"jj; F§JX34)

1 2L 1 L
+5E; I‘ \21 dx;] +2AGJ- ng.‘(;l

or
1L 413 L
=——+——4+—=|F?
(GAE *3E AG) ’
By using Castigliano's theorem, Eq. (6.52) yields

U (L, 30, 2,

5‘m--—=
YoOnF, 3AE+3E1+AG

If shear deformation is neglected, then the deflection becomes
11L 8¢
vl — 3 2= F P
% (3AE+ m) ’ p

Example 6.2 Find the slope and vertical deflection at the tip of the cantile-
vered beam shown in the figure, Neglect shear deformation.

21,20 AAE

Ll Ll
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SoruTtion Recall that in order to find a particular coordinate displacement
by using Castigliano’s second thcorem, there must exist a corresponding
force at the point where the displacement is sought and in the direction of the
displacement. Hence, in order to find the slope at the tip of the cantilevered
beam shown in the figure, 2 fictitious moment must be applied at ihat point,

N
J t
——
\ : e
N 2
N [ F,
¥ix) — i
Al(x} f ‘) My
; ;
L Fv

as shown. After the slope'is found, this moment is set equal to zero, which
implics its noncXistence on the original structure.
The strain energy expression for this case is
M 1t M3 1t m2
(x) i 12 g | 23 gy
]

= d_:
u 2,: B YT2) B, T2 ) E,

"From the skeich above,

M, =My =M, +F,x

Therelore

u

L
%J(M°+Fx)zdx+4EIJ-(M°+F x)? dx

3 M F 12 F
- Molpt Ty
4£I(M°L+ ' REE )
Asing Eq. {6.52) yiclds
F I?
5},=£[i - —E
&F luo=0 2EI
F 2
slope = 0 = oU =36
Mo lsgmo  4EI

Example 6.3 Find the horizontal motion of the right support of the semi-
circular arch shown in the figure (p. 154). Assume bending deformations only,
and assume EJ to be constant, :

1y
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ey

or

A 5 _P_RJ
E = 2E

Example 6.4 Find the vertical deflection at 1 and the angular twist at 2 of the
structure shown in the figure, Negleet shear deformation.

»

X
el s

N N
SorutioN In order to find the horizontal motion at 1, a fictitions horizontal } — 3 —'_* = - z
force must be applicd at thal point, as shown in the figure. The Gnding t 03
A
1(
/
/ !

Soiurion The strain encrgy stored in the struciure is

1 =" M}, P {* M, 1 [+ T3
U—ZJ; El cl‘.+20 El dx-l-zn Gde

where M, = F.z

mement can be easily calculaied and is given by

M23 = F,.I
.1 3
Mis=R(l —cos = +(R sin F, 05035 Ty =T + 7;](;_1_)+QLF
Mz =M, T; = fictitious torque applied at 2
Therefore the sirain energy is yd = AU [ My M, Ax
("F 113 EI aF,.
A} 1 [ L
U= 2( J 12 g ) ( j MR do) ] My My J T3 0Tas 4
2E1 Jg * 1 B oF, 7 ), 6r F,
t : nd
== " Re1 = cos 0; +F,Rsin0| RdO : a
¢ _ ,;(21 o U * My, dM,,
Using Castigliano’s sccond lheorem yiclds T 1, . EI 0T
eu 2 (w2 P, -[ Mys M5 J.L Ty 0733
Sx = —— = —¢ = sinf) dff TR s
S =5 b EI I:R(l cos ) z]R sindl df . B o7, Nrerir
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The partials in the above cquations may he easily calculalcd and are
given by

E’M:z:Z aMu:Y aTza:aL
aF, oF, =% oF,

%=0 .EWJ.:O ﬂi___. 1
aTr aTx aTe

Substituting in the integrals and carrying oul the integralions yicld

- ! al*T;
& = (3+3+ )1? 2"

o2 =

F,

6.7 RAYLEIGH-RITZ METHOD IN DEFLECTION
ANALYSIS OF STRUCITURES

The Raylcigh-Ritz method of oblaining displacements of conservative elastic
struclural systems is based on the principle of conservation of energy, as shown
previousty. The method assumes that a deflection shape of the structure is known
and may be taken as

N
g= }::ﬂ,. ®, (6.53)

where ¢ is the generalized coordinate displacement, f, are undetermined constant
parameters and are chosen such that the total potential in the system becomes
minimum, and ®, are a chosen sct of functions which must salisly only the
displacement boundary conditions of the structure at hand.

The undetermined constants §, are obtained by solution of a set of simul-
taneous linear algebraic equations which result when the principle of minimum
potential is applied in conjunction with the assumed dcflcction shape gived by
Eq. (6.53). The method is best explained by considering the following examples.

Example 6.5 Using the Rayleigh-Ritz. method, find the deflection of (he simple
beam shown below. Consider bending deformaltion only.

¥

Py ihfin

X — -
R EAREN
I Beflected shape
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SoruTioN The boundary conditions of the beam are
Deflection = {0} = w(L) =
dz

RBending moment = M{0) = M{L) =0 = EI ¥ (6.54)

Thercfore, if b, in Fq. (6.53) 1s taken as sin{nzx/L), where n is an integer, then it i_s
obvious that both scts of boundary conditions are satisfied. Hence, the appropni-
ale deflected shape of the beam may be taken as

N
X} = Zx B, sin n_fc__ (@)

The principle of minimum (otal potentia! states that

3 g U+n= (b}
where
‘ 1
U=3 j El @
and .
L
Pw—W=— _[ Po(x)ax) dx 1G]
0

The bending mament may be expressed in terms of w as follows:

M= EI%EH ﬁ:n&( )5,,sm?

By muking the approprizte substitutions, Egs. {¢) and (d) become, respectively,
Ei [*T X mr)z . mrx:r
= e — sin— | dx (e)
U 2 J;l [ugl (L ﬁﬂ ] L

I, N
P=—| Py ¥ B, sin o= dx )
#=1 L

0

and

Performing the integrations yields

L X (nx
U_Z-E—;nal( )ﬁ- (y)

and P —%E% (n=1,3,5..) ()
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)
From Egq. {h)
é La? 2L
— (U +P) ==t g 2L
ah, =P 2E1 P N
4P, 1? _
or Pu = wn*El @

The defllection [rom Eq. (a) becomes

. 4ar L d I, nnx )

TR e T v
The convergence of the above series iz very rapid, and in mosl cases few terms are
needed to obtain sufficient accuracy for the deflection. For example, if only the
first lerm in the series is considered, the maximum deflection will be 0.0131
Po DAED. as compared 1o the exact value of 0.0130P, L'HEL).

6.8 FINITE DIFFERENCE METHOD IN DEFLECTION
ANALYSIS OF STRUCTURES

Closcd-form solutions of differcntial equations representing the deformations of
structural systems are not always possible. Therefore, the application of sotnc
approximate numerical methods is not only permissible but, in many instances,
desiruble. The most commonly used is the method of finite differences. The
method approximates differentials by finite differences; as a result, it transforms a
set of differential equations to a sct of simultaneous algebraic equations, which
then can be solved easily.

The fundamental relations of finite differences may be established by con-
sidlering the existence of a real, continuous simple function

®=J(x) {6.55)

Figure 6.4 shows a graphical representation of the funclion at equidistant vajies
of Ax.
The first derivative of @ for smalf values of Ax at some point § may b

Z—(_f ; 2 %‘% (6.56)
where A, can be found by considering cither pointsiand i 4 1 orjand i — 1:
ADH &, — @, {6.57)
or
AP = @, — D, (6.58)

The difference ADY? represents the first forward difference approximation, while
AD™ represents the first backward difference approximation. The mean value of

N3

Eh
v E
2.

3
bt
.2

%

ol " ]

sl
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i

[P S |

bbb

1 ¥ 5 St F

[ N S | -

X o1 X; ey X . :
AR a2 Figure 6.4 One-dimensional  finile-

' g i imation.

T ac D oac b ac b Ar ! Ax Facl dilference approximation,

these two cxtremes may be expressed as
ADY + ADP

ADP = >
or
pwe Bt =P (6.59) -
P ™ 2

where ADY is referred Lo as the first central difference approximation.
By utilizing Eq. (6.5%}, Eq. (6.56) becomes

da _\"Dié—l'—q)l’-l (6.60)
idx ‘.“ 2 Ax

Equation {6.60) gives thc approximate first derivative of @ at point i in terms of
central differences. :

dsth Py — 30+ @,

dxz |~ {Ax)?

d_"jE quz'i-l_zq)ﬂl +20,_, - Dy (6.61)
dx*y 2 (Ax)?

d*d 0 — 4, + 60, — 40, + i,

s ‘ (Ax)®

ete. ) ) -, o
For a two-dimensiona! function such as shown in Fig. 6.5, the partial deriva

lives may be cbtained as in the casc of one-dimensional function:

&b T CRR VT IR ) B VT S/ W |
axl; 24Ax iz 2 Az
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i) O,y — 20, , 2 ' :
| m—d gt @iy BRN @y =204+ O, midspan and the slope at the left support (see the figure). Assume El = con-

a2l 2 &
’ i {Ax) azt |, ; (Az)? stant.

3

%_—(? anz,_,«—2¢;+1_J-+2®I_LJ._¢I._2J p

(LA 00 P 2 (Ax)s l

B0 @, — 20, i -

—_— ~ Li+2 i, f+1 +2¢i.j—l —(I)”_z

az* |, 2 (AzP? (6.62) I l 'ﬁ“{. 3 *

Fal - Lz L2

x| DA+ Bra 4D 4 6O, - ts t I
b (ax*

§:§3 O e — A O ey — 4D,y + 6D SoLuTion Tn order to use the finite difference method in structural analysis,

a2t |, & e +d 2 the Tollowing steps must be taken:

1. Formulate all the governing differential equations which describe the be-
havior of the structure.

2
o gq}'.”‘j“—(b"‘l-f'”—m”l-i'"l+¢i—l.j--|

dx dz; 4 4 Ax Az
3 ) _ 2. Express the governing differcntial equations and the equations which de-
azaz{g o Piviojat = Povrjo 1 = 20 juy +22‘I‘-'.;—1 =0y g Qi e scribe the boundary conditions in terms of finite differences.
Flis 2 (Ax)® Az 3. Obtain a set of simultaneous algebraic equations by satisfying the re- d
) i g = O =20 2D, —D sulting finite difference equations in step 2 at finite discrete points on the
ax 8p* |, ; - ) : lex G Az];_ LY it et t Qianjoy . structure. This is equivalent to idealizing the structure to a finite number
K of clements connected at discrete points.

4. Solve for Lhe finite difference methods.

Example 6.6 Using the finite di : . i :
24 ¢ diflerence method, find the vertical defiection at In this example, the governing differential equation of deformation fora
simple beam structure may be oblained from the strength of the material and

is given by

g

dd-
ity {a)

=

® f=fx. ) ‘ R
3 . El

where w = beam vertical deflection
EI = beam bending rigidity:
p = distributed normal applied load

€+ =fix, 2}

I - Py ’ The slf;pc at any poinl along the beam is
| T4 ~dw b
_Ar//f-f'}// y; // / x ; : dx )]
i 1] it 8j- 17 & ' . . o .
Z i ;1/1 : Expressing Egs. (a) and {h) in terms of finite differences yields
P-nf\i-Li Fii itlj Aita] ‘ ‘ ‘ (AT
/a' ,/-’ |4 / / / : Wiy 2 — dwgyy 6w — Aw; Wi =—“p‘( -\]' (@)
/ N V i,,r«r/ﬂ,;n ; : (ED;
/ yd /] / yd Az Lypical i
/ TS / / i and
/ / / /._7/ / : Wivg — Wiy ;
: e b
: Ax typical / i 0 -2 Ax ®)
Figure 6.5 Two-dimensional finite-difference approximation, i where i = 1.2.3,.... N are paints along the beam span.
!
é
{
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By cxamining Eq. {a), it can be concluded that only a finite number of
poinis may be satisfied if a feasible solution has to be reached. Thus, for
simplicity, divide (idealize) the beam into four equal elements only, as shown

symmetry: thercfore, by deleting one and utilizing the above condition, Eq.
{c) becomes

: y— 4wy =0
in the figure below. = b2 =4
fr—tra—+ —4wy + 3wy = T
PHLI4) | ! ' or, in mairiz lorm,
————— 5 pr 0
] ] , j o ] e S @
Lfa—s—Lfd e ja—afe 114 LI — o i 4] -4 3wl
¢ ! 2 3 4 5 6 3 128E]
Note that the accuracy increases with an increase in (he number of Solving Eq. {d) for w, and w, yields 3
clements taken. The fictitious cxtension of the beam beyond its outer sup- 0.0156PL* exact: (Mi‘d)
POIts is necessary as can be seen from Eq. (a). The displacements of points 0 2= ' El
and 6 are assumed to be equal to the negative displacements of poinls 2 and pL3 PL?
4, respeclively. For fixed supports. these displacements are equal in sign and i Wy = ———— (exact: 48 EI)
magnitude. Sce skelches (¢) and (h) below. Alsoe nole thal the concentrated ; . 427k
load P is assumed (o be distribuled uniformly over half the length of each The stope from Eq. () is
element on both sides of the point where the foad is concentrated. This is ) 624PL2 0.0625P1.2
necessary because the load function in Eq. (@) is a distributed load. 0 w2 We W2 00624PL7 (exact ———)
L 'TO2Ax Ax El £
., Example 6.7 Usc the finite difference approach to find the maximum bem:;lngt
N e moments and vertical defiection on the plate structure shown. Assume tha
f / "7E§i ; the plate is simply supported and acted on by a uniform pressure p. Also
— w, w'o w; assume that the plate is of uniform thickness t.
' _“i iJ= “'I- i
-3
{a) @) -3

Writing Eq. («) for points 2, 3, and 4 yiclds

e Wl mdma tna e

Wy — dwy 4 6w, — dwy + wg =0 7
PL* |
W — 4“'4 + 6“’3 —_ 4“‘2 + Wy e 6—4'E—I (C'} 4 I

W, —4uws + 6w, —dw, + w, =0

From boundary conditions and symmetry, Lhe following deflections are
known:

wy=ws=0 wy=wy
Also, for the deformation to be continuous over the supports,

Wg = --1r, and U (O

Note that the first and the last equations in (c) arc identical because of

pWfin?

r 7 777 7 777 727 22 77 7

~

- ¥
/

The governing diffcrential equation of a flat plate is given by?®
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‘7_43 Pw_ Fw_p .
a&x2ay Ayt p {a) -

where D = Fr3/[12(l — v’)] and v = Poisson’s ratio. The bending moments
arc given by?s

Pw w
M, = —Dl — —
* (61-.!2 +y ay?
2w Fw
. M’=—D(E;2‘+v-ax—z {h
From Fq. (6.62), Eq. (a) may be casily expressed in terms of finite differ-
ences:
+ Cwp j..z
+ E“',-. -1 + F‘V.'_j—j + E“’,‘+| j~1
Awi—z‘j'!'B“'f_l_j + W ; +BW,-|| it flwﬁz i= =P
+ Ewiy jar + Fwy o+ Ewie g jug (9]
+Cwi a2
1 -
where A = —
H
B — 41 + oY)
H
4
o
C==
H
242
E=—-—
H
da¥(l + %) d
F=e—— ’
o -
B P(Ax Ay o)?
b
e
=%

H =6+ 8 + 6o*

As in the beam cxample, for simplicity, divide the platc into four equal
parts along the x and y axes, as shown in the figure. From symmetry, only
points |, 2, 4, and 5 nced to be considered. Thus, writing Eq. (¢) for these
points yiclds

el T ey

PRy - i
P EAL Zap
e, A e TS R0 R e LA A

;
H
i
4
]
:
i
H
E
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symmelry; therefore, by deleting one and utilizing the above condition, Eq.
(¢) becomes
6W2 - 4‘W3 =0

LJ
—4w, + 3wy = 128EI
or. in maltrix form,
0
6 —41 wy _ P (d)
—4 3w,
128E}

Sotving Eq. (d} for w; and w; yields
0.0156PL3 ( 0.0143?1,3)
—_— exact:, ———/—

W2 =g El
L LR
"3 = 327El exacl:  18EI

The slope from Eq. (/) is
w, —wg Wy 0.0624PL2 0.0625PL?
) === exacl: ———————
2 Ax Ax El El

Example 6.7 Use the finite dilference approach to find the maximum bending
momenis and vertical deflection on the plate structure shown. Assume that
the plate is simply supported and acted on by a uniform prcssurc p. Also
assume that the plate is of uniform thickness ¢.

p Ihfin2

LEL VAV AT A Ll

The governing differential equation of a flat plate is given by*’
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4w Jw At
PR e U {a)
ax éx {?Jr ay D

whcrf‘, D= E12(1 — v¥)] and v = Poisson’s ratio. The bending moments
are given by?*

Pw w
M,= —D| — + v "—
! (F’w2 + ﬂyz)
Pw &w
¥ - —_— y —_—
. M= D(E.‘F-’-‘axl th
From Eq. (6.62), Eq. («} may be casity expressed in terms of finite differ-
ences:
+ CW,‘_}_Z

+EwL o Fwgoo 4 Ewiy o

AWz ;4 Bwi_(; +wyy +Bwiy kA, =P

FEW e PN e+ By ey ()
+ Cw; 4z
where A =*-l—
H
B= _ A+
H
c=%
H
2®
E=""-
H
2 2
Fe 4071 + o) ,
H <
F— P{Ax Ay a)?
DH
s
=%

H =6+ 8* + 6a*

As in the beam example, for simplicity, divide the plaie into four cqual
parts along the x and y axes, as shown in the figure. From symmetry, only
points |, 2, 4, and 3 need to be considered. Thus, writing Eq. (¢) for these
points yields
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10 —0149 ~0597 00597 } [w. ] 4,664
~0.149 S 0.0597 —0.299 Wy 2332
_loT*pLg
D
0597 00597 05 0075 Wa 232 | (@)
| 00597 0299 —0075 025 ] Lws| | 1.166 ]

Salving Fq. () yiclds

pLt
w, = 0.00559 —Di

PL*

wy = 0.00723 PL,
D

P 4

I
w, = 0.00778 --B"E

PL} PLY
W5 = Wy, = 001008 —D"- (exact: 0.01013 —D"-)

Since we have the displacements, the moments are caleulated as folows:

Wi g— 2w+ Wy W oga — 2w W
Ad:-m-‘ll = M,I-S = -_i)( +1'J ~ i l.j + v ‘J+l —.‘J WI.I l) ’

Ax? Ay*
16D [ 1
=-77 [-u—._: (we — 2ws + wy} + 03(wy — 2ws + wz)]
~¥
=00454PL2  (exact: 0.0479PL}) =
Likewise,
M, e = M, s =0966PL}  (exact: 0.0948PL})

6.9 REDUNDANT STRUCTURES AND THE
UNIT-LOAD METHOD

A redundanl (statically indcterminatc) structural system is one for which the
external reactions or internal loads cannol be completely determined from the
conditions for slatic equilibrium. A stable and statically determinate structural
system contains only enough external support reactions or structural members
for stability, and the equations ol static equilibrium are sufficient to determine
completely the reactions or the member internal loads. If one member or reaction
is removed, the struclure becomes unable and hence incapable of resisting applied
loads. 1T one member of reaction is added, the structure becomes singly re-
dundant, and the reactions and member internal loads must be obtained by




I
I
|
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considering the deformation of the structure in addition to the conditions of
static equilibrium,

Normally, a rigid coplanar structurc requires throe external reactions for
stability, and they may be calculated from the three equaltions of statics. The
number of reactions, however, is not the only criterion for stability, and it is
nccessary to examine each particular structure in order {o determine whether it is
slable, unstable, or statically indeterminate. For example, a horizontal simple
beam normally requires three reaction components. However, il the beam is
supporied on rollers at threc points along the span, the beamn will be unstable for
resisting horizontal force§ and statically indeterminate for vertical forces, Sim-
ilarly, if the three reactions of 4 simple beam act through any common point in
the plane, the moments about that point will be zero regardless of the magnitludes
of the forces, and the moment equation cannot be used (o obtain the reactions.
Such a structure, shown in Fig. 6.6, is a mechanism that is free to rotate through
a small angle about point © as an instantancous center, and 1t is unstable in
resisling any load which does not act through point 0. If a load acts through
point @, the structure is statically indeterminate.

In most structures, the number of equations of statics may he compared with
the number of redundants to determine the conditions of stability. For such
special structures as that shown in Fig. 6.6, an attempt to find the three unknown
reactions from the three equations of statics will yield equations which are not
independent (one of the equations can be derived from the others). When an
attempt to analyze a structure by the cquations of statics results in such a
condition, the structure must be cxamined for instability or redundancy. For
simple redundant structures, the unit-load method is often used, and it is demon-
strated here.

If a structure has one more member or reaction than is required for stability,
the slructure has single redundancy. In many cascs, any one of several members
or reaclions may be removed without causing instability. Then onre deflection
equation must be used in addition to the equations of statics in order 1o analyze
the structure. If a structure has several more members or reactions than are
required for stability, it has multiple redundancy. The degree of redundancy is
equal to the number of redundant members, and it is equal o the number of
deflection conditions which must be used in the analysis. /

\l’( i TFigure 6.6

N
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6.10 STRUCTURES WITH SINGLE REDUNDANCY

A truss which is composed of clastic members and which has single redundancy is
considered frst. A typical fruss of this type is shown in Fig. 6.7a. The supports
are assumed to be rigid, and the members are assumed to be unstressed before
toad P is applicd. There are four external reactions, and m‘ﬁy thrf.e would be
required for stability. The horizontal reaction component X, is conmdel:efi as the
redundant, and the deflection equation will be obtained from the condition that
the horizontal support deficclion J is zero. From Eq. (6.34) it can be shown that

SsL
=3y — 6.63)
$=Y "% (

where § represents the force in any member of the structure o.f Fig. 6.7a fmd_s
represents the force in any member of the structure due to a unit load applied in
the direclion of the desired deflection, as shown in Fig. 6.7c. N

The force § in any member is found by superimposing the loading c?ndmon-s
shown in Fig. 6.7h and 4. if the redundant force is removed,‘ the resulting stati-
cally determinate structure is shown in Fig. 6.7b, and the applicd Ioa_ds producc a
force §g in any member. If the redundant foree X' is acting alone, it produces a
force X,s in any member. as shown in Fig. 6.74d, since the s forces resull rom
a unil value of X ;. The total force S is obtained as the sum of the forces for the
two condilions:

. 85=5+X;s (6.64}
Substituting from Eq. (6.64) inte Eq. (6.63) yiclds

7 .
fotice
Shiaad h o€

l—-ém

)

"}

{f)

Iipure 6.7
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SosL 2L
d=) —— 4] o \
or.ford =0,
. SysLf(A
X; = - LSusLIAE) (6.66)

Y, s’LRAE)

where all the terms on the right side of the equation may be obtained from the
loading and geometry of the structure.

Equation (6.66) is apphcable to any elastic truss with single redundancy in
which the deflection in the direction of the redundant is zero. If the deflection in
the direction of the redundant § is a known value other than zero, this deflection
may be substituted into Eq. (6.65) and ihe value of X, determined for this
condition,

The physical significance of the terms in Eqs. (6.65) and (6.66) is discussed in
order Lo visualize the aclion of a redundant structure. if the redundant force is
removed, the structure is statically determinate, and the deflection in the direction
of the redundant due to the applied loads has the following value:

SosL
bo=L % (6.67)

This deflection is assumcd posilive in the direction of the redundant. A unit value
of the redundant deflects the struclure a distance

2L
du=X7g

(6.68)

which is also positive in the diveclion of the redundant. The value of X, required -

lo give a zero deflection is oblained by dividing the deflection resulting from the
applied loads by the deflection resulting {rom the unit load, and it will be nega-
tive with the assumed sign conventions:
5 ]
Xy= -2 (6.69)
. . : , rd

It is casier to visualize the deflection terms of Eq. (6.69) than the summation
terms of Eq. (6.66). The form of Eq. (6.69) will apply identically for rigid frame
structures with single redundaniy except d,, and &, will have different defini-.
tions. '

Example 6.8 Find the reactions and the stresses in the members of the struc-
ture of Fig. 6.8. The areas of members AB, BC, and BD are 4in?, and the
areas of members AD and DC are 3.6 in’.* Assume rigid supports and
E = 10,000 kips/in®. '

Sorution The numericul solution of Eq. (‘6.66) is displayed in Tablc 6.1, with
the notation as shown in Fig. 6.7. The horii\qntal reaclion component X, is
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40 kips

iR ]

l“— 40 in—wp=—d40 in‘*l Figure 6.8

considered the redundant. The forces So in the truss with the redundant
removed are tabulated in column 1. The lengths L of the various members
are calculated from the dimensions shown in Fig. 6.8 and are divided by the
areas and modulus of clasticity. The values of L/{AE) arc tabulated in column
2. The forces s, resalling from 2 unit value of X, applied as shown in Fig.
6.7¢, arc tabulated in column 3. Positive signs indicate tension, and negative
signs indicate compression. The summation terms of Eq. (6.66} are evaluated
as the sum of the values for the individual members tabulated in columns 4

and 3.
T SosLAAE} 05150
E 52LAAE) 002008

This value is multiplicd by the terms in column 3 to obtain values of X',s [(?rA
all members, The final forces S in the members are obtained as the algebraic
sum of lerms in columns 1 and 6 and are listed in column 7.

= 25.6 kips

X1=

Example 6.9 Find the forces in the members of the structure of Example 6.8
if the support at point C is deflected 0.25 in to the right and the tempcraturf
is decreased 40°F. Assume a temperature coefficient of expansion « = 107

inf(in - °F).

Sotimon A lemperature decrease would cause the right end of the statically
determinate truss of Fig. 6.7 to move to the left a distance (L) AT, where L

Table 6.1
i Sosls ﬁ.
Members S, kips 4B ¥ AE ’ At' X, $
inkip in infkip
{1 2 3 [CH (5 {6 ]

AR - 566 [AEMEIE 1414 —01130  0.00283 363 —-263
BC - 56.6 0.001414 1414 —0.1130 0.00283 363 -203
A0 413 ot Hs —2.233 —0,1245 000621 —571.3 115
bC 4d.8 woiMds  -2233 —(0.1245 000621 -573 —IL3
BD 400 Q000506  —-20 —-0.0400  0.00200 —51.3 -1I113
Total ~0.5150  0.02008
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Table 6.2
Member S, X5 §
AB —566 164 402
BC —56.6 164 —40.2
AD 44.8 —-259 18.9
oc 448 —-259 189
BD 400 232 16.8

]

is the distance between supports (80 in):
al (AT)=10"°x 80 x 40 = 0032 in
The support of point C is displaced an additional 0.25 in to the right;

therefore, the total displacement &, which must be gaven to the right support

of the truss by the strains in the members, is
& = 00.032 - 0.25= —0282 in
where the negative sign indicates that the deflection due to the stresses is
opposite to X ;. From Eq. (6.65),
5=Y So sL

where the summation terms are obtained in Table 6.1 and
-0.515 + 0.02008X,; = —0.282
X, =116 kips

The values of the resulting forees in the members are found in Table 6.2 as
5 = 5, + X5, where values of S, and s are the same as for Example 6.8,

X,Z—— —0.282

Example 6.10 Find the bending moment at any point of the semicircular
arch of Fig. 6.2 if the supports do not move. The value of £l is constant for
all cross sections. Neglect axial deformation. Vs

X,
1"'
i 2 Figore 6.9

—’
[

I
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SorLution The structure is symmetrical about a vertieul centerlime, and all
integrals are cvaluated for the left hall of the structure and muitiplied by 2,
The horizonial reaction X | is coasidered the redundant, and the value of M,
is“calculated for the stafically determinate structure formed by supporting
one end of the arch on frictionless rollers:

Mo——§(1~cosﬁ)

The value of m is calculated for a unit load acting in the direction of X, :
m= — Rsin §
Ulilizing Eq. (6.34) and nating that M = My + X ,m and d{ = R df, yield
222 [PRACED))(! ~ cos f{—R sin AR g _ P
252 [{—R sin BYPRAED] df T

The final bending moment is obtained by superimposing the values of M, for
the applied loads and X m for the redundant:

M=My+Xm

X, = -

—m-(l — cos ﬂ)—r-}s-smﬂ

This equation applies for 0 < ! < n/2, and the bending-momen! diagram is '
symmetrical about a vertical centerline.

Example §.11 The structure shown in Fig. 6.10a¢ consists of a round tube ina
horizontal -plane, bent at an angle of 90°. The free end supports a load of 2
kips, and it is also supported by a vertical wire. Find the tension in the wire
and make the bending-moment and torsion diagrams for the tube.

SoruTion The wire is cansidered the redundant member. The vertical deflec-
tion of the [ree end of the tube is calculated by assuming the wire to be
removed and the statically determinate tube to support the load of 2 kips.
The bending moment and tlorsion in the tube under the leading are de-
signated as Mg and Ty, respectively, and are plotted in Fig. 6.105. The
deflection resulting from bending and torsional deformation of the tube is,
from Eq. (6.34). am

e[t 3L

The values of m and m,, th bending moment and torsional moment, respect-
ively, in the statically determined structure for X, = I, are ploited in Fig.
6.10c. The integrals of the above equation become

: 6x4+8 x6 12x6x9
fla= 1000 800

= —1441in
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The negative sign indicates a deflection in the opposite direction to the unit
load, or a downward deflection.

The deflection §,,, resulting from a unit force X, in the separate wire,
consists of parts due to torsion and bending of the tube and tension in the
wire:

m? 2L

The tension s in the wirc is 1, and the values of m and m, are shown in kg

ALy f,,m
£ :

§ 26 = R00 kip-in?
1 BT - HO0U igeein?

t o

/ AR = 2 i
2 kips
{a)
Ty =X kip
Ma =18 in-kip Ta =12 in-kip
My =12 in-kip 2 kips

m=9in .

i -

T hin M= AN

T =26l in-kip

(\ )
1.565 kips

T=261in-kips

M =38 in-kip

=7 n+k
=261 in-kip 2 Kips

()]
Figoie 6.10

R EH A

o i < gl

.u,"ii»i..us -
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6.10c:

18x44+405%x6 6x6x9 1% x40 ,
81y = 1000 + "800" 4 2’;0 = 0.92 in/kip

This is how lar a I-kip tension force in the wire would move the cut ends
together. The force X, required to move the cut ends of the wire the distance
—~ 849 is found from Eq. (6.69):

Now the hending-moment and torsion diagrams for the tube calculated from
the equalions of statics and are shown in Fig, 6.104.

6.11 Structures with Multiple Redundancy

The procedure for analysis of structurcs with two or more redundants is similar
1o that used for a structure with one redundant member or reaction. The first
step is to remove the redundant members or reactions in order to obtain a
statically determinale base structure. Then the deflections of the statically deter- .
minale base structure in the directions of the redundants are calculated in termis
of the redundant forces and are equated to the known deflections, which are
usually zero. The number of known deflection conditions must be equal to the
number of redundants. For a structure with n redundants, the deflection condi-
tions yield # equations which must be soived simuitaneously for the values of the
redundants.

The truss shown in Fig. 6.11a has only three reactions and is statically
~determinate externally, but there are two more members than are required for
stability: therefore, it is statically indeterminate internally. The deflection condi-
tions which will be specified are that there are no stresses in the structure when it
is not loaded or if two members of the unloaded structure are cul, the relative
deflections 8, and &, of the cul ends will be zero. The deflections are now
expressed in terms ol the forces X, and X, in the redundant members. All
dellections are assuimned to be elastic,

The statically determinate base structure, shown in Fig. 6.116, is formed by
cutting or removing the redundant members. The applied loads produce forces S
in the members of the base structure. The forces s, in the members are produced
by a unit value of X, applicd o base structure, as shown in Fig. 6.11c. Similarly,
a force X, =1 produces forces s, in the members when applied to the base
structure, as shown in Fig, 6.11d. The final force § in any member may be
obtained by superimposing the forces due to the applied loads and the redundant
forces:

STSQ'i'.Xls; +X232 {6.70}
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The deflections &; and &; of the cut ends of the members are now equated to
- '
zero:

- Sh"L
=52=_9p

g AE
SSI ’.r
AE

Sa=2. =0

55, L
5I=ZSDY‘. Xz +X22ﬁ={)

Sos; L ) 3L
R LA

These eguations may be solved simultaneously for X; and X,. The final values
of the forces S may be obtained from Eq. {6.70).

il

B e T AL AL T PR

3"&;- eyt e shucs gl
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The preceding equations have been derived from the superposition of the
stress conditions, as stated in Eqg. (6.70). They may also be obtained from a
supcrposition of the deflection conditions. The applied loads are assumed to
produoce deflections 8, ,und d;40f the redundants. A unit value of X, produces
deflections 8,, al X, and 8,, at X,. A unit value of X, produces deflections §,,
at X and &, at X,. The total deflections in the directions of the redundants can
be ablained by superimposing the effects of the various loads:

6, =8+ X8, + X:9,5
Gy =8+ X802 + X385

in most problems, the defiections §; and &, are zero, but in some cases, known
values of support dellections of similar deformations may be substituted.

For structurc with n redundants, 2 number of deflections conditions n must
be used. These may be wrilten as

dy=dp+ Xy + X382+ -+ X,8,
Gy =8y + X0 + Xud0s + - - 4+ X, 02, {6.71)

Sa = + X1da1 + X26a2 + -+ + Xaan

or. in matr:x form,

-(SI (s“,) 611 ($|2...(s[,‘ Xi
S| ={é] + 02| 622 -0 | | X2 {6.71a)
4, o sullé, 6. 11x,

The terms in Eq. {6.71) may be defined in the following manner for truss
structures:

Sos, L S5, L
IS KN

For rigid-frame siruciures where only bending deflormation is considered, the

(6.72)

Aerms in Eq. (6.71) are defined as

5. Z J‘ ’h',.m s EJm Mo e 673

From Maxwell's ru:aproca.i theorene, 8;; = 8.
The internal loads in each member i may be obtained from the equations

Sj_- qu"' 'Yls.l +X232+"‘+X“Sn
or M= M+ Xy +Xymy + -+ X, m, (6.74)

The applications of the preceding equations are illustrated by numerical
exmmnples.
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* Example 6.12 Find the forces in the members of the truss shown in Fig. 6.12a
if P, = P, = 10 kips, h = h, and L/(AE) is the same Jor each member of the
structurc. The members are unstressed when P, = P, = 0, and stresses do
not exceed the elastic limit.

SoruTion: The numerical values of L/(4E) are nol required lor the me.:mbcrs,
since only relative values are important. Foré, =8, = - =48, =10, in Egs.
(6.71) the summation terms may be multiplied by any constant value. If any
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d, is not zero, it is nccessary to know the numerical values. Thus it is
assumed that L/(AE) is unity for all members. The calculations of the sum-
mation terms are made in Table 6.3. The forces S, in the members of the
statically determinate base structure are shown in Fig. 6.12b and tabulated in
column 1, The valucs of 5, and s, due to unit values of the redundant are
shown in Fig. 6.12c and d and are tabulated in columns 2 and 3. The terms
for the summaltions of Egs. (6.72) are obtained as the totals of columns 4,56,
7, and 8. Substituting thesc Lotals into Eq. (6.71) yields

[4.0 0.5] [xl] B [—42.42]
0.5 40| X, —70.70
By carrying oul the matrix inversion, the unknowns are obtained:
X,=—853 and X, = —16.60
Henee the internal Toad in each member is given by
§; = (S¢ — 8.535; — 16.65,)F

where j is the member number. .
The values of §; aré shown in column 9 of Table 6.3,

Example 6.13 Find the forces in the truss of Fig. 6.13a. Assume that L/{AF)}
is 001 in/kip for all members, The righl-hand support deflects 0.5 in from the
unslressed position of the lruss. Assume i = I,

SoLurtion The redundants X', and X, are chosen as shown in Fig. 6.13q,

Table 6.3
Sosy  SesL  siL o siL sslL 5,
So 5 5s AE AE  AE AE AE kips
() 2) ) {4) (5) {6) (N 8 9}
1 a 1000 0 0 a 10 o 0 —3.53 ) ,
2 0 0 1000 0 0 0 10 0 —16.60
3 -10 —8707 0 070 05 0 0 —397
4 -7 0 0 0 05 0 0 +6.03
5 14.14 1.00 0 414 0 16 0 0 +5.61
6 ~10 D77 o 707 © 05 0 o —397
7 —20 ~0707 0707 1414 1414 05 05 05 —224
8 10 0 ~0707 0 -707 0 25 0 +2L.73
9 WA 0 1000 o WEB O 0 0 +IE68 .
w0 —30 0 —-oW7 0 2121 0 05 0 —18.27
T —20 0 -0 0 1414 0 05 0 -827
12 30 0 0 0 0 0 0 0 +30.00
Total 28R N0 10 486 05
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leaving the/sﬁe statically determinate base structure as for Example 6.12.
The valucs for S, and 3, are the same as for Example 6.12, but values of 5,
must be calculated as shown in Fig. 6.13b, The terms involving §p ands, are
therefote the same as those calculated in Table 6.3, except that the value of
LAAE) is now 00! for sach member, whereas a value of 1.0 was used in
Table 6.3. For constant valves of Li(AE) for all members, Eq. (6.71) may be

written as
16.0 —31535][ %, _l: 190.0
—3.535 40 X, | -7070

Table 6.4 .
a",
% 851 . 58y 5t S, kips
- 1 @ £ 4 ()
2 0 1) 0 V] —B.00
3 0 L\ a 0 — 10,60
4 0 1] [H 0 0
5 —i414 -20 0 20 1.09
6 1.0 —-10 0 1.0 -0407
7 1.0 -0 —0.707 1.0 =377
3 -10 —10 0.707 10 6.23
9 — 1414 —40 — 1414 20 533
0 290 —60 —1414 4.0 —23.54
il 1.0 —-20 —-0.707 (K} -377
12 —20 —60 1] 40 10.14
Total —240 -~1.335 16.0

Fir o w3l

R
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Solving for X', and X, yiclds .
1
X, =993 and X, = 890
where 3; = (S, + 9.93s5; - 8.90s,}f

Table 6.4 shows the calculations for the quantities used in Eq. (6.71). It
also gives the fina results of the internal loads in each member.

Example 6.]4 Find the bending-moment diagram for the frame shown in Fig,
6.14a. The value of ET is constant, and the members are fixed against ro-
tation at the supports.

SorumioNn The structure has three redundant reactions. If the frame is cul at

10 kips 10 kips
91
61t ‘ Gt My
A4 =180
TFlFr 777
et
50
X, fel

- frd )

n } 9

— ", \(__, } o 3

.\-[‘—‘ 1—-I- 77‘

N

i L

(c) )

my

B s pRUI 111! g

M2 ft-kip{?,u/ 710 Kips

e el
Ne=1 18 It-kip 18 f-xip
(e} T3]

Figure 6.14
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the left support, the remaining structure is stable and statically determinate,
The two foree cotaponents and the couple, X 1 X3, and X,, are assumed to
be redundant reactions. The bending-moment diagram for the base structure
under the action of the applied load is shown in Fig. 6.14h. All bending
moments are plotted on the compression side of the members and are not
designated as positive or negative. The product of two bending moments is
positive if they are both plotted on the same sidc of the member. The bending
moments m,, my, and st due to unit values of the redundants are plotted in
Figs. 6.14c, d, and e. The various deflection terms are evaluated semi-
graphically, by referene Lo the moment diagrams.

Eld, = jMum, dx = 180 x 2 =360

~

Eldyg = |Mym; dx = — 180 x 9 = — 1620

~

Eldzp= |[Mgomydx= —180 x | = — {80

.
EIS;,,={midv=2x18%x4+6x9x6=468

~

Eld;; = |m3dx =405 x 6+ 54 x 9 =729

”~

Elfyy= |mddx=1x1x21=2(

«f

Eld;, =Jm,ml dx=—-6x405—18 x 9 = —405
Eld,, =-fm1m_‘rf.\' =—Ix18§x2-1x54=-9
Eibyy = .[Jrnzm;.l dx=1x405+1x 54 =945

Upon substituting in Eq. {6.71}, the following is obtained:

468.0 —405.0 —%006 X, —360,0
—4050 7290 945 X, = | 16200
—-9%00 9245 210 Xs 180.0

Inverting the matrix and solving for the unknowns yicld:

X, =50 X,;=2667 X,=180
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Now, the final bending mements in cach member can be obtained from KEq.
{6.74) and aye shown in Fig. 6.14/.

6.12 Shear Lagp

It was pointed out in Chap. 5 that many of the assumptions made in deriving the
simple beam {lexure theory arc somewhat in error. The assumptions that plane
sections remain plane after bending and that bending stresses are proportional to
the distance from the neutral axis are less accurate for semimonocoque structures
than they arc for heavy structures, because the shearing deformations in thin
webs are not always nepligible.

The cffect of shearing deformations in redistributing the bending stresses in a
box beam is commonly known as shear lag. The effect may be illustrated by
considering the cantilever box beam shown in Fig. 6.15. For simplicity, it is
assumned that the beam cross section is symmetrical about a vertical centerline
and that the toad is applied along this cenferline, so that there is no torsional
deformation. An analysis using the simple beam theory shows that all - the
stringers on the upper surface are the same for all cross sections. As a result of
these shearing stresses, an originalty plane cross section will deform to the posi-
tion indicaled by line o b’ &

Al the suppurt, however, the cross section is restrained from warping oul of
its original plane, and line ahc of Fig. 6.15 remains straight. Since the distance c¢’
is greater than the distance ad!, the stringer at ¢ resists a smaller compressive

“stress than the stringer at . Thus, the bending stress at a must be greater than

that calculated by the simple flexure theory, and the bending stress zl ¢ must be
less than indicated by the simple theory. In this case, all the cross sections at
some distance from the support warp the same amount, and thus all the stringers
have approximatcly the same hending stress and strain. The shear-lag effect is
Ereatest at the support and is something of a local effect.

Fipure 6.15 Figure .16




182 AWRCRAFT STRUCTURES

Many wing structures are spliced only at the spars, so that the stringers resist
no hending siress at the splice, The box beam shown in Fig. 6.16 is spliced in tius
manncr. so that only the corner flanges resist axial loads at the lefi-hand support.
In this case, the cross section al the support deforms as indicated by line a” 4" ¢”,
in an opposite direction to the deformation o' &' ¢ of cross sections some distance
from the supporl. The middle stringer has a final length ¢’ ¢” which is consider-
ably greater than the final Jength o «” of the corner stringer, The shear-lag effect
is greater in this beam than in the beam with the enlire cross section restrained.
The effect is also localized near the support, as the stringers al some distance
from the supporl resist bending stresses, which are approximalely as caleulated
by the simple flexure theory.

The cffect of shear lag may be desirable, since it permits a structure to resist
higher ultimate bonding moments than are caleulated from the simple {lexure
theary. The allowable bending stresses for the stringers between the spars are
smaller than the allowable stresses for the corner {langes, or spar caps. The
stringers tend to fail as columns with lengths equal to the rib spacing. The spar
caps are supported vertically by the spar web and horizcntally by the skin, and
they usually resist high compressive stresses.

When a rectangular box beam is subjected to torsion, a cross section tends to
warp from its original plane. When onc end is restrained against warping, axial
loads are induced in the flanges, and the shear flows are redistributed near the
fixed end. This also is an elfect of the shear deformation and is sometimes referred
to as a shear-lag effect.

The extent of the shear-lag cffect can be studied by considering the stresses
resulting from a few simple conditions of loading and then superimposing Lhem
with other stress conditions. The structure with two webs and three stringers,
shown in Fig. 6.17a, is assumed to extend for an indefinite length in the x
direction and to be loaded as shown. The distribution of the loads and defor-
mations of the x direction are investigated.

The force P in the cenler stringer is a function of the distance x. In a length
dx, the force changes an amount dP, and the web shearing deformation changes
an amount dy, as shown in Fig. 6.17b. From (he spanwise equilibrium of a
stringer, the foad increase dP resulls from the shearing stress f) in the web: o

dP=~2f1tdx {6.75}
The deformation 7 results from the web shearing stress:
fi=gr {6.76)
The change in the angle y results from the axial clongation of the stringers:
r P
v = —] - A w17
bdy (Af:' * 2A1E) dx &77)

The variables £, and y may be climinated from these three equalions in order to
obtain a dilferential equation for P as a function of x. Differentiating Eq. {6.75)
and substituting lrom Eq. (6.76), we have :

i
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dip dy
== A6 (6.78)
The value of dy/dx may be substituted from Eq. (6.77):
d*pP
i K2p {6.79)
where
G (1 1
H==——{—3—
oE (A + ZAI) (6.80)

Equation {6.79) may be intcgrated as follows:
P=Ce™+ Che ™™ {6.81)

where C; and C; are constants of integration. The load P approaches zero at a
large valuc of x; thusforx =, P=0and C, = 0. At the loaded end, x =0 and
P = Py or C; = Py. Therefore, Eq. (6.81) has the lollowing vaiue:

P=Pye™ {6.82)

Equation (6.82) may be diffcrentialed and equated to Eq. {6.73) in order to oblain
an expression for f: ’

" PO k - kx
L= (6.83)
The displacement & of the force Py is equal to b, or £,5/G for x =0:
. Pukb
d= e (6.84)
!
A, 1 4
Il-—--v—-bq
—wr-u_——--,r
P+ dr Pidp
T+ dy ol Par 2
. i 7y
K N X

|5

1oims

MY ——
wt

t |

Iﬂ'_ ‘l Ta T f_:‘.'.
3 Py 2

Fignre 6.17
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The structore shown in Fig 6.18 may be apalyzed in a similar manner to the
structure of Fig. 6.17. The flange forces P at any cross section are defined by

P=Pye ™ o (6.85)
_ 4G(1/b) + Ve
T OAE() + 1/

It is assumed that the ribs are closely spaced for Eq. (6.85) to be valid. The shear
flows ¢ may be similarly defined by

where K? (6.86)

T e T 687

where g, is the shear flow when x = 0. In the shear-lag portien only, the shear
flow must be the same in all four webs to satisfy the equilibrium condition for
torsional moments. The warping displacement & of each of the forces Py from the
plane of the original cross section is measured as shown in Fig, 6,185:

qof(1/0) + 1/t;  Po k(1/t + 1/1;)
2G(1/b + 1/c)  4G{1/b + 1/c)

To illustrate shear-lag calcalations, consider the box beam of Fig. 6.19a. All
the webs have thickness ¢ = 0.02 in, and the material has the propertics E = 107
ibfin? and G = 0.4E. The simple beam theory yields shear flows which are con-
stant for the length of the span, with the vaiues shown, and vaiues of the axial
stringer loads as shown. For this theory to apply, however, the cross section at
the support must warp so that the middle stringer is displaced the distance &,
from the original plane:

=

(6.88)

L b= 200 x 10
G 0.020 x 4,000,000

If the cross section at the support is restrained from warping, the center
stringer resists a compression force smalier than 40,000 b and the corner string-

ers resist compression forces larger than 20,000 b, The force Py acting as sl}own
&

5o = =0.025 in

Figure 6.18

55 e By
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10in

Figure 6.19

in Fig. 6.19b, which is required 1o displace the structure a distance &,, is calcu-
lated from Eq. (6.84). Then the system of forces shown in Fig. 6,198 is superim-
posed on those obtained by the simple flexure theory in Fig. 6.19a.

The structure of Fig. 6.196 is equivalent to that of Fig. 6.17. From Eq. (6.80)
_ 2x0020 x 04 (1 1)

10 + = ) = 0.0016

kl
22

pr k=004

Substituting 6 = 0.025 in into Eq. (6.84) and seolving for P,, we have

216G 2 x 0.020 x 4 x 10% x 0.025
P, = = - =
YT kb 0.04 x 10 10,000 Ib

From Eq. (6.82)
‘ P = 10,000e~ %-04=
and from Eq. (6.83)
£ = 10,000e~0-04




186 AIRCRAFT STRUCTURES

Table 65

x e™90% P 10000004 g = 200e~ 0%

4] | 10,000 200

5 0817 8,170 i63
10 0.670 6,720 i34
20 0450 4,500 90
40 0202 2,020 40
ik 0.019 190 4

or g — f,t = 200e~ %%~ Thus, at the support, the corner stringers cach resist
compression forces of 25,000 Ib, and the center stringer resists a compression
force of 30,000 Ib. The shear flow is zere at this cross section, which is obviously
necessary for the assumed condition of no shearing deformation.

The values of P and q at various disiances x from the fixed support are
calcutated in Table 6.5. These tabulated values must be superimposed on the
values shown in Fig 6.[9a. It is observed that the correction forces at a cross
scction 20 in from the support are less than one-half the values at the support.

The loading coundition shown in Fig. 6.19 requires larger corrections for the
eflects of shear lag than are required in the normal airplane wing, The shear loads
in an airplane wing usually are resisted al the side of the fuselage, but the cross
section at the center of the fuselage is prevented from warping, Thus the cross
section at the side of the fuselage, which has the maximum shear Rows, is permit-
led to warp and distribute the shear flows in almost the same manner as pre-
dicted by the simple flexure theory.

»

PROBLEMS

6.1 Find the displacements of paint 3 of the truss structure shown in Fig. P6.1. Assume ¢ in® for the
aren of cach member and £ = 107 {b/in®. o

Figure P61
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6.2 Find the rotation of member 4-5 of the truss structure shown in Fig. P6.2. Area =1 in? and
E = 107 Ibfin? for all members.

" 20 kips
§ 2 3 4%
Nt 6 5 Figure P6.2

‘/6.3 Find the displacements (transiation and rotation) of peints 2 and 3 of the beam structure shown
in Fig. P6.3. Assume that the beam has 2 uniform area.

Ll

L

Figure P6.3

6.4 You are-given a simply supporied beam cnder the action of a uniformly distributed load, as
shown in Fig. Pé.4. Find the midspan deflection, using Castigliano’s theorem.

P ibfin

£f = constaut

Figure P54

6.5 Soive Prob. #.4 by using the Rayleigh-Ritz method.
6.6 Solve Prob. 6.4 by using the finite differenice method.
6.7 Solve Prub. 6.4 by solving the ciassical beam differential equation EI d*wjdx* = pix).

6.8 Using the finite difference method, solve for the vertical displacements at points a, b, and ¢ and
the slapes at the left and right supports of the multispan beam shown in Fig. P6.8. EI = 105,




10 Ixfin
1o kipsl
o
AN a & 5 .
! Li—p—ti2 ! Lia——L{2 £=1001n
Figure P68
__~ 50 bfin 10 kips 10 kips

0 s
l2 3 4 ‘@,{f
]-0—100 in-—-—T-—-IOO in—J-v-—-IDO —ed=——1(9 in—’-l

Figure P6.9

rLLL S

6.9 Use the finite difference method to find the moments and shears at the locations indicuted on the
beam structure shown in Fig. P&.9.

6.10 A square plate of uniform thickness ¢ is fixed at two opposite edges and sitply supporled at the
other two opposite edges. Using the linile difference method, find the maximum displacemenis and
bending moments. Assume that the plate is under the action of 2 uniform normal pressure P. Use
Poisson's rativ v = 0.25. .

6.11 Analyze the truss of Fig. 6.8, assuming that LAAE) is constanl for all members. Analyze the
truss of Fig. 6-8 for a horizontal load of 20 kips at B, in addition to the vertical ioad shown. Assume
AE is constant for all members.

6.12 Anmalyze the truss of Fig. 6.8 assuming there is an addittonal member 4C with @ cross-section
area of 3 in. Take B'D a5 the redundant,

6.13 Repeat Prob. 6.12, assuming BC is the redundant member.

6.14 Repeat Prob. 6.12, assuming that member BD is 0. in too long because of manufacturing
tole:fnc:s. Assume no external loads on the structure.

615 Analyze the structure of Fig. 6.9 il load P is acling borizontally at the same point. Assume a
constaat value of EI.

6.16 Analyze Lhe structure of Fig. 6.9 for the loading shown, assuming the supports lo be spread
horizontally a distance of 0.5 in, Use R = 50in, £ = 2 kips, I = 1.0 in®. and E = 10,000 kips/in®.
6.17 Analyze the siructure of Fig. 6,10, assuming the 2-kip load to be applied al the point whefe the
tube is bent.

6.18 Repéul Txample 6.12, assuming ir = 40in, il = 301in, and AE = 10,000 kips for each member.
6.19 Repeat Example 6.13, if b = 40 in, b, = 30 in, and 4E = 10,000 kips for cach member, Member
12 has & length of 10 in.

6.20 Repeat Prob, 6.19 assuming member 12 is a redundant in place of the reaction X,.

6.21 Analyze the frame of Fig. 6.14a, assuming the left support to be pin-conrecied and the right
support to be fixed.

6.22 Analyze the [rame of Fig. 6.14a. assuming an additional load of 20 kips to acl down al the
center of the siruclure. b

6.23 Obtain the bending-moment dingram for the frame shown in Fig. P623 to P62S M ' =0 and
W = 4.0 kips/ft.

6.24 Obtain the bending-moment dingram for the frame shown in Tig PA23 10 P35 0 W =0,
P = 10kips,and ¢ = h = 45 [t

‘e
3
- f
3
2

Sracegaszn b T

Wl d g st

Ll
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Id .
F e S — .
s —
| HiIEEERE
] - §=0.75
6t =10 =10 6ft .
-]'WW '.T(‘(‘l"

f—s 11— Figure P6.23 (o P6.25

§.25 Obtain the bending-moment diagram for the frame shown in Fig. P623 to P625 if W=0,
P=10kips,a=3Nandb=61ML

6.26 The frame for a [uselage of rectangular cross section is shown in Fig. P6.26 to P6.28. Calcutate
the bending moments if W = 3 kips and & = 1.5 [t. Assume E is constant.

§.27 Repeal Prob. 6.26 il ET for the boltom frame member is 4 limes as large as the value of Ef for
the other members.

6.28 Repeat Prob. 6.26if 2W = 6 kipsanda =301t

w W
[rd a

§.29 Use the prindple of virtual displacements to establish the reiationship betwnel:t the ?.ppiied
forces and corresponding displacements on the beam structure shown in Fig. P6.29. This relationship

is of the form {@ = [S)q}. .

0s. 46
L AE J I ;—&

ey
Qs» LE3

L -
| Figure P6.29

l
!
| en
I
!

Y
[
o=

Figure P6.26 to P6.28

»

630 Repeat Proh. 6.29 except the beam is as shown in Fig. P6.30.

¢a:4a Q6245
th]—%T [ £l AE, L 4!1 }_Q:eu
Q5.9
2142 - 33 Figure P630

SRR
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These methods offer many advantages:

. Capability for complete automation.
ibed easily.
CHAPTER . The structure geomelry ¢an be describe : ] )
3. The real structure can be represented easily by a mathematical model com
posed of various structural elements.

SEVEN
4. Ability to treal anisotropic material,

FANITE ELEMENT STIFFNESS METHOD IN . 5. Ability to treat discontinuities, N L ond

STRUCTURAL ANALYSIS 6. Ability to implement residual stresses, prestress conditions, and thermal load-
ings.

7. Ability to treat nonlinear structural problems.

8. Ease of handling multiple load conditions.

P -

Typical
ngges ical beam elements

7.1 INTRODUCTION

In real design cases, generally structural systems are composed of a large assem-

blage of various structural elements such as beams, plates, and shells or a combi- ‘

nation of the three. Their overall geometry becomes extremely complex and N

cannot be represented by a single mathematical expression. In addition, these iy

built-up structures are intrinsically characterized as having material and structur- !

al discontinuities such as cutout, thickness variations of members, ete., as well ag

discontinuities in loading and support conditions. Given these factors, relative-to - z

the struclure geometry and discontinuities, it becomes apparent that the clagSical .
methods can no fonger be used, particularly those whose prerequisites are the .
formufation and the solution of governing differential equations. Thus, for com- ’
plex structures, the analyst has (o resort to more general methods of analysis
where the above factors place no difficulty in their application. These methods " Q
are Lhe finite element stillness method and the finite element flexibility method. _
With the advent of high-speed, large-storage-capacity digital computers, the ‘ ¥
finitc clement matrix methods have become one of the most widely used tools in :

the analysis of complex structural systems. These methods arc based on the
formulations of a simultaneous set of linear algebraic equations relating forces to
corresponding displacements (stiffness method) or displacements to correspond-
ing forces (flexibility method) at discrete, preselected points on the struciure.

Figure 7.1
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The finite element matrix methods have gained great prominence throughout
the industries owing to their unlimited applications in the solution of practical
design problems of high complexity. For further information on the finite clement
matrix methods, the reader is encouraged to consult Refs. 10, 24, and 27 to 35.

72 MATHEMATICAL MODEL OF THE STRUCTURE

The basic concept of the finite clement matrix method in structural analysis is
that the real structure can be represented by an equivalent mathematical model
which consists of a discrete number of finite structural elements, as shown in Figs.
7.1 to 7.3. The structural behavior of each of these elements may be described by
different sets of functions which normally are chosen such that continuity of
stresses and/or strains throughout the structure is ensured .

The types of elements which are commonly used in structural idealization are
the truss, beam, two-dimensional membrane, shell and plate bending, and three-
dimensional solid clements. Figores 7.4 and 7.5 illustrate schematically each el-

Figure 7.3
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ement and the typical nodal forces and corresponding displacements associated
with each type. 7

7.3 ELEMENT DISCRETIZATION

The mathematical relationships which govern the structural behavior of an el
ement are derived on the basis of an idealized element model. For cxample, once
the element shape is selected, it is discretized by placing a finite number of nodes
al various locations on the element surface, as shown in Fig. 7.6. Generally

A

) T ——

@}

=

L]

() {«f}

Figure 7.4 Structural elements. {a} Truss element; {b) beam element; (¢) membrane plate element, ()
plaie bending elements.

1
3
]
i
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speaking, the accuracy increases with an increase in nodal points considered on
the element. Likewise, the smaller the element size, the more accurate the analyti-
cal results become for a given structural system. Note that the core storage
requirement increases rapidly with an increase in the number of element nodes

and the number of clements considered in a structure.

7.4 APPLICATIONS OF FINITE ELEMENT MATRIX METHODS

The finite element matrix method has a wide range of applications in structural
analysis. its uses extend lo every engineering field, from space structures to

land-based and marine structures.
p _ /
; 7
\
. \
‘ z
$

(@)

z (2]

Figure 7.5 Structural elements. {a) Shell elements: (b) three-dimensional clemenis.
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7.5 COORDINATE SYSTEM

The coordinate system uscd here in conjunction with the finite element matrix
method is 2 set of orthogonal axes, x, y, and z, shown in Fig. 7.6a. These axes are
referred to as either the global axes or the local axes, respectively, depending on
whether the structure or the element is being treated,

In the formulation of element relationships, the element node geometry,
forces, and displacements arc referenced with respect to the local axes of the
element, However, when tclationships are being established for a structure, the

node geometry, forces, and displacements-are referenced with respect 1o the struc-
ture global axes. See Fig. 7.6b.

a0
90" | ¥

}
90°

z (@)

¥
X -
Y2
2 / 4 /
s
P
\ ! @
> [
i 3 5 \
Truss structure N
*3
x
[}
Figure 7.6 Glnbal and local axes ¢lements, (a) Coordinaie system; {h) x, » = global azes for structure:
X1, ¥y = local axes for element 1: x,. ¥; = local axes for element 2.
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7.6 TORCFS, DISPLACEMENTS, AND THEIR, SIGN
CONVYENTION . .

The term foree is used here to denote both forees 2nd moments; likewise, displace-

"ment is used to mean both translational and rotational displacements. The forces

and their corresponding displacements are assumed positive if they act in the
positive direction of their respective axes, as.shown in Fig. 7.7. The right-hand -
rule is used here to represent the vector notation of moments.

In formulating element relationships, it is convenient to adopt the concept of
generalized forces and displacements as follows:

fl fx 61 5::
fl . j.y 62 é;r
ARy 5 ) _ | e .0
f4 my 64 ex
.f:! m, 65 8, N
Ts m, O 8,

For instance, consider the clement shown in Fig. 7.8. The force and displace-

My, By

4 Fuly

i 4
/{i

U2

Figure 7.7 Positive forces and displacements.
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ment vectors are represented as

fl ix 51 6.,
.!’2 iy 62 5iy
f3 fx 63 (51-:

g
1]
!
Sn
My
It
=2
=

7.7 STIFFNESS METHOD CONCEPT

The stifTness method, or what is commonly referred to as the displacement
method, is based on the principle of superposition of displacements. Consider the
plane stress problem shown in Fig, 7.9. At every node of the solid such as i, /, and
k, there exist two possible translational displacements in the x and y directions.
Corresponding to each displacement there exists a set of induced forces at each
ndde. The method of superposition for linear structurcs states that the total force
induced at a given node in a given direction by all the possible nodal displace-
ments that the solid element may experience can be obtained by simple algebraic
summation:

So=fi+fi e +rt+ri 458

Lr=li4fi+f3+ 3 +f3+ 18 (7.2)

fo=fe+So+fo+feé+ri+se

or :

& 6
Ju=2Sm= Ll (m=1,2,.,6 (7.3

LEDY =1 -
where f,, = f% = force induced in the direction of coordinate force m as a result
of the nodal coordinate displacement » and f,, is the total m coordinale force
resulting from all possible coordinate displacements &, (n = 1, 2, ...} as shown in
Fig. 7.9,

y

&

} Fis~ By

Figure 7.8 Element force and

x displacement notation.
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P
S h o

BHHIE Lo

. 6
5
1. Z v1as 6 = possible
eoordinate nodal
displacement
i r 3 )
: Figure 7.9 Plane solid  with
three nodes showing ail ®pes-
2 sible nodal coordinate dis-
placemeats d, (n = £ 2, ..., 61

For linearly clastic structures, forces are directly propdrtional o displace-
menis: '
f=kb - (7.4)
where [ = force .
J = displacement
k = proportionality constant

By utitizing the basic relationship in Eq. (7.4), Eq. (7.3) can be written gs

o= Y kb, (1=12....,6) 3)-

n=1 .

where k,,, is referred to as a constant stifiness coefficient with dimensions of force
per unit displacement and is defined as the force induced in the direction of -
coordinate m duc to & vnit displacement applied in the direction of nodal coordi-

nate n. ) .
In matrix form, Eq. (7.5) may be rewritten as

S kyy 0y

fz kzx kzz ’ 52 :

fil =1 kay ki3 ki3  symmetric 13, 11.6)
.fd- k4l k42 k’43 k44 64-

fs ksi ksz ks3 ksa kss s

jﬁ kﬁi kSZ k63' kﬁ4 kﬁS kﬁﬁ 55

ér, in compact matrix form,
{fy=ms} .7)

where {f} and {8} are the columns of force and displacement vectors, respec-
tively, and {k} is a squarc matrix of the stiffness coefllicients.

Equation: {7.7) forms the basis of the stiffness method and establishes the
conditions of static equilibrivm,

For element relationships, Eq. (7.7) takes the form

{fub = Uhed{80} (7.8)
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where {/f,,} = internal nodal forces for member m
{8,,} = structural nodal displacements associated with nodes of member m
{k,} = stiffness matrix for mth member -

See Fig. 7.10a.
For a structural system such as shown in Fig. 7.10h, Eq. (7.7) becomes

{F} = K] {8}

where {F} = structure external applied nodal forces andfor reactions
{A) = structure nodal displacements
[K] = structure aggregate stifTness matrix

(1.9)

Equation (7.9} set the sum of the internal element forces [K}{A} equal to
generalized forces {F} acting at the nodal points of the structure. The aggregate
stiffness matrix [K] can be formed by the direct addition of _ele'mgnt stiffness
matrices [k,]; S T

¥
[K] = Z,l[k--] (7.10)
where N = total number of clements in the structure under consideration.

Since Eq. (1.9) represents the relationship between all nodal poial forces and
corresponding displacements, it may be conveniently rewritien in a matrix parti-

tioned form as
[{Fc}] [[Kw] [K.,]] [{A..}]
{Fo K] [K.] {8}

(7.11)
where {F,} = specified external nodal forces
{F,} = voknown nodal reaction forces
{A.} = unknown nodal displacements
{A,} = specified nodal displacements
Expanding Eq. (7.11) yiclds . e
{F.} = [KAL) + TK AL (7.12)
and )
{F.}=[K A} + [K HA} (7.13)

Equation (7.12) can be solved for the unknown displaccment {4,}, and then
the reactions may be determined by utilizing Eq. (7.13). Element internal forces
are determined from element relationships.

To illustrate, consider the simple truss structure shown in Fig. 7.10h. Assume
that elements | and 2 have cross-sectional areas of 4\/5 and 4 in?, respectively,
and a modulus of elasticity equal to 107 Ib/in®. As is shown later, the clement
relationships are given by
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Element I :
i ] 0.5
f] ¥ 0.5
fz.u =4 105 0
oy * 0
Sfas —0.5
Jay B —0.5
Element 2:
" is
fly
fae | =4 x 10°
fz;'
fo
_f 3y

F

i)

oo ooo o

0.5
0.5

—035
—~0.5

COoOOooas

Figure 7.16 Clement and structure relationships.
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If we carry out the matrix addition of the element stiffness matrices in Egs.
(a) and (b), the stiffness matrix relationship for the entire structure becomes

R, I os o500 | —05 —os5FT. o0
Ry, "1 05 o500 1 -05-05)]0
R, o o ool o o 0
R;, | =4 x 10° 0 0 01 E 0 -1 0 (c)

10 —05 —0500 | 05 05}]a,
| © q-0s —0501 | 05 15] a4,

‘Equation (c) may be expanded as

10 05 05T As, .
[0] =4 105[0.5 1-5][%] @

R, - [-05 -o0s

R, | s —0s —os| [as,

R | =411 0 0 | |4, @
R,, 0 -1 a

.From Eq. (d), after the feduced aggregate stiffness matrix is inverted, the
~displ t
displacements e Ay, = 0075 in
Ay, =0.025 in

Having determined the unknown displacements, we can calculate the reac-
tions from Eq. (e): .
' R;,=—MWkips R,;,=0

R, = —10kips  R,,= 10 kips

¥
From Egs. {a) and (b), the internal loads acting on each clement are

Element 1 Element 2 -
fio= —10 kips J2.=0 v
fi, = —10kips f2, =10 kips
fu=10kips " fr=0
fa, =10 kips Ji, = —10 kips

7.8 FORMULATION PROCEDURES FOR ELEMENT
STRUCTURAL RELATIONSHIPS

The clcment stiffness matrix relationship can be derived by several diﬁ‘en?nt ap-
proaches, all of which will result in a set of algebraic simultaneous equations of
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the form
{f} =[&}3} (7.14)
where {f} represents the clement forces, [K] represents the clement stiffncss
matrix, and {6} represents the element displacements,

Depending on the type of clement being considered, one of three methods -
may be conveniently sclected to establish the basic clement relationship for finite-
element analysis: dircct method, method of weighted residuals, and energy me-
thods in conjunction with variational principles. Although to cover theory devel-
opment is not the intent of this text, a brief description of the first and third
methods is presented.

1

Direct Method

The direct method of finite-element formulations consists of the following steps:

1. A set of functions q is chosen to define the element displacements in terms of
its nodal displacements.

2. Element slrains are expressed in terms of the chosen displacement functions in
accordance with the basic strain-displacement relationships of the element.

3. Element stresses are expressed in terms of the displacement functions in ac-
cordance with the basic strain-stress relationships of the element.

4. Element node forces are cxpressed in terms of element stresses in accordance
with the statical equivalence of element boundary stresses. :

To iflustrate, consider the simple element shown in Fig. 7.11.

The displacement of an axial rod element is described by two nodal dis-
placements &, &nd &, as shown in Fig. 7.11. The displacement function g(x)
may be chosen as a polynomial which must satisfy the nodal boundary condi-
tions

,(0) = 6, and L) = &;. (a)
Hence, the polynomial must be a lincar function of x; that is,
g{x) = ¢ + €ay @
<
or g.=[1 x][ t] (¢
€2
5.‘.‘- rlx - 5k‘-&x

of]

Y
b
-

a.Y
=l =308

Ty

Figure 7.11 Axial rod element.
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The displacement function g,’in Fg. {¢) can be cxpressed in terms of the
“element nodal displacements by using Eq. (a):

PSR X xfom
o q"‘[% A @

or C o g, = [N; Nj][g)i:] o - (g

"where N; = 1 — x/L and N; = x/L are referred to as shape functions, which play
a major role in finiie-element analysis.
A generalization of Eq. (¢} may be written as follows:

2

{ad=[N: N;--- N9 (713
or “{g} = IN}{3} (7.15a)
where ' 8, )
T ’ {6;} = 6'-, (7.16}
The linear strain-displacement relationship for an axial rod element Is given

by S
€ =22 )

ox

By utilizing Eq. (d), Eq. (f) becomes

‘ ' 1 i ] ix
€= [*z z][a,,] @

A generalization of Eq. (g) may be written as

{E} = [G]{s} (1.17)
The matrix [G] can be calculated casily once the shape function matrix [N]
is determined. . ;o
For isotropic material, the strain-stress relationship for uniaxial stfess is
given by
s
£, = £
or ’ o, = Ee, {n)
For a two-dimensional state of stress, Eq. (h) becomes
{Z} = [DHE} {7.18)
where Z}=lo, o, 1,17 @19

{E}=[.Ex ey WLyJT

by mu e oo
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and [D] is the elasticity matrix. The superscript T in Eq. (7.19) denotes the
transpose,

In order to express the stress in terms of the nodal coordinate displacements,
Eq. (y} is substituted into Eq. (h):

1 18, _
=t -7 ]3] 0

The general form of Eq. {i) may be written as

{Z} = [PI[G1{4} = [S1{é} {7.20)
where [8] is the stress malrix.
As a final step, the stresses are transformed to equivalent nodal forces. This is
done by simply multiplying the stress by the cross-sectional area 4 of the rod:

] -4
[ﬁ] = [ A]["*] ()

i} =[H1{Z} (7.21)

where [11] is a malrix which relates boundary stresses to equivalent clement
nodal forces.
Utilizing Eq. (¢) in Eq. {} yields the (inal result:

(-2 1] 2
In general, Eq. (k) may be written as
{f} = [H][DI[G}{s}
or {5} =k{e} (1.22)
and {k} = [HILDI[G] (7.23)

where {k} = clement stiffness matrix
[ H7 = maltrix relating nodal forces to element boundary stresses
(2] = matrix relating stresses to strains
[*] = matrix relating strains to nodal displacements

or, in general,

Energy Methods

The cnergy methods in finite-clement formulations are based on (1} work and
strain conergy and on {2) complementary work and complementary sirain energy
in conjunction with calculus of variation. In the first case, the methods yield the
element stiflness matrix, while in the second the methods yield the element flexi-
bility matrix. 1n this section, only clement stiffness matrix formulation is pre-
sented.

From the principle of virtual work and virtual strain energy, the finite-
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element formulation proceeds as follows. The element basic relationships are

T ‘ {a} = [NV3{5} (7.15a)
{3} = [D}E} (7.18) -
‘ {E} = [G]{5} (7.17)
The strain energy and work expressions are
. U= J LEJE} 2V {7.24)
and® w = L1f} (7.25)
From the principle of virtual displacements,
U = J LSEN{Z} dV (7.26)
id
oW = a3 {/} (7.27)
{8E} = [G]{96} (7.28)

where 3 denotes the first variation.
By utilizing Eqs. {7.17), (7.18), and (7.28), Eq. (7.26) becomes

U = j L3S LG IDI[G]{8} 4V (7.29)
Vv
Equating Lhe virtual work to the virtual strain energy yields
LéJ(J [GI'[D1[GI{s} aV — {/N =0 (7.30)
¥
or
[k1{e} = {/} (7.31)
where [k] is the stifTness matrix and is given by
{k] = | [G]"[PI[G] ¢V _4132)
Asan illustration, consider the axial rod element in Fig, (7.11), where
T—1 1
[G]= [—L— Z] (‘f)
~1
To | =
6r=|
1
= b
- ®)

[P} =1LE] (c)
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Therefore, the stillress n&atrix from Eq.(7.32)is

—1 ot 3
2 L
(k] :_[ [E] dv

v L 1

L I
E -E
vl g B

= J; L E E dA4 dx

 r

_AED 1 -1
T L -1 1

which, again, is the same resualt as in previous treatments,

79 ELEMENT SHAPE FUNCTIONS

We showed that the displacement shape functions play an important role in the
formuiation of finite-element retationships. Although stress or strain shape func-
lions may be sclected, in this section we discuss only Lhose functions that arc
based on the displacement field.

The eriteria for sclecting displacement shape functions ave:

1. The continuity of the chosen sct of functions must prevail throughout the
element design.

2. Free-strain conditions throughout the element must exist under rigid-body
molion.

3. Constant strain or stress components must be present under the conditions of
the chasen set of functions.

There are {wo means of arriving at shape functions: polynomial scries and direct
formulation through the interpolation techaique.

Polynomial Methods:

Any function ® can be represenled by a polynomial series as [ollows:
N
&= 3% P,=|P.lc} (7.33)
a=0
where the polynomial P, of any order n may be written in two dimensions as

N
Po= Y Cuxmy (7.34)
i=0
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The coefficients C,; are generalized parameters and are chosen such that their
total number is at least equal to the total number of assumed nodal coordinate
displacements of the element. For example, in case of the axial rod element, only
two nodal coordinate displacements are possible. Therefore, for this case, the
displacement function must be taken as

qx) = Py + Py = Cog + Crox + &1y

Cio

where C, is set equal to zero because g, cannot be a function of y.
Equation (7.33) may be rewritten in terms of general displacement functions:

{a} = [P}c} (7.35)

The column matrix {c} must be determined so that Eq. {7.35) is satisfied for all
nodal displacements {3}; thatis

T {0} = [} (1.36)

and {c} =[1]~'{o} {137

where {6} =nodal coordinate displacernents
[1] =matrix whose coefficients are constant functions of node coordinates

{c}=sought coefficients of assumed polynomial
Hence Eq. {7.35) becomes
{q} = [PITAT*{3} = [N1{5} (7.38)

where [N] is the matrix of the shape function.

To further illustrate the selection of d:splaocmem function polynomials, con-
sider a plane stress triangular element as shown in Fig. 7.12 Consider that the
element has only three nodal points, in which case the total number of nodal
coordinate displacements is 6. The displacements at any point on the element are

= Cgp + Crox=[1 x][c""] @

f(xj- y,r)

Hxn v

- gt
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described by g.(x, ¥} and gq{x, y), which are the displacements in the x and ¥
directions, respectively. Since there are six nodal displacements, the polynomials
for q, and 4, must be chosen so that the total number of coclfficient parameters
Ciydoes nol exceed three constants in each case; ie.,

D=Co+Cpx+Cpyy
Then g, and g, will be of the form
' g.=C +Cax+ Cay
=C,+Csx+ Cyy

The shape funclions are determined in accordance with Egs. (7.37) and (7.38).

710 ELEMENT STIFFNESS MATRICES

Thﬁ: stiﬂ‘ne§s matrix for the gencral beam element shown in Fig. 7.13 can be
derived easily by any of the related energy methods discussed previously. One is
Castigliano's sccond theorem: -

*

522U

af;

= complementary strain cnergy

= strain ¢nergy lor linear elastic structures
d; = nodal coordinate displacements

J; = corresponding nodal coordinate forces

Tfs-fis 1"“-3"

4[ f2.3; 1_{,,85
14-54 i 6y f1.51 S 8o
—_——

& - 0

/ AL /
/ 1.8, fa-8q
Ja- &g /12-51

(7.39)

where U*

4

Figure 7.13 Generad beam element.
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For the beam shown, the strait energy is given by

1 [e/mM2 M2 M2 52 V")
v=-} (T2 B M o d 7.40
2L (El,+EI,,+GJ+AE+A¢G * (7:40)

where M, §, and V are the internal moments, axial force, and transverse shear
force, respectively. These internal loads may be expressed in terms of nodal forces
at either end of the beam element:

M=g(f} S=gh V=g
Thus
U==G(f)

The stifness coefficients are obtained by systematically giving each nodal
coordinate displacement, one at a time, a unit valve, fixing all others, and then
calculating the induced reactions. Thus, if &, is set equal to 1 and all other &s are
set equal to 0, the resulting reactions are the stiffness coeflicients k(i = |,
2,....,12} The coefficient k;, is defined as the force induced in the coordinate
direction i due to a unit displacement applied in coordinalte 1. By performing this
operation for every possible displacement, the beam stiffness matrix can be ob-
tained:

A %
fy 0k, By
fie o 0 &, O
M, 0 o g 8,
M, B 0 -k 0 K, a,
M, 0k, 0 0o 0 Ky, 0,
1 -5, ¢ o o o 0o |k 5,
A 0 —k, 0 0 0 —ky, O & &,
Is 0 0 —k, 0 k, 08 0 0k, 3,
M, o o 0 -k O © G 0o © ky 6,
M, ¢ 0 -k, 0 &, 0 0 & ky, U Kk, 8,

| M, | | 0k, 0 0 0k 0 -k, O e ke 1] U]

(741}

Note-that from Maxwell’s reciprocal theorem'? for linear elastic structures, kyy =
k(i # /). This can be easily proved by considering
&?U U
éq 6?} dq; dg;

where the order of differentiation with respect to q; and g; is immaterial. In
compact form Eq. 7.41 becomes

{7} =168} (741a)

vied

e e s
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where
Ky =— Kpe="2 k=2
1 i, Zz_b 3:—b
a 1 a;Ll—a
o= ko oo — _ b 3
4z b 5 a5 k&z b
b=y, — a3 a =L = &
Tt T 'T4E T ZEnL
= L L L I L
3T3EL T 4,6 “TEL BTG

The k;, expressions can bc obtained by replacing the subscripts z and y in the
above definitions. The bars which appear in Eq. (7.41a) denote relationship in
local axes of the element.

Equation (7.41) is valid only when nonlinearities, material and/or geometric,
do not cxist. When large displacements are encountered, the structure behavior is
referred to as geometrically nonlinear behavior, In this case, the force equilibrium
equations must be formulated while the structure is in its deformed position. The
stiflness matrix for the. geometrically nonlinear beam element behavior can be
derived by any of the previously presented methods in conjunction with the
noalinear strain-disptacement refationships.

7.11 FROM ELEMENT TO SYSTEM FORMULATIONS

Element formulations gencrally are carried out in reference to an element local
set of coordinate axes ¥, f.and Z.The stilfness matrix relation for such clements is

{7} =[k1{8} (7.42)

where the overbar denoles reference to the local axes.

Struclural systems arc defined as an assemblage of structural elements which
may be randomly oriented in space. In order to formulate the structural system
foree-displacemicnt equations, all element relationships such as Eq. (7.42) must be
transformed to a common set of structure global axes x, y. and z.

From vector mathematics it can be shown that any set of three orthogonal
axes §, J, and I can be expressed in {erims of another set of orthogonal axes x, y,
and z by
'1':?1: }'.'ty J‘fz x
‘f.,-,: N y {7.43)

Are Ay Ape z

el e
It

[ T]

Ix
where 2, = cosine of angle between x and X axes, etc. See Fig. 7.14.
In gencral, Eq. (7.43) states that any st of three vectors {T'} in local coordi-



e ¥,7,F = local axes
z x, ), 7 = global axes

[

Figore 7.14 Locat and global axes.

nates can be transformed 1o a vector {I'} in global coordinates by
{} =0} (7.44)

where [4] is the 3 x 3 transformation matrix given in Eq. (7.43).
In accordance with Eq. (7.44), the following translormations may be accom-
plished on any force and displacement vectors { '} and {3}

{F}=[Tf} aud {§}=[T]3} (7.45)

where [T] is a matrix whose diagonal elements are the submatrices [1]. The
number-of elements in the diagonal submatrices depends on the order of the
matrix vectors { f'} and {5}. ’ ‘

By ulilizing Eq. {7.45), Eq. (7.42) becomes

(T3S} =[RS}

or {f} =[T17'[KILTI{8} = [K1{s3} (7.46)
where [£] is referred to as the element global stiffness matrix and is defined by
[k] = [T1 'K T = (T]IKILT] (747)

s
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where e inverse of | T7] is its transpose:
[t =[71"

This property holds true for any orthogonal square matrix.
Once the element glabal stilincss matrix has been found, the global structure
stiffness matrix can be constructed easily by simple algebraic summation:

SEPH S (748)

where m is the total number of clements which make up the structure. Note that
in order to carry out lhe summation in Eq. (7.48), the order of [k;] must be made
compatible with the order of the anticipated structure matrix [K]. This can be
done by filling zero arrays corresponding to ali nodal forces and corresponding
displacements not connected with the nodes which appear on the element being
considered.

To illustrate, consider 1he structure shown in Fig. 7.15. For each element, the
stiffness matrix equation is formulated in accordance with Eq. (7.46). Each el-
ement is identilied by its connectivity. For example, element 1 has connectivities
1. 3, and 4; clement 2 has the connectivities 1 and 2; etc. Each element stiflness
matrix [k] is placed in the appropriate location of the global matrix in accord-

Element = @ @

123435 1 23435
I'. *le l.-
2 2]e|=
[I\']=3o ML) 4 3
4 |e 4
5 5
® -
I 23473 12343
i 13300
2 afein|e alajmlela]s
+ 3 sleis]e = HRRILILIL
4 wlnjele 4|ojei®{®| "
s ofewfale 5 wie|s]|n
1 ] ]
2 =] <}
{FJ 2 + + n :
4 L] K
5 L] (=]

Figare 7.15 Canstruction of structure relationship rom clement relations.
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ance with its connectivity. Each dot may represent a single coefficient or a sub-
mairix of coefficients if more than one degree of freedom is being considered at
the node. Once this is done for each element, a simple algebraic summation is
performed which yields the structure stiffness matrix equation. Applying the
boundary conditions wili result in a reduced aggregate structure stiffness matrix
equation which can be sotved for the unknown displacements. Back substitution
of these displacements into each element equation will yield element inlernal

flx, .o i

W T o AN I Wl m«m@mma:w'i

i(x, 1)

forces.
al:
. X
- X
7.12 GLOBAL STIFFNESS MATRICES FOR : W) )
SPECIAL BEAM ELEMENTS
The space truss is shown in Fig. 7.16a. Its global stiffness matrix is .
Gix &y iy Jje d; 92 >
&
R%l . Ei ;
RiR R1; - symmetrc ‘
AE RiiRys RiaRys Ris P
[k]ﬂ:'r "Rix —RyRy; Ry Rys | Rix p (7.49) .
—RRyy | =Rz =R Ria| RuRis Rj: >
—RyRyz | —R1z2Rp,s Ris RiiRys | RiaRy; f_'f - y
{) '
Xy — X
h =D
where Rll L
|}, —— 4
Rz = lJT}']'
L . 5,.'.-
;T & 6,
R] 3= 4 z 5, \{/ L
L ) BRI
L= [0 — 50 + 05— 3 + (5 — 21 (7:49a) %—;
5 v
A = cross-sectional area of member & '
3.
- E = Young’s modulus e
The plane truss is shown in Fig. 7.165. Its global stiffness matrix is ’ 9,
5:‘: 5:’;- 61’.\: ‘51)‘ . 8,
RZ, symmetric y
AE 2 x
(klp = L Ry Ri {1.50)
—R}, —RRy; | RY, ' @
2 1
—R1Ri2 | —R1z Ry Ry Riy Figure 7.16 Bewsn elements. (o} Space truss element: {0} plane truss element: (c) plane frame element;
() speee frame clement.
215




216 AIRCRAFT STRUCTURES

. The plane frame is shown in Fig. 7.16c. Its global stiffness matrix is

S Oy B O 8y O
a symmetric
by d

: K= c| e| f
b —a|—-b|—¢ a

Zb|—d| —e b d

c| el gi=-cl—elf

where @ = R},2; + R3.04, b=R,Riza; + Ry Ryz04;

¢ = R21u2= d= Rizﬂl + Riz L7
¢ = R0z, f=us g =g
1 — Vi ) X;— X
R =— lL}:!" Ry =J_L—
x;— X; Yi— %
Ry = 'JT‘ R_lz = L
L=[{x;— x+ (- ¥y
AE GEI 4E],
oy ="E- U3z = 2 a3==_L_
12E1, 2EI.
=T feTTL

(7.51)

I. = cross-sectional moment of inertia

about z axis

Example 7.} Use the finite element stiffness method to analyze the }tructurcs

shown in Fig. 7.17.

Case 1 Plane truss problem The joints and their geometries are:

x coordinate,  coordinate,

Joint no. in in

1 i 0
2 100 0
3 100 100
4 ] 100
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S S (oo
4 b 2 @ 3

i00 in

501t

10 luf @ @

L KT

I 100 in l

l 10 Kips
{) * ¥
1 1 X 4

foaany e

I-—ZUft——l

)

Figure 7.17 Plane Lruss and frame structures.

The following information is given about each member:

Member no.

{and ils nodes) A, in? E, bfin? L,in

1 -y 2 s 100
223 . 2 107 100

3 (2-4) 22 100 /2

The rotation matrix cocefficients for member 1

X, —x, 100
Ry="2""1lo— o
H L 100~
and R,2=}2;yl=0

For member 2, the vertical member with y; — y, = 100 —0 > 0,

R!l = (J and REZ =1
For member 3,

XNy — X3
Ry === 2 =0 —100/100/2 = — /12

R, =“—z¥=(1oo—0)/1ooﬁ= J12
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The known boundary conditions are: -,} @ o
Displacements: ' B4 =04, =0, =0,=0 z, 1] 0 symmetric
External forces: Foo=100 Fp = —[0¢ ) g g 0
. . E 0
The global stiffness matrices [Eq. (7.50)] are 0 0 0 0o ¢ + .
i 0 0 0 -1 0 1
t 0 -1 © b 0 0 0 0 0 0 o
; N 0 0 0 .
Member 10 2 % 10° (l] g ? g {a) 0 0 0o o]
o 0 0 : ON
0 —
0 0 symmetric
0 0 0.5
o 0
g (1] 0 —t 0 0 -05 05 -
Afember 2: 2 x 10° {b) 1 0 0 0 0 0
9 00 0 o 0 0 0 0 0
0 -1 0 1 ) ¢ 0 -05 05 0 0 0.3 .
1 Lo o 05 —05 0 —05 05|
0.5 —-05 -05 05 :
-05 05 0.5 —05 3 r -
fember 3: 1’ g :
Member 3 2 % 10 _05 05 05 —0.5 () ; 0 0 symmeiric
05 —-03 05 05 : -1 0 1.5
: 0 0 -5 1.5
k] =
Lkl a8 0©o 0 0 0 (d)
Since there are four joints on (he structurc with two degrees of freedom 0 6 0 -1 0 1
al each joint, the order of the structure stiffness matrix is 8 x 8 Expanding g 0 =03 05 g o0 0.5
cach member matrix 1o & x 8 by adding rows and corresponding columns of , . 0 0 05 —05 0 —05 0.5 ]
zeros associated with joints not appearing in the member itself, thus making 3
all matrices compatible in size with the structure matrix, and then uvsing ' Hence the matrix equation for the structure becomes
matrix addition yield 3 ~ L. .
' }R;lx i |l symmetric i 0 1
3 ‘i" ] 1 0 0 0
[k]ﬂxa= Z[kasrﬂ - -y-h N l ..................... [N
= i()k -1 0 | 15 3,
—10 - *
: 2 B T IR T o
@ o symmetric | 2x 105 | Ry, | = o ol o 0 0 0
0 0 : Rs, o ol o -1 0o 1 0
—1 0 1 Ryy 0 0]-05 05 0 0 05 )
0000 + | Ry | 0 0] 65 -05 0 ©0 -—-05 05]jf O |
60 00 00
000000 (e)
| 00 0 0 0 0 0] The unknowns are 8;, . §;,, and all the reactions R, , Ry, etc. Thus, extract-
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ing the third and fourth equations from the above yields

1 1% [ 1s —o.s}[azx]
2x 0% 10t} |05  15] 4,

Inverting the matrix gives
[au] _ 1 [0.75 0.25}[ 10*]_[ 0.025] "
Sl 2% 1071025 075 —10¢] | —025

The reactions from Eq_{v) arc as follows {scc the sketch below):

R, = —(2 x 10%(3,) = —5* R, =0
Ryy=0 Ry = st
thx =35 R4Y =5
T 5 kips
5 Kips
e 3
707 ki Skips 1)
07 kips
(7t @ -’

5 kips:h @ 10 kips
TR 5ki11<l7'111

10 kips

The internal loads are found from the element refationships:

Jix t 0 -1 0 0 5
fly _ 5 0 G 0 0 _ 0
S | SR I R 0025 | s
Iz ¢t 0 0o o0]i-0025 0
S"{iim
§ kips S hips I
v [ ® 2 —
O
Jax 0 6 0o o 0.025 0
fi | R ~0.025 | _ —s 2
fie | 2x10 0 9 0 o 0 0 l
g k
Sy 0 -1 0 0 5 5 i
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Sos 05 —~05 ~05 05 0.025 5
fay ;] —05 05 05 —051]—0025 — 5k
=2x 10 =
Jax -05 05 05 —05 0 —5k
fay 05 —05 —-05 G5 0 5*
5 kips
N
3 kips

N

Case 2 Tlane frame structure
The joints and their geometrics are as follows:

x covrdinate, y coordinate,
Joint no. in in
i 0 0
2 ¢ 600
3 240 500
4 240 0

The following information is given for cach member:

Member no,

{and its nodes) A, in? i, in* E, thfin® L.in

I (1= 20 360 30x 105 600
2 (23 20 360 0% 10* 240
334 20 160 30x 105 600

The rolation matrix coefficients are as follows:
Mewher I
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Member 2:
R“=’C3—-‘C2 i R,2=‘V3 ¥a 0
L
Rz: =0 Ry, =1
Muemher 3:
R”=f4 \'1=n Ru:)’.;-'_l';:A]
L
R, =T Ry;; =0

Example 7.2 Determine the displacemenis and internal louds for the
truss structure shown in the figure. Assume E=107 1b/in? for both rods;
Atrod 1} = 4./2 in? and A(rod 2} = 4 in.

—= 10000 b

-

100 in

Sotution By choosing the system axes as shown, from Eq. (7.49a) the trans-
formation coelficienls R;; lor each element iray be obtained:

. X; — X, |
Element |: R, = 3 = —=
" Hxs — x4 O — 32172 ﬁ
R = Y2 o Xy _ b
B e R (Tt 27 2 EEN
Flement 2: “ry—ya<0 !
) SRy =1 Riy=-1
From Eq. {7.50}) the element relationships are the following
AE = ~
Element 1 %y = % = 4./2 % 107100,/2 = 4 x 10°
A 0.5 i
T 05 05 &
] —-0.5 =05 035 3
FE ) =4%x10°] —-05 —-05 05 05 d4 (2}
F3 { 0 o 0 8 3
12 0 6 0 o 0 0]l

;
|
|
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A4,E 4 x 10
: B 105
Element 2: oy i 100 X

-3 0 %

3 0 0 symmetric &
F3 0 0 0 3

5l =4x 1051 D 0 0 1.0 o (h)
3 0 9] L 0 Q ay i
F3 0 0 60 -10 0 1.0 55

Currving out the matrix addition of the elemnent stilfness matrices in Egs.
{en) and {f), the stilTness matrix relationship for the entire structure becomes

Rl.\: G.5 0
R,, 65 05 symmetric 0
1ot —05 —0.5 05 &3
0 ]=4x10°}-05 —0505 15 33 (c)
Rx 0 G o 0 0 0
R, 0 ¢ 0 -~100 10}10

Extracting the two middle equations from (¢} yieids

10% 12 108 2 x1¢? 5§:| @
0 L2x10° 6x10% &% o
Solving lor the unknown displacements pives
&3 2x10° 2x 107 10* ©
8 |2x10° 6x10°] 0
where the inverse of the matrix in (e) is

[ 075 —025
10 [wo.zs 0.25

Therclore the displacements arc
33 =0075in
ot = —0025 in

Displucements known. the external reactions on the struclure and the ele-
ment internal loads may be found from Eqs. (¢}, {2), and (F). respectively:

Ry, —2x 108 —2x10° 0.075] ~ [410*] "
R, T L-2x10° —2x10°}} ~0025} |-10°

R..]_[o 0 0.075]_[0]]b
Ry, L0 -4x10°f —0025] {10
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R

T 0.5 0 —-10* i Beam 2:
F; 0.5 0.5 symmelric 0 —10* { Ryy=0 Ry,=—1
Fil=4x10%-05 —05 05 0075 1=] 10% |ib 1 12
FE ] —05 —-05 05 05 -0025 . 1ot Y Ry =1 Rz, =0
e i From Eq. {7.51) the clement stiffness matrix relationships are as follows:
£ 0 0.075 0 Beam 1.
¥y 0 1 symmetric —0.25 - 104 “
I (=4x 100 o0 0 0 = ! 1 0.2003 . o1
F% | 0 —1i 0 1 0 : F 0.1997 02003 symmetric &
< . a M3 —0.03 0.03 4 &
free- ket : f | - !
A free-body sketch of the internal loads is shown below, s | — o5 | —02003 —0.1997 003 0.2003 5 (a)
F3 —0.1997 —0.2003 —0.03 0.1997 02003 a4
104 1h 104 ih i M3 ~0.03 0.03 2 co3 003 4 i
i04ih Beam 2:
——
3 0.0012 - . &3
F_s 0 0.4 Symmctrlc 5;
} M3 006 0 4 o
i Fi { =105 —00012 0 —006 00012 &3 ®
100 Fi 4 0 —04 O 0 0.4 & -
¢ : . M3 i 0.06 0 2 -—-006 0 4 &
o “’1 TIU" . . As in Example 7.1, the averall stifiness matrix relationship for the whole
g structure may be casily constructed from Egs. {a) and (b):
Example 7.2 Assume that the structure of Example 7.1 has rigid joints as ‘ : MR ] 0200 | symmetec | T ]
shown in the ligure below. Delermine Lhe displacements and internal loads, R 0.0997 02003 l [ o
Neglect shear deformaltion. I{beam 1) = 10\/5 in*, I{beam 2) = 10 in* _F"."i o 0-_5'3‘ o .‘10.3 o .4{3 ................... 0
10, 02003 —03W3 —003 | 02015 ! & {]
2 0 =10% § OI997  —02003 -0036, 00997 06003 & te
> 10.000 16 D A e o3 20 | ooss —oo3  so | #
Ry o o0 omnr omor2 Savs; neoz || e
R} o 0 ot —04 0 0 0.4 e
® | a3 K 0 o | oos 0 20 |—006 o 4 | o
- where FM denotes fixed end moment reactions,
= Extracting from (c) the equations corresponding to the nonzero displace-

S |

]~——imin—-| _

to? 02015 symmetric 53

. = 10%| 0. 1 &5 d

.Zm.U‘r}(aN The transformation coefficients R;; are obtlained from Eq. (7.51): ,? L 8 10 g.égw _3‘3203 s eg {d)
eam 1 !

ments yields

Carrying oul matrix inversion produces the unknown displacemenis:

? 2 3 [ 7415 —2468 —00371 ][ 10* 007415 in
1 ! 85 { =107%| —2468  2.488 001859 ] 0 | =} —0.02468 in
Ru=-75 Ffa=75 ] | —0.0371 001859 01249 || © —0.000371 rad z
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Note that for large structural systems, the matrix order becomes quite
large and the conventional matrix inversion approach is avoided. Other
means of solving large sets of simultaneous algebraic equations are available,

The internal loads are calculated from Eqs. (a) and (b} and are shown in
the sketch below.

9262 1b 9902 1k

e
M4ih

, 246 Ih+in
T -in (,. ™M

9966 1o

K966 th

1112 lh-ink"

Ad th
——

3 -)
2610 {b-in

Y4R2 Ih

9962 b

PROBLEMS

71 In the following set of algcheic equations, Ry, §;, und §, are the unknowns. Put them in a
matrix form, and solve for the unknowns. Use orly mutrix notution and manipafation.
Ri=6;, -3,
P= —5, + 1.55,—0.55,
P =8, —056; + 0.55;
7.2 A siructure is acted on by the forces shown in Fip. P7.2 17 the material hehavier is given by

a = Kt where K is n constant. find the stesin energy stered in the system. Negleet the demd weight,
and assume AE (o be constant, ~

Uniformly distributed
load, p Ibfin

-—---.—-n-—t-—l-a

KANWSR Figure P7.2
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7.3 Find the matrix relationship $Q} = [A]{g} for the truss structure shown in Fig. P7.3. Note:
Assume AE Lo be constani and the same for both members.

Figure P7.3

7.4 Given the truss struclures shown in Fig. P7.4, determine the fellowing information for each:
{a) The external nodal applied loads 10 be used
{# The known displacement boundary conditions
{c) The size of the element stiffness matsix
{d) The sivg of the siructure reduced stifTness matrix

10 kips
50 kips 20 kips
45° 3
200 kip-in
10 Ibfin i \
5Qin
AN - l
A Y ~ T
23] 100 kips
(b}
10 kips

N ;&Q‘

5]

Figure P74 () Plagar truss; (b} planar truss: (o) space Lruss.
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7.5 Using the finite element method, deiermine the reactions, displacements and internal loads for the
planar truss structure shown below. Show all the details.

10 kips

Figure P75 Cross-sectional area =2 in? for each
member, Material E = 107 [hin’,

1.6 Write mathematical expressions which will determine for any structure {#) the order of the
aggregate stflness matrix and (b the order of the reduced aggregate stiflness matrix. Hiuslrate the use
of the derived expressions on structures shown in Fig. P7.6,

Rﬁﬁ S &’;
@ 3]
< £

¢

—

/oy

('t ;

Figure P76 (i) Planc [rame; (] planc truss; (o) space frame: () space Lruss,

7.7 Find the joint loads which must be used in the finite-clement analysis of the frame structure
shown in Fig. P7.7.

AT = 100°F

E = 10% lbfin?
2000 t = 1073 infGm)°F) 8000 th
et ——

AR Y-\K%-T Figure P7.7
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7.8 Show how you would go about analyzing the beam on continuous elastic foundation shown in
Fip, P7.8 by using the Anile-clement technigue.

Heam

Yigme I'T.R

7.9 What displacement funetions would you use to develop the stiffness malrix relationship for cach
of the clements shown in Fig. P7.9?

{}
Figure P79 () Axial rod clement idealized into four
nodes: (f) plate element {in plane forces only); six
(5} nodes.

7.10 Find the strain. encrgy expression per unil volume of a structural member whose siress-strain
behavior is relaied as

o= e

where ¢ and # are constants.
7.11 Find the total displacement of point 2 on the truss siructure in Fig. P7.11, Assume £ = 107
Ibdin® and cross-sectionat area of cach member = 2 in?,

—— e 100002 1h

Sdin

Figure P7.11

7.13 Fhe displacements for a4 two-dimensional solid are given hy
ge=a,+Tx+ay  g=b +bhx+byy

Tinek Lhe sirain energy per unit volume of the solid.
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7.13 Show the struciure plobal axes and each eicment’s axes for the structure in Fig. P7.13.

Figure P7.13

744 An axial rod clement is idealized a3 shown in Fig. P7-14. The displagement function x) is
assumed o be

o gixy=cy + X+ 030

How would you derive the element stiffness matrix equation?

G —
4— - -——43
Figere I'7.14

.15 Derive the stilfness coeflicients for the element shown in Fig. P7.15.

( LEAE
Fignre P'7.15

7.16 Iustrate by means of sketches the physical significance of the stiflness cocflicients correspond-
ing 1o the aclions shown in Fig. P7.16,

e

43
3 Pt @

\\{ c&‘@@i-\- Figere I'7.16

7.t7 Find the coeflicients of the transformaiion matrices for cach of the truss structure dlemeots
shown in_Fig. P7.17.

Figure P7.17

PR $100 22 89 ¥Fas et st e Byee
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7.18 Find the eyuivalent nodal loads (o be used in the finite-element analysis for each of the struc-
ures in Fig, P7.18, You are given that
AT = I100°F, = 10~% inf(in - °F)
E = 107hfin?  A=10in? I=100in*

10TMb:in 40 in j 40 in IN 10 kips
i [N
40in ¢ 40in 10 kips
Tamperature rise
of AT 30°
12Q in 80 in
R
40 in
{1} &)

Figure P7.18 {a) Framc.

19 The radius of o tapered, solid, tubular shaft element varies as follows:
R=Rye™ Ry, p=const

Assuming that only torsional loads cun be transmitted, find the stiffness matrix of the element.
7.20 ‘The nodal displacements of the truss structure shown in Fig. P7.20 were found by the finile

element Lo be

Ay, = —0.02in 8, = —0.01 in

Find the intersud losds on element 20 AE = 107

S5O kips

2
s 100 kips

100 in @

50 in
At

I——SO iu—-l ) Figure P'7.20

7.21 Determine the displacemcents and the internal toads for the truss structure shown in Fig. P7.21.
Assume g cross-sectional urea of L in® for cach rod and a modules of elasticity of 107 Ibfin®. Use the

sliffness method.
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CHAPTER

EIGHT

ANALYSIS OF TYPICAL MEMBERS
OF SEMIMONOCOQUE STRUCTURES

o T

Figure P7.21

i 7.22 lIn each of the structures in Fig. P7.22, determinc Lhe internal toads and the deflections. Usc the
i sliffress matrix method only.
I

; 10 kips 10 kips 10 Kips 10 kips 3
2 ft—— 20 11 .
¥ ¢ 10kips - k | + 10 kips
> —_—

101t ) 10 ft
| Llff P 5 Xips v

100 101t

8.1 INTRODUCTION

£
¢

‘ @) CH This chapter presents approximate methods for the analysis of typical members
! of semimonocoque structures. Inherently, these structures are highly redundant,
; 10 kips and an accurate analysis would require the use of a computer in conjunction with
l 20 kips the malrix methods discussed in Chap. 6. Cutouts, shear lag, warping restraint,
* discontinuity of lvads, etc. are some of the factors which affect the accuracy of the
analysis, and their inclusion is what makes computer solulions inevitable.

20 Ihifin _~{ l:iil_ AN

: 82 DISTRIBUTION OF CONCENTRATED LOADS TO
1 @ s THIN WEBS

[ . - -
©/~§ in Modern aircraft structures are constructed primarily from sheet metal. The metad
~

LA
o
=
-

n

< is necessary for a covering and this is utilized for structure as well. The thin sheets
|———2 ft—*] - or webs are very clficient in resisting shear or tension loads on the planes of the
webs, but usually they must be stiffencd by members more capable of resisting

) comprcssion foads and ionds normal to the web. When no stiffening members are
used and the skin or shell is designed to resist all loads, the construction is called
monocogite, of full monocogue, from the Freach word meaning “shell only.” Usu-
ally it is not feasible to have the skin thick enough to resist comnpression loads,

Section c-¢

Figure '7.22 {2} Rigid frame: all members are made of 2.in tuhing.with 3/8-in wall thickness. (b}
Truss: 2-in tubing; 3/8-in wall thickness.

233
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and stiffeners are provided to form semimonocogue siructures. In such structures,
the thin webs resist tension and shearing forces in the planes of the webs. The
stiffeners resist either compression forces in the plane of the web or small, dis-
tributed loads normal to the plane ol the web.

When semimonocoque structures must resist large, concentrated loads, it is
necessary to transmit the loads to the planes of the webs. Since the concentrated
loads may have components along three mutually perpendicular axes, it is neces-
sary to provide webs in diffcrent planes, so that the loads may be applied at the
intersection of two planes. A fuselage structure, for example, has closely spaced
rings or bulkheads which resist loads in transverse planes, while the fuselage shell
resists loads in the fore-and-aft direction. Concentrated loads must be applied at
the intersection of the plane of the bulkhead and the shell, or else additional
structure members must be provided to span between bulkheads and transfer the
loads to two such intersecting planes.

When a concentrated lozd is applied to the plane of a web, a stiflening
member is required to distribute this load to the web, as shown in Fig. &.1a. This
member should be in the direction of the load, or the foad should be applied at
the intersection of two stiffeners, so thut each stiffener resists the load component
in its dircction. The load P shown in Fig. 81 is distributed to the web by the
stilfener AB. The shear flows ¢, and g, in the adjacent webs are approximatety
constant for the length of the stiflener. The axial load in the stiffener, therefore,
varies {inearly from P at point B to 0 at point A, as shown in Fig. 8.1c. From the

/ f@f "y / f@; ’1‘17

AL s] Il

8
f vfgf @ {gf w3
)

] /

]
e

T T N T N T —————
i

e — S ———

42
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Fipgure 8.1
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equilibrium of the forces shown in Fig. 8.16, P = (g, + g,)d. Thus the required
length o of the stiffener depends on the ability of the webs Lo resist shear, since a
longer stiffener reduces shear flows g; and g,. The end of the stiffencr, point A,
should always be at a transverse stiffener. If a stiffener ends in the cenler of a web,
i produces abrupt change in the shexar Hows at the end of the stiffener and
undesirable concentration conditions.

In this chapter, thin webs are assumed to resist pure shear along their bound-
aries. In actual structures, the thin webs may wrinkle in shear, thus introducing
tension field stresses in addition to those calculated. The effects of tension field
stresses arc caleulated in later chapters. 1t is found at that time that the tension
ficld stresses can be supcrimposed readily on those calculated by the methods
used here, and the mecthods used in this chapter remain valid for obtaining the
shear distribution in tension ficld webs. In some cases, the tension field stresses
produced by wrinkling of the webs induce additional axial compression loads in
stiffeners. These loads should be compuled separately and added algebraically lo
the foads obtained i this chapter.

A study of a simple numerical example demonstrates the method by which
toads are distributed io shear webs, The beam shown in Fig. ¥.2a is similar to a
wing rib which is supported by spars at the ends and which resists the load of
3000 b, as shown. The'stiflfener 4B transmits this load to the two webs in inverse
propottion to the horizontal lengths of the webs, since the vertical shear at any
cross section of the beam must be in equilibrium with the external reaction on the
beam. The axial load in AB is shown in Fig. 8.2¢; it varies from 3000 at Bto O al -
A. The axial load in the upper flange of the beam can be obtained from either the

2000 1h

LCH

HEURNT 200 hfin

A

20 thiin

[T ——————————r

| !
10 ”z“ IE_jf !l:ﬂ'(i‘:u :
|

0 bin 00 1han

i

_t T B 13000 Th

I 0 in 2 in

00 th r

HHH) B SR s RISTSNIN
{}
Fipure 8.2




236 AIRCRAFT STRUCTURES

bending-moment diagram of the beam or a summation of the shear flows, as
shown in Fig. 8.2b. The compression at point A of 2000 lb can be oblained from
the shear flow of 100 Ib/in for 20 in or from the shear flow of 200 1bfin for 10 in.

The cantilever beam shown in Fig, 8.3 resists a load R which has a horizontal
component of 1500 Ib and a vertical component of 3000 1b. The horizoatal
stiffener AB must be provided (o resist the horizontal component of the load, and
the vertical stiffener CBD must resist {he vertical component. The infcrsection of
these stiffeners, point B, should be on the line of action of R. The shear flows g,
and g, can be obtained from the equilibrium of these stiffeners. For stiffener AB
to be in equilibrium undertthe forces shown in Fig. 8.3c,

10gq, — 10g, = 1500

Similarly, for member CBD to be in equilibrium under the forces shown in Fig.
8.3h,

54y + 10g, = 3000

Solving the above two equations simulancously yiclds g, = 300 and g, = 150
Ibfin. These values also can be derived by analyzing the beam separately {or cach
of the two lead componenis and then superimposing the results. The vertical load
alone would produce shear flows of 200 lbfin in each web while the horizontal

+3000 [b
+3000 1b
200 [b/in 300 1bfin
()
J a; =300 Wjin | ¢ a0
T = T\
N i s S0
Ny = 200 Iyfin i L ! t B = 1500 th
’ 1
J O — ) | +150G 1b )
159 N ”—_:_” ) R | 1 3000 b &
N {E”r 1000 | 100 i
:' az=150fin [ ' 1
A — . M,
~ D 1= 150 thfin
Np+-—10 in—l——lﬂ in—-—l (h)
<

. — —

¢4 =150 ibfin

:D+I5001b

(€}
Figure 3.3
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load would produce a shear flow of 100 ibfin in the upper web and —50 Ib/in in
the lower web, The axial loads in the upper flange member, shown in Fig. 8.3d,
could not be obtained readily from a bending moment diagram of the member.

The loads considered above were assumed Lo act in the plane of the web.
When loads have components along all three references axes, the structure should
be arranged so that the loads acl as the intersection of two webs, as shown in Fig.
8.4a. Here each of the three components of the force R is distributed to the webs
by a stiffener in the direction of the force component. In some cases, this is not
praclical and a load normal to a web, as shown in Fig. 8.45, cannot be avoided. Il
the load is small, the stilfener may be designed to have enough bending strength
to resist the load. In many cascs, the loads are such that it is nccessary to provide
an additional member, such as web ABCD in Fig. 8.4c¢, to resist the load. This
member spans between ribs or bulkheads and can resist any load in its plane by
means of the three reactions F,, F,, and F3 shown in Fig. 8.4d. Even small loads
such as those from brackets supporting control pulleys should not be applied as
normal lpads to an unsupported web. Such brackets may be attached to stiffeners
or may be located al the inlersections of webs.

Fipore 3.4
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8.3 LOADS ON FUSELAGE BULKHEADS

The structural unit which transfers concentrated loads'to the shell of an airplane
fuselage or wing is commonly called a bulkhead. Bulkheads are atlached to the
wing or {usclage skin continuously around their perimeters. They may be solid
wchs with stiffeners or beads, webs with access holes, or truss structures. Fuselage
bulkheads usually are open rings or frames, so that the fuselage interior is not
obstructed. Normally the chordwise bulkheads in wings are called ribs, while
fusclage bulikhcads are called rings or frames. Tn addition to transferring loads to
the skin, wing and fuselage bulkheads supply column support to stringers and
redistribute shear flows in the skin. The first step in the design of a bulkhead is to
oblain the loads which act on the bulkhead and thus held it in static equilibrium.
In the case of fuselage rings, this step is simpler than the next problem—to obtain
the unit stresses from the loads. Unit stresses in fusclage rings and similar struc-
tures are analyzed in a later chapter on statically indeterminate structures.
Fuselage sheils normally are symmetrical about a vertical centerline and
often are loaded symmetrically with respect to the centerline. The fuselage bend-
ing stresses can be obtained by the simple flexure formula f= My/I, and the
fuselage shear flows can be found from the related expression derived in Chap. 5,

V.
q:T"Jy a (530

In applying Eq. (5.31) lo a symmetrical box structure, often it is convenient to
consider only half of the structlure, since the shear {low must be zero at the top
and bottom centerlines. Thus, each term of Eq. (5331} applies to oniy hall the
fuseluge shell. If stringers or longerons are located on the top or bollom center-
lines, half of their area is considered to act with each side of the structure.

‘The fusclage ring shown in Fig. 8.5 is loaded by a vertical load P on the
centerline of the airplane. This vertical load P must be in equilibrium with the
running loads g which are applied to the perimeter of the ring, as shown in Fig.
8.5c. The prescnt problem is to obtain the distribution of Lhe forces q. The
fuselage cross section just forward of the ring has an external shear ¥, and the

cross section aft of the ring has a shear ¥, as shown in Fig. 8.5z and b. The load

P on the ring must be equal to the difference of these shears: <
: . V—V=P

If, for the moment, the shear resisted by the in-plane components of the stringer
loads is neglected, the shear fiows on the two cross sections adjacent to the ring
ure

v
f=7 J yd4 (8.2)
and
4
=" _[y dA (8.3)
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The load g transmilted 1o the perimeter of the ring must equal the difference
beilween ¢, and ¢, or

§=4,— 4 (8.4)
From Egs. (8.1) to (8.4},
vV —
o =~ ; L'J‘yd/i
or
P
4= 7 J_\-‘ dA (8.5

When (he areas resisting bending of the shell are concentrated as flange areas 4.,
the integral is replaced by a summation, as in the following equation:

P
q=7 > yA; (8.6)

Fyuatious (8.5) and (8.6) arc correct even when the relieving effects of the in-plane
componcnis of the stringer furces are considered, since this shear resisted by the
stringers must be the same on both fusclage cross sections adjacent to the ring, if
the stringers have no abrupl change in direction at the ring. Thus the difference

T
i) I O
[ ]
T
)}
¥, 2

r
th)

Figure 8.5




A P R 1 b b PR 1% b b R £ Y o -

(854 1bfin)

CH {h)

Figure 8.6

in total shear forces, ¥, — ¥;, must equal the difference in the shears resisted by
the webs.

In many cases, a fuselagé structure may be symmetrical but the loads may
not be symmetrical. Any unsymmetrical vertical load may be resolved into a
vertical load at the centerline and a conple. The couple applied to the ring will be
resistcd by a constant shear flow

T
4r = ﬂ (8.7

where T is the magnitude of the couple and A is the area enclosed by the fuselage
skin in the plape of the buikhead.

A fuselage ring also may resist loads which have horizental components. In
this case il is not possible to find a web with zero shear flow by inspection, as in
the case for symmetrical vertical loads. It is necessary first to obtain all the shear
flows in terms of one unknown and then to find this unknown from the equilib-
rium of moments, as was done in the analysis of box beams. The method | will be
obvious after you study Example 8.2,

Example 8.1 The fuselage bulkhcad is shown in Fig. 8.6. Only one-half of the
shell is considered, as shown in Fig. 8.6b. The value of P resisted on this half
of the structure is 500 1b, and the moment of inertia is found for only one-half
of the structure. OF course, the value of P/T in Eg. (8.8) will be the same if
both values are obtained for the entire structure, since both will be doubled.

SoLuTion The solution is shown in Table 8.1. The areas A, listed in column
2 are 1he total areas of stringers 2, 3, and 4 but only half the areas of stringers
1 and 5, since the structure shown in Fig. 8.6k is being considered. The

e

e e an 1 e

o g
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Table 8.1

Siringer no. A, ¥ A¥ ¥ »Ay ¥4, EIypA; g lbfin
(n 2 3 @) 5 (] 6] 8} it
i 045 340 1.7 185 0.925 17.12

0.925 10.20
2 nige 20 24 #.5 .85 123

1775 19.55
3 0.10 15.0 L5 0.5 —0.05 002

1.725 19.00
4 0.18 6.0 0.6 ] —0.95 9.02

0.775 8.54
5 0.05 0.0 (LX) —155 —0.775 12.01
z 04 6.2 4540

centroid 7 is determined from the summations of columns 4 and 2:

LAy 62 .
=it == <155
V=S4, Toa= oM

It is now necessary to obtain coordinates of the stringers with respect to
the centroidai "axis. These values, y = ) = y, obtained by subtracting 15.5
from terms in column 3, are shown in column 5. The tenns yof; winl _;"'.-!J are
calculated in columns 6 and 7. The summation of column 7 yields the -
moment of inertia 1, Equution (8.6) becomes

P 500
- q_I Z}Af=454>:J’AI
The values of ¢ are calculated in column 9 and are shown in Fig. 8.6a.
Example 8.2 The fusclage bulkhcad shown in Fig. 2.7 resists a horizontal

load as shown. The stringer coordinates are given in column 3 of Table 8.2.

"
(0.8 iiny —-...\ (LG8 Tfim)

\ (1.7 Ibfin)

3
)( 17.3 Ihfiny
A4
(26,23 hfink = 6.2 ih/ing

Figure 8.7
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Table 8.2
Stringer no. A, x xd, x*4, IxA;, ¢ 24 24y’ q
) 2 3 (5 9] )] {8} 9 (10
l 005 0 0 1]
0 0 140 Q + 16.8
b3 .10 8 0.3 6.4
: (1%} 151 ' 1,510 N
3 0 0 LD 180
. 13 —34.1 100 -34i0 —1[73
4 o100 10 19 100
2.8 -330 160 — 8480 —36.2
5 0.05 Q 1] 0 L
z 0.4 26.4 500 - 13,400

The areas enclosed by the skin segments and the lines to reference point O
are indicated by the double areas listed in column 8 of Table 8.2, Find the
reactions of the skin on the bulkhead.

Sorution First the shear flows are obtained with the assumption that web
1-2 resists a zero shear flow. The resulting shear flows g are

p
g ==Y xA, (3.8
IJ’

The calculations are performed in Table 8.2. The value of I, for half the
structure is obtained in column 5 as 26.4 in*. If the shear flows are positive
clockwise around the ring, the force P is considered as negative in Eq. (8.8), or

7= Tx 264 1

The values of ¢ arc caleulated in column 7. Thesc values are obviously
the same for the left haifl of the structure because of symmetry. The shear
flows ¢’ produce moments of 24¢" about point 0. These moments are calcu-
lated in column 9. It is now necessary to superimpose a constant shear ﬂc?w
go around the ring so that the external momeats on the ring are in equihb.;-
rium. Taking moments about @ and considering clockwise moments as posi-
tive, we have

go T 24 + I 24q +100C x 10 =0

10000 - 2 x 13400 + 1000 x 10 =0

or
do = 168 Ibfin
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The resulting sheur llows g are found by adding 16.8 to each value in column
7. These valucs are shown in column 10 and in Fig, 8.7.

8.4 ANALYSIS OF WING RIBS

In the simplest type of wing structure, that in which the bending stresses are
resisied by only three concentrated flange members, the skin reactions on the ribs
cun be obtaincd {rom the equations of statics. There will be only three unknown
shear {lows, and these nray be obtained readily from the equations for the equilib-
rium of forces in the vertical and drag directions and for the equilibrium of
moments about a spanwise axis.

Then the intcrnal stresses in the rib are obtained from the shears and bending
moments at the various cross sections. Normally, there will be axial loads in the
rib in addition to the shcars and bending moments; thus it is necessary Lo
calculate bending moments about a point with a vertical position corresponding
to the ncutral axis of the rib. For the rib analyzed in Example 8.3, we assume that
all bending moments are resisted in the rib lange members and that ail shears are
resisted by the webs. With these assumptions, it is more convenient to calculate
bending moments about the neutral axis. '

In the morec general case of a wing in which the bending moments arc
resisted by more than threc flange members, it is necessary to determine the
seclion propertics of the wing cross section before the shear reactions on the ribs
can be fowndd, The problem is similar o that of caleulaling reactions on fusclage
bulkheads, but it differs in the condition that the fusclage cross section usually is
symmctrical, whereas the wing cross section seldom is symmetrical. Thus the skin
shear flows. and tonsequently the skin reactions on the ribs, must be obtained by
thc more general methods which involve the product of inertia of the cross
section,

Example 8.3 Find the shear [lows acling on the rib of Fig. 8.8. The wing
bending moments are resisted by the three Nange arcas shown in Fig. 8.8a to

20 i
=1 (1 iny =t {} 31—

} 7t 274 i) - o
i it | s = T 5 ‘
.T Z 5 b apets00 Wbfim
bin 7 iQin
i)

At | 758 || vom? |
! \ |

da 3 T xogm 0
3000 th

Figure 8.3
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¢. Calculate the loads in the rib flanges and the shear flows in the rib webs at ' Vp = 0.4 x 2990 = 1195 |b. The remaining shear, which is resisted by the
a verlical cross section through flange a and at vertical cross sections a short web, is ¥, =V — V¥, = 2244 — 1195 = 1049 Ib. The shear flow at this section
distance to either side of the applied loads, is q = 1049/h = 1758 Ib/in. These valucs arc shown in Fig. 8.9a.
. The stresses at 2 vertical section to the left of the applied loads are
SoruTioN The reactions of the wing skin on the rib must be in equilibrium abtained by considering the free body shown in Fip. 8.9%. The shear at the
with thc applied loads of 9000 and 2000 Ib. From a summation of moments cross section is ¥V =274 x 3 + 374 x 6 = 3066 lb. The bending moment
about point ¢ and a summation of forces in the vertical and drag directions, about the lower flange is M =2 x 45 x 275 + 2 x 54 x 374 = 65,100 in - Ib.
the following equations are obtained: The horizontal component of the upper fange load is Py = 65,100/9 = 7240
Ib. The lower flange load is obtaincd from a summation of horizontal forces
EMy = 9000 x 10 - 1684, — 2224y, =0 as P, = 7240 — 10 x 274 + 10 x 374 = 8240 Jb. It is obvious that the bend-
IF, = 20g, — 20g,, — 2000 = 0 o ; . ; !
_ ¢ moment in the rib depends on the vertical location of the center of
ZF3 = 9000 — 10, — 45, ~ 64a = 0 momenis, since there is a resultant horizontal load at the section. If the entire
The solution of these equations yields g,, =274, q,, =374, and g, = 566 1b/in. depth of a beam resists bending moment, the centroid of the section is used
At a vertical cross section through flange a, the stresses are obtained by as the center of moments, and the stresses resulting from the axial load then
considering the free body shown in Fig. 8.9a. The total shear at the cross | are uniformly distribuied over the area of lhe cross section. The vertical
section is V=374 x6=2244 1b, and the bending moment is : component of the upper flange load is 0.2 x 7240 = 1448 1b, The shear flow
M =2 x 24 x 374 == 17,940 in - Ib. The horizontal compenents of the axial y in the web is therefore g -—(3066 1448)/9 = 180 Ibfin. These values are
loads in the flanges are found from the bending moment as P = P, = , shown in Fig. 8.95.
M /6 = 2990 Ib. The lower rib flange is horizontat at this point, but the upper The stresses al a verlical cross seclion just to the right of the applied
member has a slope of 0.4, The shear carried by the flange is thercfore loads are obtained in similar manner and are shown in Fig 8.9¢. Since the
bending moment was computed about the intersection of the two applied
y louds, the value of P; is the same as for the previous case, The axial load in
04P. = 1195 Ib ] 0.2P; = 1445 1b the lower flange and the web shear flow differ from those shown in Fig, 8.95.
4P = 1195 274 Ibfin
374 1bfin P =199 1 = ) ; .',;-;U: W T Example 84 The rib shown in Fig. 8.10 transfers the vertical load of
» 4, = 178 Iofin /” 45 in? _ 9 10,000 1b to the wing spars and to the wing skin. Find the reacting shear
{{ 24wt oh ({4 s iin l flows around the perimeter of the rib, the shear flows in the rib web, and the
AN | b axial loads in the top and boltom rib {langes.
= Py=29901b T awse | Pasg401
Sorurion The distribution of shear flows dcpcnds on the spar-cap arcas. The
() 1l scction properties are: I, =200 in*, I, = 800 in®, I, = —200 in*. The reac-
ting shear flows on the rib are equal to the shear flows in the skin of a box
. . which resists an external shear of 10,000 {b, but have opposite directions. The
G.2F, = 1448 1o < change in shear flow at each ange area is [ound [rom Eq. {5.25):
—_— 4
- Py = i VI + VI, VI +VI_}
7340 i A 7 — X zlyz A
}4.1= ol ! rs= [H_;Z -1z Vi
‘a:u Ihfin :
vt s a I 9
9000 ib . SO0 :”" 10 m’.-..
t= (,:,h{ gi= 135 *(=37:'|
© WM s — | o e
lin2] 3
Figare 89 *‘"‘L’ 15— Figure 8.10
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If we assume g posilive clockwise, the following values are obtained:
Ag = —500 at flanges g and b
Ag = +500 at flanges ¢ and 4

IT a shear flow g is assumed in (he top skin, the other shear flows are found
in terms of g4, as shown in Fig. 8.10. The final shear flows can be obtained
now from the equilibrium of moments about some conavenient point, say
flange a:

2009, + 200(q, + S00) = 10,000 x 5

or qo= —125 Ib/in

The shear flows in the remaining webs can be found now from these
values of ¢p and are shown in the preper directions in Fig. 8.11. The shear
flows in the rib webs are obfained from the equilibrium of forces on the
vertical cross sections and are shown in Fig. 8.11 as 625 Ib/in. on the left-
hand web and 375 lbfin on the right-hand web. The axial loads in the rib
flanges are shown in Fig. 8.1 and are derived by a summation of the shear-
flow forces acting on the rib flanges, including shear flows from both the
wing and the rib web. A comparison of the rib web shears and ange loads
shown in Fig. 8.11 with those for a simple beam of the same dimensions
shows that the flange loads will be the same in both cases, but the web shears
will be dilferent.

85 SHIEAR FLOW IN TAPERED WEBS

The shear {low in a tapered beam wilh two concentrated flanges is considered in
Sec. 5.9, in the discussion of the unit mecthod of shear-flow analysis for tapered
box beams. The distribution of the shear flow in a tapered web is considercd now
in grealer detail, since a large proportion of the shear webs in an airplane struc-

A 1

A F
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ture are lapered rather than rectangular. The shear flows in the web of the beam

shown in Fig. 8.12a arc obtained in Sce. 5.9. From Eq. (5.30) the shear V. resisted
by the web will be

. iy

Ve =¥, "

where the notation corresponds to that shown in Fig. 8,12, The shear flow g may

be expressed in terms of the shear flow ¢y = ¥, /hg at the frec end by the following

cqutions:
¥ V.h )2 Xo }2
AT S B N bl 1 T =e
g . i qo( N ) qo( . ) (8.10)

The distribution of the shear flow ¢ along the span of the beam is shown in Fig,
8.125h.

[n many problems it is necessary to obtain the average shear flow in a
lapered web. The average shear flow belween the {ree end and the point x of the
beam shown in Fig. 8.12a can be found from the spanwise equilibrium of the
flange shown in Fig. 8.12¢. The horizontal component of the flange load is found
by dividing the bending moment ¢, A b by the beam depth k. The average shear
Aow in this length, y,,. is thgrefore obtained by dividing this force by the hor-
izontal length h:

—ye (8.9)
X

I :
Foo = o f or q.,% (8.L1)
- “
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Tf the shear flow on one side of a tapered web is known, the shear flows on the
other three sides may be oblained frorm Egs. (8.10) and (8.11).

I is assumed in the derivation of Eqs. (8.10) and (8.11) that the stresses
existing on all four boundaries of the tapered plate are pure shearing stresses. It
has been shown that pure shearing stresses can exist on only two planes, which
must be at right angles to each other. Since the corners of the tapered webs do
not form right angles, it is necessary for some normal siresses to act at the
boundary of the web. Tn order to estimatc the magnitude of these normal stresses,
a tapered web in which purc shearing stresses may exist at all the boundaries is
considered. -

It can be shown by the theory of elasticity that a sector such as shown in Fig.
8.13 may have pure shearing stresses on all the boundaries. Under these bound-
ary conditions, any element such as that shown will have no normal stress in the
radial direction o,, and no normal stress in the tangential dircction g, The
shearing stresses on these radial and tangential faces must satisfy the equation

K
Go="13 (8.12)

where K is an undelermined constant. This equation is similar to Eq. (8.10) if the
taper is small.

By comparing the sector of Fig. 8.13 with the tapered web of Fig. 8.12, it is
seen that (he assumption of pure shear on-the top and botiom boundarics of the
tapercd web was correct. The left and right boundaries also must resist some
normal stresses, however. The magnitude of these normal stresses may be deter-
mined for the Mohr circle of Fig. 8.14b. The element under pure shearing stresses
has faces A and B which are inclined at an angle & with the vertical and hor-
izontal. The Mohr circle for the pure shear condition will have a center at the
origin and a radius 7,. Point 4 will be at the top of the circle, and point C,
representing stresses on Lhe vertical plane, will be clockwisc at an angle 20 from
point A. The coordinates of point C represent a tensile stress of 1, sin 20l and a
shearing stress of 7, cos 20 on the vertical plane. The normal stresses obviousty
are negligible for small values of the angle £.

‘The cquations for shear flow in tapered webs first were derived for the web of

-
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4 heam with two concentrated Manges and then were shown to be approximately
correet for any web that resists no normal loads at its boundarics. it can be
shown by examples of other structures containing tapered webs that the shear
fNlows may he applicd lo the webs by members other than beam Aanges. Tapered
webs often arc used in torque boxes, such as shown in Fig. 8.15. For this box, all
four sides are tapercd in such a way that the corners of the box would intersect if
extended. The enclosed arca at any cross section varies with x according to

A h\? x\2
A—f(};) =(z) ®13)

The shear flow at any cross section, for the pure torsion loading condition shown,
is obtained from
T

=57 {8.14)

From Cys. (8.13) and (8.14} and from the value of the shear Bow at the left end,
go = T/(24,), the [ollowing expression for g is obtained:

N £\ ﬂ)’
‘Iron(x) —%(x (8.15)

T, sinn 2
7, sta 2t
——J' q T
7, wos 28 A ¢
g 20
] ]A T, ¢us 20
1 0
B
£
(N3] tn
e l
A n l -
-l ¢ f—— 7 sin M
-
* T sy, ens M
3
= t
T, 8in 20
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Fipure 8.14
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This corresponds to the value obtained in Eq. {8.10) for the two-flange beam. The
shear flow g given by Eq. (8.15) applies for all four webs of the box. Conse-
quently, there is no axial load in the flange members at the corners of the box,
since the shear flow at the sides of the box will be transmitted directly to the top
and bottom webs.

In the structure shown in Fig. 8.15, all four webs are tapered in the same
ratio, so that the shear flow obtained from Eq. (8.15) will be the sume for ali four
webs. When the taper ratio [or the horizontal webs is not the same as the taper
ratio for the vertical webs, the shear flows will not have the same distribution for
ail webs. I, for cxample, the top and bottom webs arc rectangular and the side
webs are tapcred, as shown in Fig. 8.16, the shear in the rectangular web must
remain constanl for the entire length, while the shear in the tapered web must
vary according to Eq. (8.10). The shear flow for this structure which has ribs only
at the ends cannot be obtained from Eq. (8.14), although Eq. (8.14) is quite
accurate for the common airplane wing structure with closely spaced ribs. The
ribs divide the tapered web into several smaller webs and distributc shear llows
so that they arc approximately equal in the horizontal and vertical webs.

The shear flows in the tapered webs of Fig, 8.16 vary according to Eq. (8.10):

hoy?
41 = 4qp T (8.16)
51

Since the Nange members at the corners of the box must be in equilibrium for
spanwisc forces, the shear flows g, in the top and bottom webs must cqual the
average shear flows for the tapered webs, as obtained from Eq. (8.11),

hy
= g 2 8.17
9u =G0}, @17
and from Eq. (8.16),
hy
=g, — 8.18
qs QI ho { )

The difference in shear flows between two adjacent webs produces axial loads in
the Mange member between these webs. At any intermediate cross section of the
hox, the in-plane components of the flange loads must be considered it addition
10 the web shears, in order to check the equilibrium with the external torque on
the box. Al the end cross sections, the shear flows are in equilibrium with the

Figure 8.15
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Figure 8.16

external torque. For the feft end of the box,
(@0 + qalahg =T
and substituting values from Eq. (8.17) gives

T

= (3.19)

‘{R
This equation also can be-derived from 1he equilibrium of forces at the right end
of the box

T = akl\(q, + ¢.)
and substituting values from Eq. (8.18) yields

_ T
" alh; + hg)

which checks the previous valuc. The denominator of Eq. (8.19) represents the
average value of 24 for the box, as might be expected from Eq. (8.14). For most
conventional wing or fuselage structures, the ribs and bulkheads are closely
spaced, and it is seldom necessary to consider the taper of the structure when
tarsional shear flows are obtained. Equation (8.14) may be used, and the shear
flows in al! webs will be approximately equal at a cross section. For uncon-
ventional structures, however, where the ribs cannot distribute shear flows, it may
be necessary to use methods similar to thoss employed for the structure of Fig.
8.16. If the top and bottom webs also are tapered, but have a different taper ratio

9,

“than the side webs, then the ows may be obtained by applying Eq. (8.10) to cach

web, equating the average shear lows for all four webs, and then equating the
torsional moments of the shear flows at one end to the external torque on the
structure.

8.6 CUTOUTS IN SEMIMONOCOQUE STRUCTURES

Typical airerafl structures which consist of closed boxes with longitudinal stiffe-
ners and transverse bulkheads are analyzed in preceding sections. In actual air-

—
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craft structures, however, it is nccessary to provide many openings in the jdeal
continuous structure. Wing structures usoally must be interrupted to provide
wheel wells for retraction of the main landing gear. Other openings may be
necessary for armament installations, fuel tanks, or cnginc nacellcs. Fusclage
structures often must be discontinuous for doors, windows, cockpit openings,

bemb bays, gun turrets, or landing-gear doors. It is also necessary to provide

holes and doors for access during manufacture and for inspection and mainien-
ance in service, These “cuatouts™ are undesirable from a structural stand point, but
are always necessary. Often they occur in regions where high loads must be
resisted, and frequently “considerable structural weight is required for re-
inforcements around the cutouts.

A simplified example of a structure with a large cutout is shown in Fig. 8.17.
This corresponds to a wing structure with four flange members in which the
lower skin is completely removed. In previous scctions we stated that a closed
lorque box was necessary to provide stabilily for resisting torsional loads, In

order for the struclure of Fig. 8.17 to be stable, ove end must be buijlt in, s0 that _

the torsion may be resisted by the two side webs acting independently as cantile-
ver beams, as shown in Fig. 8.17b. The flange members resist axial loads, which
have the values P = TL/{bh) at the support. The shear flows g in the vertical
webs are double the values obtained in a closed torque box with the same

dimensions. The harizontal web resists no shear flow in the case of the pure

torsion loading, but it is necessary for stability in resisting horizontal loads. The

larque box, with webs on ali six faces, is capable of resisting torsion with no axiul .

loads in the flange members. Hence the torque box is much more rigid in torsion,
since the shear deformalions of the web are negligible in comparison with bend-
ing deformations of a cantilever beam, '

In a full-cantilever airplane wing, it is not feasible 1o have an open structure
for the entire span, for the wing tip would twist to an excessive angle of attack
under some flight conditions. A closed torque box is necessary for most of ths
span, but may be omitted for a short length, such as the length of a wheel-well

opening. When the lower skin is omitted for such a region, the torsion is resisted :

1) 131

Figure 8.17
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by “differential bending™ ol Lhe spars, as indicated in Fig. 8.17b. lee axifxi loads
in the spar fanges usually are developed ati both sides of the opening, since fhc
closed torgue boxes inboard and outboard of the opening both resist the warping
deformation of the wing cross section. For the torsion loading shown, often it
would be assumed that flange loads were zero at the midpoint of the opening and
that loads of P/2 were developed af both sides of the opening. .

The open box with threc webs and four flange areas is stable for any loading
if one or hoth ends are restraincd. The shear flows in the three webs may be
obtained [rom three equations of statics. The method of oblaining the shear flows
is obvious from a numerical example such as that indicated by Fig. 8.18. From
the equilibrium of moments about point C of Fig. 8.185,

10q, x 20 = 10,000 x 10 + 2000 x 5 + 40,000
or g; = 750 bfin

From the equilibrium of vertical forces,
10¢g5 4 10 x 750 = 10,000

ar g3 = 250 Ibfin
Similarly, from the equiiib?ium of horizontal forces,

' 204, = 2000
or g = 100 Ib/in

The axial loads in the {lange members can be found from a summation of span-
wise forces:

P, =40y, = 30,000 Ib

P, = 40¢, + 40q, = 34,000 Ib
P, = 40q; — 40g, = 6000 1b
P; = 40g; = 10,000 1b

i0.000 [h
4
. {Qin 10 in
5in ___._!
B_._Ez_..._.._.-_(. !i_..'m; e
10n B ;) udl
2 YN o

20008 40,000 in-tb
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While these forces satisfy the conditions for static equilibrivm, they cannot be

obtained from the flexure formula. For an open beam containing only four Aange
members, the flange loads are independent of the fange areas. If the beam has
more than four flanges, onc must consider the flange arcas in estimaling the
distribution of axial loads. This problem is statically indoterminate, and usually it
is selved by approximate methods.

A cutout in a short length of the wing structure afTects the shear flows in the -

adjacent sections of the wing which have closed lorque boxes. First consider a
case in which the wing resists pure torsion. The shear fiow in a continuous closed
bux is -

T

=57 (8.20)

4
&

This equation is derived from the assumption that the flange members resist no
axial loads. At the edges of the cutout, however, the {lange loads resulting from
differential bending have their maximum values. These flange loads are dis-
tributed to the webs, and at some distance from the cutout, the flange loads
become zero for the box in pure torsion. The distance along the span required for
the distribution of the flange loads depends on the relative rigidities of the mem-
bers, but it will be approximately equal to the width of the cutout. The shear

flows in the torque box are allected considerably by this distribution of load.
The rectangular torgue box shown in Fig. 8.19a resists pure torsion. The

lower skin is cut out for the entire width of the box, for a length L. The effect of

the cutout is assumed to extend a distance L along the span on cither side of the
cutout; therefore, il is necessary to consider only the fength 3L, which is shown.
The shear flows al Lhe section through the cutout are similar to those obtained in
Fig. 8.175, or they will be zero in the upper skin and 24, in the spar webs, where
g, is the shear flow in a continvous box, as cbtained from Eq. (8.20). The axial
loads P in the spar flanges are assumed to be equal on the inboard and outboard
sides of the cutoul and thus are half the value shown in Fig. 8.175, or

P=qlL (8.21)

This axial load must be transferred to the webs adjucent Lo the flange in the
assumed length L. From the equilibrium of the flange member shownin Fig.
8.194,

gl.— g L.=7P {8.27)
or. lrom Egs. (8.21) and (R.23),
i —q2= 4, {8.23)

The shear flows g, and g, must satisfy the conditions of cquilibrium of the
structure shown in Fig. B.19¢. For the vertical forces to be in equilibrium at g
cross section, the shear flows in the spars must have cqual and opposite valucs
2. For horizontal forces to be in equilibrium, the shear Aows in top and bottom
skins must have equal and opposite values g,. For the shear flows in all four
webs Lo react the larque T, the following condition must be satisfied:

ol
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g A+ g A=T

or, from Fq. (8.20}
{8.24)

g, +4q. =124,
Solving Eqs. {8.23) and (8.24} yiclds

gy = 1.5, and 1 = 0.5q,

he s of these shear Agws are shown in parentheses in Fig. 8.19a. )

IIL;?(])L;{; these resulting values of shear flows g, and gq,, the Cut(;l-l[ is :e:;nﬁtg
have a serious effcct on the shear flows in the closed torcsug boxe‘s adjacen o Jf
cutout. The top and bottom skins have shear ﬂmfvs of 1% times the ;‘nagn;-ha“ o
those for a continucus box, while the shcz.;r ﬂow§ 2nhti}g1; ss?lir:rairiz ;:; 3{{ c;lr; i
much. The ribs adjacent o the cutout also resist big : . b Just

of the culout is shown in Fig. 8.19d. The rib receives the shear flo
?L;;tiofzrlggw the tap and bottom skins of the torque box. The sp;\rs tsreacr:isct:cl:; ssk‘i::ecl;
flows of 2¢, from the cutoul seclion and 0.5¢q, from the lorque box .

Figure 8.19
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the shear flows are in opposite directions, the resuliant shear flow applicd to the
rib is 1.5g,.

The problem of a box beam’s resisting 2 more general condition of loading
usually is analyzed by another method. The method employed for the structure
resisling pure torsion becomes more difficult when the spar flanges rcsist axial

loads resulting from wing bending in addition to those resulting from the differ- ©
ential bending. The common procedure for the general case is first to analyze the

continuous wing structure as if there were no cutout. Then a syslem of correcting

shear flows must be obtained and superimposed on the original shear flows found

for the continuous structure. In finding the correcting shear flows, oniy a short
length on either side of the cutout necd be considered, since the loads applied to
the wing in arriving at these shear flows are in equilibrium with themselves. One

of the established principles of mechanics, formulated by Saint Venant, states that ~
the stresses resulting from such a system of forces will be negligible at a distance

from the forces. The distance is approximately equal to the width of the opening.

The method of obtaining correcling shear flows is illustrated for the wing
structure shown in Fig. 8.20. The wing is assumed to have a constant shear of
30,000 1b in the vertical direction and ~ 9000 1b in the chordwise direclion for the
entire length from station 30 (30 in from the airplane centerline) to station 120.
The lower skin is removed for the entire width between the spars from station 60
to station 90. The wing bending moments affect the flange loads but not the shear
flows; therefore, the bending moments are not considered. The dimensions of the
cross scction are shown in Fig. 8.20b. The shear flows in the continuous closed
box with no cutout are shown in Fig. 8.20¢. These are computed by the methods
discussed in Chap. 7, and the computalions are not discussed here. Since the
cxlernal shear is constant, the shear flows in all webs between stations 30 and 120
would have the values shown in Fig. 8.20¢ if there were no cutout.”

The correcting shear flows are now found by applying the loads of 660 1b/in
in the culoul region, as shown in Fig. 8.21¢, and finding the shear flows in the
remaining webs. I is obvious that the loads of 660 Ib/in around all four sides of
the culout are in equilibrium with one another. The shear flows at the cross
scction through the cutout are assumed to be qy, q;, and q3, as shown in Fig
8.21h, and must have a resultant equal to the applied load of 660 ]b/i‘g_,ai the
tower skin, From a summation of horizontal forces,

- 30q; = 30 x 660
or
q. = 660 Ib/in
From a sumimation of moments about point O of Fig. 8.20b,

2x 90 x 660 =2 x 73 x¢; — 2 x 200 x 660 + 2 x 90 x g,

Soiving these equalions simultancously yiclds q, = 1340 Ibfin apd gy = [U1D
ibjfin. These correcting shear flows are shown in Fig. 8.21a for the structure
between stations 60 and 90. The finat shear flows in the cutout region are now
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obtained by superimposing the values shown in Fig. 8.29: and 8.21‘0. jI'his super-
position yields a shear flow of 300 1bfin in the upper skm,.l930 ibfin in the fro_nl
spar web, and 940 lb/in in the rear spar web, as shown in parenfheses on Fig.

8.20a. _
The correcting shear Rows between stations 90 and 120 arc found from the

cquilibrium of the lorces on a cross sccliqn. The shear ﬂow"s- are shown in l-‘ig.
§.21¢, and the following cqualions are derived from the equilibrium of the shear
flows on the ¢ross scetion:

IF, = 30g; - 30g; =0

IF, = 10yy + 245 — 129, =0

Th, =2 x 75qs + 2 x 200gs + 2 = 90, + 2 x 90¢y ={

One additiona! cquation may be derived from the spanwise equilibrium of
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-rof‘-:Ts on ongc of t_he ﬁange areas. For the flange member shown in Fig. 8.214, the
[llkl(l load at station 90 is oblained by assuming no axial loads at the ccnu;r of
e culout, slation 75. From the shear flows shown in Fig 8 21

= 15(1340 + 660) = 30,000 1b. From Fig, 8.21d, 5T

30, — 30q, = 30,000

Solving these four equations simultancously vields g, = — 670 gs = 330, ¢
t] - v n =

=305, and g; = 330 1b/in. These valucs of the correcting shears are shown in Fig,

8.21a. The final shear flows are obtainad by superimposing the correcting shear

~ (10ik
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flows and those for the continuous structure, shown in Fig. 8.20c. The corrected
values are shown in parentheses on Fig. 8.20a.

The loads acting on the rib at station 90 are found from the differences in
shear flow on the two sides of the rib and shown in Fig. 8.21e. The shear flows
transferred to the rib by the wing skin arc secn to be greater than the shear flows
in the skin, since the skin shears act in the same direction on the rib and must be
added. The rib at station 60 will resist the same foads as the rib at station 99, but
the dircctions of all loads will be reversed.

Cutouts in fusclige structures are treated in essentiaily the same manaer 25
cutouts in wing structures. Fuselage structures usually have lighter stringers and
skin and resist smaller loads, particularly torsional loads. The torsional rigidity of
fusclages is not as important as the torsicnal rigidity of wings, aithough flutter
problems may develop in high-speed atreraft if the fuselage is too flexible tor-
sionalty. Fusclage structures often are open for a large nroportion of their length
in order to permit long cockpit openings or long bomb bays. These structures are
able to resist the torsional loads by dilferential bending of the sides of the Tuse-
lage.

Fusclages of large passenger airplanes often contain rows of wimndows, is
shown in Fig. 8.22. 1] thesc windows are cquaily spaced and have equal sizes, the
shear flows in webs adjacent to the windows can be obtained in terms of the
average shear flow g, which would exist in a continuous structure with no
windows. IT the windows have a spacing w and the webs between them have a
width w,, the shear in thesc webs g, can be derived from a summation of forces -
on a horizontal section through the windows:
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Figure 8.22
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Stmilarly, if the effect of the cutouts is assumed to exiend over a vertical distance
h, as shown, the shear flows in webs above and below the windows may be

obtained by considering a vertical cross section through a window: -
h N
=70 (8.26)
h

The shear flows g3, shown in Fig. 8.22, can be found by considering cither a
horizontal section through the webs or a vertical cross scetion through the webs,
The two equations are

Gawa+ gywy = ggw
and gihy + gahy =qoh

Fither of these two equations, when values from Eqgs. {8.25} and (8.26} are substi-.
tuied, reduces to

hy w ‘
gs = ‘ln(l — -2 "—1) (8.27)

hy wy

The notalion is shown in Fig. 8.22,
Openings for large lusclage doors may be analyzed in the same manner as

wing cutouts. Semetimes it is difficuit lo provide rigid fuselage bulkheads on -

either side of an opening, because of interior space limitations. In such caszs, a
rigid doorlrame can be provided so that the doorframe itsell resists the shear
loads in place of the cutout structure. 1f such a structure is provided, # is no
longer necessary {o have the heavy bulkheads adjacent to the opening. A fuselage
doorframe usually must follow the curvature of the fuselage and hence does not
tic in a plane. Thus, the structure of the doorframe must be capable of resisting
torsion as well as bending, and the frame must be a closed-box structure.

8.7 SITEARING DEFORMATIONS

In the analysis of semimonovogue vebicle structures, the shear stress distribution
is of great importance, Much of the classical theary of statically indetgrininale
structures has been developed for the analysis of heavy structures in which shear-
ing deformations are of minor importance. Consequently, much of the published
work on structural deflections and indeterminate struclures does not teeat shear-
ing deformations. The deflections caused by shearing deformations can be deter-
mined by the method of virlval work, in the same manner as other types of
deflections are analyzed.

The shearing deformation of an elastic rectangular phate with thickness ¢,
width L., and length L, is indicated in Fig. 8.23a. The shearing strain €y IS
obtained from the relation

€y

Ty
===t (8.28)

R ¥ Rk a4 T3

T
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Figure 823 Plte deformation under shear action.

where G = shear modulus
a,, = shearing stress
g = o, f = shear flow

In finding the deflections of a structure resulting from shear defonr}alions of
the webs, il is convenient 10 use a unit virtual load applied at the point of the
desired deflection A. Thus from Eq. (6.31), replacing the gencralized displacement
g by A yiclds -
16QJia) = | LOTHE} d¥

~

or 1-a=1{d0,6,dV 8.29)
Jr o
Utilizing Eq. (8.28) in Eq. (8.29) yields
" dq g
- A= | — =4V
LA it G
[ q.q
or A= J, ai dv (8.30)

where g, = 8, = shear Row duc to the unit applicd load and g = real shear flows
which produce the deformation. Integrating Eq. (8.30) gives

A = Du9EsLy (8.31)
Gt
For a structure which has N webs alfecting its deflection, Eq. (8.31) becomes
N N
A= z Quin;L.qL[a i=12,....,N (832}
Q=1 ifi

Equation (8,32} applics only to clastic deformations which salisfy Eq. (8.28).

8.8 TORSION OF BOX BEAMS

One of the most common applications of Eq. (8.32) is finding the angle of twist of
box beams. such as that shown in Fig. 8.24. The shear flows g may resuit from
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Figure 824 Boy heam.

any condition ol loading, and they are obtained by the methods used in Chap. 5:
Smcs-e an angular deflection is required, a unit virtual couple {torque) will be
applied as shown in Fig. 8.25 and the resulting virtual shear flows areq, = 1/(2A)
u.'hc:rc A is the enclosed area of the box. The webs arc assumed to have dimeni
sions L, = As and L, = L. The angle of twist 0 is oblained by substituting these
values into Eq. {8.32): o e e e ’

;
| (8.33)

The summation includes all webs of the structure,

Exgmple 8.5 The box beam siown in Fig. 8.26 has Front spar-flange areas
which are 3 times the rear spar-flange areas. Find the angle of twist al the
free end. Assume G = 4 x 10 Ib/in2.

S()L.UTI()N The shear flows ¢ are shown in Fig, 8.27. All these shear lows are
positive excepl the shear flow in the right-hand web, which tends to preduce

I'igure 8.25 Box beam under the action of a
unit torque.
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a counterclockwise rotation. Hence, from Eq. (8.33) the twisl is

g As L. L q As
=) =~ s ) e
z 246 2AGZ t

I - l400><10+200x40x2 200x10)
T 2x 300 x 4 x 10°\ 0.081 0.040 0.032

= 0.020 rad

8.9 ELASTIC AXIS OR SHEAR CENTER

The elastic axis of a wing is defined as the axis about which rotation will occur
when the wing is loaded in pure lorsion. For the wing shown in Fig. 8.284a, in
which the cross seclion is uniform along the span, the elastic axis is a straight
linc. Peints on the elastic axis do not deflect in the torsion loading, but points
forward of the elustic axis arc deflected upward. It is necessary to calculale the
position of the clistic axis in order to make a flutter analysis of the wing,

‘The shear center of a wing cross seclion is defined as the point at which the
resuliant shear load must act to produce a wing deflection with no rotation. The
shear force shown in Fig. 8.28h deflects the wing in transtation, bul causes no
rotation of the cross scction about a spanwise axis. If the wing is an elastic
structure, then the shear center of a cross section must lie on the elastic axis, since
a force at the shear center produces no rotation at the peint of application of the
couple and the couple must therefore produce no vertical deflection at the point
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: y The total shear flow ¢ is the sum of the component go and the compenent ¢,
: " where q" is the shear flow if web 1 is cut:
; =go+7q
: Fignre £.28 9=+ 4
‘r Substituting this valuc into [q. (8.34) and taking g0 oulside the summation
| ol application of the force. Practical wings deviate slightly from conditions of sign (because it is constant for all webs) produce:
clasticity because the skin wrinkles and becomes incHective in resisting com- 4o S as +3 ¢ A5y (835)
: pression loads but, for practical purposes, the elastic axis may be assumed to “ey i -
| coincide with the line joining the shear centers of the various cross sections. ; The numerical solution is tabulated below. Columnt 1 lists values of As,
' . :I"he shear .c.entcr of a cross section may be ‘calcu.latcd from Eq. (8.33) _by the circomfercntial fengths for the various webs, as shown in Fig. 8.29. These
linding the position of_l!u: iesultant shear fo_rce.whi_ch yields a zero angle of twist. values are divided by the web thickness in column 2. The valucs of ¢, the
The shear-center location depends on the distribution of the flange areas and the , shear flows when web [ is cut, are tabulated in column 3. The shear flows are
thickness of the shear webs. The procedure can be studied hest by means of an considered positive when they are clockwise around the outboard face of the
iliustrative example. . . cloment of Fig. 8.3 The values of ¢ Asft are caleulated in column 4
Example 8.6 Find the shear center for the wing cross section shown in Fig. N N
8.29. Web 3 has a thickness of 0.064 in, and the other webs have thicknesses = 7=
Web As ! g ' 24 24g q

of 0.040 in. Assume G is constanl ions. The ¢ ion i ‘
0 ! ssume lﬁ. consiar .for all cross sccuons The cross seclion is W @ 3) @ &) o o
symmetrical about a horizontal axis.

I R 200 0 [t} 80 0 —0.53

SoruTioN The position of the shear center does not depend on the mag- 2 g W -1 2000 B0 —B0D  —10.53

nitude of the shear force. Thus a shear force ¥ = 400 Ib is assumcd arbi- 3 10 156 20 3120 0 0 205

) - . . 4 8 W -0 20 0 0 1053

: trarily. The shear-flow increments are obtained by the methods used in Chap. s s %0 0 0 0 p 53

; 5 and are as shown in Fig. 8.30. The shear flow in web 1 is 1_1ssumed tohavea 5 15.7 332 +20 7840 239 4780 +1947
value of ¢,. and the remuining shear flows are expressed in lerms of gy, as Total 1348 720 399 3980

shown, In previous problems, the shear flow g, was obtained from the'equi-
librjum of torsional moments, bul the external torsional momenl is nol
kuown now. So we assume thal the 400-1b shear force acts at a distance £
from the right side, as shown, and that this point is the shear center. The
shear flow g is found from the condition thal the angle of 1wist 0 be zero.
From Eq. (8.33), where L = 1 and 24G is constant for all wchs,

qgAs L

1= 354G =

Kb

be tuken outside the sumimation sign and then canceled:

: _ q As _
il = Z _—I =0 {8.34) Figure 8.30
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Subslituting the totals of columns 2 and 4 into Eq. (8.35) yiclds
1348q, + 720 =0
go = — 0.53 Ibfin

The final shear flows in the web g are calculaled in column 7 by adding
the value of g to the value of g in column 3.

The position of the shear center is now calculated from the equilibrium
of torsional moments. The moment about any point can be oblained from
the relation -

T = X244
or, since ¢ = ¢¢ + ¢,
T = quL24 + X244’ : (8.36)

where A is the area enclosed by a web and the lines joining the endpoints of
the web and the center of moments. The center of moments is taken as the
lower right-hand corner of the box, and values of 24 arc tabulated in column
5 and values of 244" in column & The totals of columns 5 and 6, when
substituted into Eq. {8.36), yield

-400% = —0.53 x 399 + 3980
X=942in

This value of X delermines the horizontal location of the shear center.
From symmetry, the vertical location is on the line of symmetry. For cross
sections which are not symmetrical about a hotizontal axis, the wvertical
location of the shear center can be found by considering a horizontal shear
force lo act on the section and then proceeding in the same manner as above
to find the shear flows for a zero twist. The location of the resultant of these
shear flows, obtained by equating totsional moments, gives the vertical posi-
tion of the shear center.

8.10 WARPING OF BEAM CROSS SECTIONS -

When a rectangular box beam is subjected to torsional moments, it deforms as
shiown in Fig. 831. If the cross section is square and the wcb thickness is the
same on alf sides, the cross sections will remain plane after the box is twisted.
Simitarly, if the box beam is subjected to bending with no torsion, the planc cross
sections will remain plane after bending. In the usual case, however, the box is
rectangular and resists some forsion; therefore the cross seciions do not remain
plane, but warp. In the analysis of box beams in Chap. 5, we assume that
torsional moments do not aflect the distribution of bending stresses, or thal cross
scclions are not restrained against warping. The shear flows computed from
these assumplions are accurate for all cross scctions excepl those which are very
close 1o a fixed cross section.
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tel thy Figure 8.31

The amount of warping of a cross scction can be measured by the angle §
between spar cross sections, as shown in Fig 8.32a. This angle is calculated by
applying unit virtual couples, as shown, and calculating the relative rotation from
Eq. (8.32). The warping of cross sections of the beam of Fig. 8.26 is calculated by
assuming that the shear flows g are as shown in Fig. 8.27. A unit spanwise length
of the bear is considered, as shown in Fig. 8.32. The unit couples acting on the
spars are represented by forces of 0.1 at distances 10 in apart, and the values of g,
must be 0.05 for all webs, as shown, in order to satisfy all conditions of stalic
equilibrium. Substituling valucs from Figs. 8.27 and 8.32 into Eg. (8.32) yiclds

(jzvf’atifﬁ'f.-”ﬂSXlﬂOMOxI><2

“ G 0040 x 4 x 10%

005 x 200 x 10x 1 005 x 1400 x 10 x 1
0032x4x10° 0081 x4 x 10°

= 0.00362 rad

This warping of the cross scction is the sume for all cross sections on which the
shear flows are as shown in Fig. 8.27. The 1-in length along the span was selected
arbitrarily. bot any ather length b might be vsed. The values of ¢, shown in Fig.
8.32b would be divided by an assumed length b; ther the terms jn the above
summation would be multiplicd by b instead of the unit length, in order to yield
the same final resuli.

At the fixed support shown in Fig. 8.26, obviously the warping of the cross

Fignre 832
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Fignre 8.33

section is prevented: therefore the values of ¢ cannot be as shown in Fig. 8.27.
The values of g which are required to prevenl warping are calcunlated now for this
beam. At any cross section, the shear flows must be as shown in Fig. 8.33 in order
to satisfy conditions of equilibrium. From the equilibrium of moments about a
spanwise axis through one corner, and from the equilibrivm of horizontal and
vertical shearing forces, the shear flows ¢; must be equal and in the directions
shown for three webs. For the front spar web, the shear flow is 1600 — q,.
Substituting the values of g from Fig. 8.33 and the values of g, from Fig. 8.32b
into Eq. {8.32) gives -

Zq,,qab _0.05q, x40 x1x2 005, x10x1
0.040 x 4 x 10° 0.032 x 4 x 10%

0.05(1600 — ¢;)10

~ 5081 % 4 % loF = 1-0000304q, — 0.00247
.| x

At the fixed support, f = G, or g, = 81 1b/in. The final shear flows are shown in
parcntheses in Fig. 8.33. These arc seen to be considerably dillerent from those
shown in Fig. 8.27.

The shear flows of Fip. 8.27 apply a running load ol 400 Ibfin to the rear spar
flanges and a running load of 1200 Ibfin to the front spar flanges. Near the
support, the shear flows apply a runaing load of 162 Ib/fin to the rear spar flanges
and a funning load of 1438 Ib/in to the front spar flanges. Near the support, the
bending stresses are therefore higher in the front spar than in the rear spar, the
axizl strains in the front spar flanges arc greater, and the cross sections change
from plane scctions to warped cross sections. The spanwise distance required for
the transition depends oo the flange areas and web gages. In this problem, the
shear Mows at a section 30 in from the support have approximately the values
shown in Fig. 8.27. The bending stresses outboard of this cross seclion arc ap-
proximately equal for the two spars, since all cross sections warp the same
amount. The effect of a fixed cross section is to increase the bending stresses and
shear flows in the loaded spar for a spanwise distance which is approximately
equal to the average of the cross-sectional dimensions.

T

.

S S — RN A A

Figur2 8.4

8.11 REDUNDANCY OF BOX BEAMS

The only type of box beam which is stable and statically determinate consists of
three flange areas and threc webs, as shown in Fig. 8.34. In this beam, the three
unknown flange forces Py, P,, and P, and the three unknown shear flows g,, .,
and g3 may be obtained from the six equations of static equilibrium, ZF,_ =0,
ZF,=0,ZF. =0, ZM, =0, ZM, =0, and ZM_=0. As in any other statically
determinate structure, the internal forces are independent of the areas of stiffness
propertics of the members. In any statically indeterminate structure, the areas
and elastic properties affect the distribution of the internal forces in the members.

The internal bending stress distribution in all common beams is statically
indeterminate, and the deformations are considered in deriving the flexure for-
mula ¢ = My/i. This equation is so common that it is not cusiomary to think of
such beams as statically indeterminate. The bending stress distribution in a box
beam containing more than three flanges, such as that shown in Fig, 8.35, de-
pends on the arca ‘and elastic propertics of the {flanges. The shear-flow dis-
iribution, which is derived from the bending stress distribution, also depends on
the arcas of the flanges and is therefore statically indeterminate.

In this and the following section, we assume that the bending stress is ob-
tained by the simple formula and that a purc torsion load shown in Fig. §.35
produces no axial stresses in the flanges. These assumptions have been used in
previous shear-flow analyses and-have been shown to be accurate in most cases.
The shear-flow distribution in a singic-cell box then can be obtained from the
conditions of statics, and such a box is considered as statically determinate for
shear-flow calculations. With the assumption that a torsional moment produces
no axinl stresses in the flanges, the equation g == TH2A} for the shear flows is
obtaincd from the cenditions of statics.

Figure 8.35
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A two-cell box such as that shown in Fig. 8.36 cannot be analyzed by the
equation of statics, It is assumed that the wing ribs have sufficient rigidity that
the (wo cells deflect through the same angle 8. Then this deflection condition and
the equations of statics are sufficient for the shear-flow analysis, and the structure
has a single redundancy. It is, of course, assumed that the torsion produces no
axial load in the flanges; hence the Mlanges are not shown in the sketch. A box
structure with several cells has one less redundant than the number of cells, since
webs in all but one cell may be cut to leave a single cell as a statically determi-
nate base structure.

The angle of twist of a box beam was found by Eq. {8.33):

q: As; L;

0 —_ ’n .3
b 241, G, 8.3

where the terms are indicated in Fig. 8.35. This cqualion can be used for the
angle of twist of a multicell structure, if the summation is evaluated around any
closed path and the area A is enclosed by this closed path. Thus, for a three-celi
structure, the summation can be evaluated around the entire perimeter enclosing
the three cells, the entire perimeter enclosing any one ccll, or the area enclosing
two cells. This procedure is sometimes defined as a line integral, as follows:

L.
0= f]_];_ ds
241, G;
Where the integral represents an evaluation along a closed path. relurning Lo the

starting point. The values of the summation or integral arc considered posiiive in
going clockwisc around the enclosed areas.

8.2 TORSION CF MULTICELL BOX BEAMS

For the two-cell box of Fig. 8.36, the zagle of twist f, for cell 1 must cqual the
angle 0, for celf 2. A unit length L may be considered, since L is always the samc

for the two cells:

gi 8% g1 Asi (8.37)

1 ZALfin_- 2 2A1riGi

i il i T2 PR

%9
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The first summation must be evaluated around the total perimeter of cell 1
. R - . - !
imchuding the interior weh, and the second summation must include afl wehs of
ccli 2 and the interior web,

’ The value of g for any exterior web of cell 1 is gy,, and for the interior web it
8y~ b, Similarly. the value of ¢ for an exterior web of cell 2 s 4z, und for

N - . . . - . ' )

the 111tenor.m,.b iL1s ¢y — ¢,,. Equation (8.37) now can be rewritten by making
thcse E:ubstltutmns, maving constuant terms outside the summation signs ana
assuming G to be constant in all webs: ,

qu ¥ éSl . B (&) _ qu v As; gy {As
AT A\ ._;,4_? . A\t /o, (§-38)
The following abbreviations are used for the terms in Eqg. {8.33):
) - As; . As; As
(5 = — } = - = i
ii %, 1 G2z < &2 (i)l.z {8.39)

‘ The term &8, represents a summation around the entire perimeter of cell 1,
?u ;} summation around the entire perimeter of cell 2, and ¢,. the value of the
interior web. The terms 8;; and §;, both include the term §,, for the interior
web. The & terms do -nol have quite the same significance as the similar terms

uscd in previous structures, because the constanis are eliminated for stmplicity
and the redundanis are taken as shear Aows,

By utilizing Eq. (8.39), Eq. (8.38) becomes
1 . ! 1
A_l (41300 —¢pda) = Z (42,922 — ¢1,8,3) (840)
The cquation for equilibrium of mioments about a torsional axis can be found
by reference to Fig, 8.35:
T =244, + 24545 (8.41)

Equations (8.40) and {8.41) can be solved simultancously for the two unknowns,
o and qa,. '

The shear flows resulting from pure torsion may be obtained in a similar
manner for a box beam with » cells. From the conditions of continuity of defor-
mations between adjacent cells,

ar

. i
Z Gy — G d;2) = fi_z {43822 — ¢4, 6,2 — 45, 923)

!
= Z (¢2:033 — G2, 023 — Q. 834) {8.42)

l
= I- {qnl 5";: = Q- 113 rslrl 1);1)

H
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The terms in Eq. (8.42) are defined as

aun = Z ﬁ ‘Smn = "-smn = (E)

2k 1
and A, = nth cell cnclosed area (8.43)

The summation of Eq. (8.43) includes all webs around the circumference of the
cell, and the term 3, applies to the interior web between celis m and n. The
equation for equilibrium of torsional moments is

T =24{g,, + 24293, + 24345+ + 24, 4u (8.44)

Equations (8.42) and (8.44) form a set of n simultaneous linear algebraic equa-
tions which can be solved for the # UnknOWRS, g1, Gzie + oo G-

8.13 BEAM SHEAR IN MULTICELL STRUCTURES

Box beams usually resist transverse shearing forces in addition o the torsional
moments already considered. Often it is convenient to consider the two effects
separately, as a shearing force applied at the shear center and as a torsional
moment about the shear center.

In a mutticell box such as tbat shown in Fig. 837, the increments of {lange
loads AP can be calculated from the bending stresses al two cross seclions or
from the shear equations as used in Chap. 5 for a single-cell box. If one web is cut
in each cell, the shear flows ¢’ can be obtained from the equilibrium of spanwise
forces on the stringers. The structure shown in Fig. 8.37 is unstable for torsional
moments, but the system of shear flows ¢’ will be in equilibrium with external
shear forces acting at the shear center of the open section.

The shear flows gy, Gz,, and gy, in the cut webs can be obtained and
superimposed on the shear flows ¢ to give a system of shear flows which have a
resultant equal to the external shearing force acting at the shear center of the
closed multicell box. A superposition of the conditions shown in Figs. 8.37 and
.38 yiclds the shear fows in a closed multicell box with no twist. The values of
Q1s» Gz5+ and g3, are found {rom the condition that the angles of twist ), 8, and
0, for each cell must be zero. After q,,, 42, and g3, are obtained, the equation of
torsional moments yields the position of the shear center of the closed box. Then
the external toraue about the shear center can be computed and the shear flows
resulting from this torque calculated by the methods of Sec. 8.11.

Figure 8.37
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Iipure 8,38

] The c.onditions that the angles of twist for cach cell be zero yield the follow-
mg equation for cach cell:

qu_
Zum"

Since G usuaily is constant and 24 is always constant, these terms may be
canceled from the equation. Then

As
Z%J=0 (8.45)

For cell one Eq. (R.45) vields

q; As; As; As
E_T_+quz_‘—%(_) =0 (8.46)
1 i T L /1.2 -

in w'hich sm.nmulions are evaluated around the entire perimeter of the cell, in-
cluding the interior web, and the last (erm applies to the interior web only. The

terms in Eq. (8.46) may be abbreviated, and similar cquations may be written for
the other cells:

16+ §1c811 — §2,612 =0
Fr0 + 420052 — G182 — 3.2 =0 (8.47)

F30 + 3,053 — g2023 =0

The {ollowing abbreviations are used:

) qi As; . - o As; . q As,
m°=2 9, %u=%“74 %u=leJ (8.48)
' i -3k

in addition to the abbreviations given in Fq {8.43).
] Equuuops (8.47) may now be solved simultaneously for g, q,,. and gs,.
These equations are applicable to a two-ccll structure if all terms containing the

sulbscripl 3 are dropped. Similar equations may also be written for any number of
cells.

Exgmp!e 8.7 Find the shear flows in the two-cell box of Fig 8.39. The
horizontal webs have gages of f = 0.040 in, Assume G is constant for all webs.
The cross section is symmetrical about a horizontal centerline.’
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4000 1

2 1in? 1in?
it

0.080-+1=— 0.040—1+
—1+—0.054

_i
}-_104—!—— Zﬂ—-l Figure 8.39

SoruTion The shear flows may be vbtained by superposition of the values of
¢ for the structure shown in Fig. $.40, and the values of g, and g, are
shown in Fig. 8.40b. The shear llows g, and g, are computed as the sum qf
values for a load at the shear center and for 2 pure torsion Ioadxng{. First, if
we consider the shear flows g, and q,, required to produce no twist of the
structure, the following equation is obtained for cell 1:

20
q; As; 20 _ _m_,, (ﬂ)
2T "(m) *n, I00’(0.040 *9\8040

10 0
+ (qls — Y + 100) 0050 =

And so
1450q,, — 200q,, — 5000 =0 (@)

A similar equation is written for cell 2:

10
q: Bs; 10 10 ) (__)
; _ir'_ = qh(——'“"o.otio) + ((Iz, + 200}(0.080 + g2 0.040
100 10 ) =0
+ (QZE — Gz ) 0.050 -

and
825, — 2004, + 5000 =0 {b)

Fauations (¢} and (5) can now be solved simultancousty, yielding q,, = ?,_.7
. —5.4 Ib/in. The minus sign indicates that the shear flow g3 is

and g, = :
( o unterclockwise around the box.

opposile to the assumed direclion, or co 3 \
These values represent the shear fNlows for a load applied at the shear center.
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The torsional moment about the reference point O of the shear flows is
244 +241q9,, + 24, 45,
where A, and A; represent the enclosed areas of the cells, and
00 x 200 — 100 x 200+ 2 x 200 x 27 —2 x 100 x 54 =0

The external shearing force of 4000 b acting at the shear center produces no
torsional moment about point O, or the shear center of the cross section is at
point O.

he actual load of 4000 Ib acting at the left-hand web has a moment arm
of 10.0 in about the shear center. The shear flows g, and g,, must now be
obtained for a purc torque of T = 4000 x 10 = 40,000 in - Ib. From Eq.
{8.44) ’

40,000 = 400q,, + 2004,

and from Eqg. (8.42)

&2x20+ 10 + 10 2 10
2000 0.040  0.040  0.050

"~ 200 0.050

_ qz,(2x10+ 10 + 10 gy 10

T 100\ 0.040 ' 0.050 ' 0.080 100 0.050
These two cequalions are solved simultaneously and yield g, = 66.7 and
2, = 66.7 Ib/in. The inal shear fows in the cut webs are obtained from Egs.

(¢} .and (b} as q,, = 69.4 and ¢,, = 61.3 1bfin. These values are now superim-
posed on the values of ¢, and the final shear flows are shown in Fig, 8.41.

PROBLEMS

8.8 Find the shear flow in each web of the beam shown in Fig, PRI and PR2, and plot the

/I

L Ll Ll LsL S

et L] ilw+ -0 hl--i‘ - 10 ul‘i

", L Figure P8.1 and P82
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distribulion of axial load along each stiffening member. Solve for each of the following loading
conditions:

(@) P,=30001b P,=P,=0

(0} P,=6000 P,=Py=0

{c) Py = 6000 ib P, = 6000 Ib Pyo= 6000 1b
£.2 Repeat Prob. 8.1 for the following loading conditions: P, = 2400, P, = 1200,and P, = 13001b.
8.3 The pulley bracket shown in Fig. P83 and P84 is attached to webs along the three sides. Find
the reactions R, R, ond R of the webs iT P = 1000 tband 8 = 45°.

i

Figore P83 and "8.4

8.4 Repeat Prob. 8.3 for P = 2000 ib and # = 607
8.5 Find the shear Nows applied by the skin to the fuselage ring showa in Fig. P8.5 1o PR.8 if
P, = 20000 and Py = M =0, -

8.6 Find the skin reactivns on the luselage ring in Fig. PES (0 PRR; Py = 1000Ib,and P, =M =0

45%+ Al siringers
Ap=02 in’ o

Figure P8.5 to TRY

%7 Find the skin teactions on the fuselage ring if P, = 20001b, P; = [0001h, and M = 10,000 in « Tb.
84 Tind the skin reaclions on the fuselage ring if P, = 15001b, P, = 500 1b, and Af = 3000 in - Ib.
8.9 Find the skin reactions on the rib shown in Fig. P39 and PE.10 il the rib is load

Maages at vertical sections 10 and 20 in forward uof the spar.

810 Repeal Prob. B9 0 the rib is loaded by a concentrated upward foree of 660 fb, applicd al & point

2 in farward of Uhe spar, instead of the distributed load.

211 Find the skin reactions on the rib shown in Fig. PR.11 1o PR16. Analyze vertical cross sections
at I0-in intervals, obtaining the web shear flows and the axial londs in the rib flanges. Assume the

loads 7, = 40,000 1b and P, = 0. The spar flunge areas are o = b=c=d=1in"

ed by the

distributed load of 20 1bfin. Caleulate the shear flows in the rib web and the axial loads in the rib

_‘-;-&_7.-
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1 Figure P8.11 to PR.16

8.12 Repeal Prob. .11 for I', = 0and P, = 000 Ib.

813 Repeat Prob. 8.11 for P, = 24,000 ib and P, — $000 Ib.

8.14 Repeal Prob. Py = : i

o :,—: li:;? S.I.l far P, = 40000 th and P, =0 If 1he spar Mange arcas are a = 3 and
8.15 Repeat Prob. R.1! f =g -= i

o =T:; " i;(;- or 'y =0 and Py = 8000 b if the spar fange areas are a =3 and
B.16 Repeal Prob. ¥, P i Tl i .
; =r=¢.[:.; | ,:,01 L1 for £p = 20000 and P, = B000 b if the spar Bange arcas are a =3 and
18::” The structure of Fig. .16 has the dimensions in inches hg = 5, ki =15, a = 20, length L = 100.
hur_ a ;Inrql.m T of 40,600 in - lb, ﬁ_nd gy 4. andg,. Find the axial loads in the corner flanges and the
shear flows al a crogs section 50 in rom ene end. Check ihe values by the equilibrium of torsiona
momens, including the in-plane components of (he Hange loads.
B.18 Repeut Probh. B.2iTh, = 10in.

8.19 Find the shear flows and thie flange | ! i i i

unge loads for the struct T

012000 &t s s and ure of Fig. 8.18 if only the horizontal foad
8.20 F"m§i the shear flows and flange loads for the nacelle structure shawn in Fig, P20 and P8.21.

10.000 10,010 1
l R
N
&3
Al
A
My N
0K Hh ‘Q
N
N

s

i 30 in

Figure P8.20 and P8.21
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8.21 Find the shear flows and flunge loads for the nacelle structure shown in Fig. PB.20 and PB.21 ifa

clockwise cotrple load of 200,000 in - 1h is acting in addition 1o the loads shown.

%22 Find the shear flows in all webs of the structure shown in Fig. 8.20 il a clockwise souple load of

L0000 in - Th is acling in addition Lo the loads shown,

8123 A contilever wing spar is 1} in deep between centroids of the Range areas. The bending stresses

in the Nanges are 30,000 Ib/in®, and the shear stresses in the web are 15,000 1b/in® at ail points. Find

the deflection resulting from shear and bending deformations as well as the percentage of the deflec-

fion contribuied by the shear at () 20 in from the fixed support, {h) 41} in from the fixed support, and

(¢} 100 in from the fixed support. Use E = 107 and G = 1,000,000 Ib/in’.

#.24 Find the angle of twist of the wing shown in Fig. 8.26 il all four flanges have equal areas. Use

G =4 x 10%[bfin’. <

.25 Find the angle of twist of the wing shown in Fig. 826 if all webs have a thickness of 0.04¢ in.
Ise G =4 x 10%Ibfin?.

8.26 Culculate the location of the shear center, or elastic axis. of the wing in Fig. 8.26,

8.27 Find the shear fows in the webs of the structure shown in Fig. 8.39. The horizontal webs have
gages of 0.064 in and G is constant.

828 Find the shear flows in the webs of the structure shown in Fig. 8.39 if alt fange areus are | in?

The horizontal webs have gages of 0064 in, und G is conslant.

£.29 Find the shear Nows in the webs of the structure shown in Fig. PR.29 to PRIZ Il all flanges have
areas of 1 in? and all webs have gages of 0.040 in. Assume ¥ = 3000 Ib, ¢ = 8 in. and G is constant for
all webs.

i
Arca Symmetrical abont
0 in? centerline

‘ ‘.1!}‘_" A, / Ay

7 /,/.4-.#1' i / 13 —mef— ]
= ; 1(rin
[
AS-2lin . ; ,.[ .
10 in—sf==10 in Figure PR.29 to PR32

8.30 Repeat Prob. 8.29ife =0

£31 Find the shear flows in the webs of the structure shown in Fig. P'8.29 lo PRI2I[A, = A3 =1
ind, A, = 2in% 1, =, = 0.064 in, ¥V = 4000 [b, and ¢ = 10 in. The ather webs have gages of 0.040 in,
ad G is constanl for all webs. o,
£.32 Repeat Prob, 831, assuming an additionu] vertival weh of 006d-in gage 1t Qange A,. &
£33 Assume the box beam shown in Fig. 6.194 1o be loaded by a torsional couple of 160,000 in - Ib
at the free end instend of the vertical load shown. Assume the cross seetion Lo be symmictrical about a
horizantal centerline and all web gages 1o be ¢ = 0.020 in. Calculate the warping displacemenis of u
cross section which is free 1o warp, and caleulate the axial flange loads and web shear flows at the
wall and at cross sections ai 0-in intervals slong the span. Note thal the stringer of 2-in? area resists
o dead and does not afect the analysis. Assume E = 107 lyyin® and G — 04E.

CHAPTER

NINE
THERMAL STRESSES

9.1 INTRODUCTION

Temperature changes in structural system components are accompanied by a
change in length which resuits in what is called thermal stresses. The subject of
Lhermal slress analysis encompasses a wide range of structural systems and com-
ponenis, with applications in airframe vehicle structures, nuclear reactors, jet and
rocket engines, oif refining fines. and some civil engineering structures. In this
chapter, we introduce thermal stress apalysis.

9.2 THERMAIL STRESS PROBLEM: PHILOSOPHY

A temperature change in a given solid material causes fibers to expand and

. contract in diflferent umounts. For the solid to remain conlinuous, a system of

thermal strains and corresponding thermal stresses may be induced, depending
on the characteristics of the solid and its temperature distribution. A homoge-
neous solid with no physical external restraints is free of thermal stresses if the
temperature distribution is uniform throughout the solid. This condition is re-
ferred to as free expansion or contraction of the sohid. Upon imposing external
restraints, the free expansion or contraction is prevented, and thus thermal
stresses are introduced to the hody. To illustrate, consider the beam of Fig. 9.1 to
be heated unilformly from a datum temperature T; to a final temperalure T
degrees Fuhrenheit. The clongation of the beam due to the temperaiure change

M
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N
N Iy
N 1. Ko _w__E
N

e L 4J1 Figure 9.1

*
T — Ty is given by
&y = T — Ty)L (5.1)

where o = material thermal cocfficient of expansion 4, in - °F
L = beam length, in
T, Tp = final and datum temperatures, respectively, °F
The elongation of a beam duc to a uniform tensile stress ¢ is
ol

8 = z 9.2)

From compatibility conditions, the total deformations given by Eqs. (9.1) and
{9.2) must equal the connceting spring deformation &, :

L

T — To}L + EE =4, (9.3)
From equilibrivm conditions, it may be secn casily that
Fo+ F,=aA+ K& =0 {94)
where F, = beam inlernal force = g4 and F, = spring force = Kd,. Thus

gAd
= —— (9.5)

5 X

Upon substituting Eq. (9.5) into Eq. (9.3) and solving for the stress 4, the follow-
ing is obtuined:
) . oAT— Tl
T L/E+ AIK Py

- aKEL{T — Ty) (9.6)
KL+ AE
By cxamining Eq. {9.6), it can be shown that if K = 0, which is equivalent to
the frec cxpansion of the beam, the thermal stress is zero. In the case where
K = o0, which is cgnivalent to having the beam supported between two rigid
wails, the thermal stress is

g=—ob(T - T 8.7
In gencral, g (9.6) may be written as
o= —RaET — Ty 9.8
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where R, is a nondimensional restraint coefficient whose value ranges between 0
and 1. For R, = Q, the beam is completety free to expand, whereas for R, = 1, the
beam is completely prevented from expansion.

From the preceding illustration, it may be concluded that the formulation of
the thermal stress problem is identical to that of the isothermal stress problem in
that it requires consideration of the following conditions:

1. Equilibrium of forces

2. Compatibility of deformations

3. Stress-strain and strain-displacement relationships
4., Boundary condifions

9.3 FORMULATION OF EQUATIONS FOR
THERMAL STRESS ANALYSIS

Most structural prohlems encounlered in engineering are commonly in a threc-
dimensional siate of stress. Quite often, three-dimensional problems are dilficult
io solve and hence through valid simplifying assumptions are normally reduced
{0 two- or one-dimensional problems. For instance, in the case of a plale struc-
ture, if we assume that the thickness is small compared to its other dimensions,
then the stresses through Lhe thickness direction usually are ncglected, thus re-
ducing a three-dimensional problem to a two-dimensional one. In the case of a
beam, all stresses are neglected but one normal stress and one shearing stress,
thus reducing the problem to a one-dimensional one. Therefore, in the rest of this
baok, all formulations of equations are in one or two dimensions.

Equilibrium Equations

The equilibrium equalions of a two-dimensional solid shown in Fig. 9.2 are
derived in Chap. 3:

Oexn F0ey, + X =0 (9.9)

T+ 0, .+ ¥ =0 (9.10)
where @,,, 0,, = normal stresses
o,, = shearing stress

X, Y = body forces

In polar coordinates, Fo. (9.10) becomes

+ Grﬂ,ﬂ'}_ o-rrﬁaﬂﬂ_’_R:o (9-11)
r r

nrl'f. r

oo, 8

20
+0‘rg.,+"';¢+®=0

where the stresses and body forces are shown in Fig. 9.3.
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Strain-Displacement Relationships

I we consider small deformations, the strain-displacement relationships ave

€ = Oy x €=y y €y = Qo y T G x (9.12)
or, in polar coordinates, ’
qr ‘10. 8
€r = Gp.r E{)B-“+
r r
($.13)
4r s 2
Co="" ¥ o~

where g = generalized displacement function and € denoles strain components.

Thermoelastic Strain-Stress Relationships

The thermoelastic strain-stress relationships for plane stress problems are ex-
pressed as follows:

i
€ex = E (5, — "'ayy) +af
= l T {9.14)
€ = E {oyy ~ va. )+ o -
e = Ju <
(fﬂ
e, i
RN
SONGES B~
\\ / ""-‘..._._
\ %
%x o /'J— o"&-
£ 7
k2l i -,
- = q,
i) T, “- Figure 9.3

H
3
4

o~

e e W T R e g 0

e
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where o = coefficient of thermal expansion and T = temperature above the
datum temperature. For plane strain problems Eq. (9.14) becomes

I =12 v

€ex = E (‘T,\-_‘ - — v 0'”) + CCT(I + v
I —v? v

£ = B (aw g o',,) +aT({l +v) {9.15)
O,

In polar coordinates, Eqgs. (9.14) and (9.15) become, respectively,

I
€, = ? (ar( - vaﬂﬂ) + aT

€pp = 1’ (Fgo0 — vo,) +aT plane stress {9.16)
Ge
€ = G
1=y v T
€ = E 6rr_l_vdﬂ‘ﬂ +a ( +V)
I — 3 v .
€0 = " oo 1T A +aT{l + v} plane strain G417
_.0n
€y = G

Compatibility Equations

The compaltibility equations can be expréssed in terms of strains alone:

€oxpy T €y xx = €xpuxy (9.18)
or, in polar coordinaies,
or, B9 2600. ¥ Epp.p €rﬂ. ré Erﬂ. 2
€00 or + Fi + - = + ] (9. 1 9)
r r r r r

In terms of stresses alone for planc stress problems, Eq. (9.18) becomes

(a - ’1) a.. +a.+ ExT) (l+v)(ax+ay (9.20)
— o7, % = — — 4 — :
axt o oayt T * ox  dy

ar, for plane strain problems,

(a N a)( N +mET’ 1 (ax+ay) ©21)
NN ¥ xETY gx | or )
axt )\ In ™ 1y 1—v\dx oy
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Boundary Conditions

For a specific thermal stress problem, the applied surface loads S, and S, must be
in equilibrinm with the induced stresses at the boundaries of the solid:

S, = O'ix I+ af;,m
(9.22)
_ b
S, =dhom+ b1
where ¢ _, a%, and o%, arc stresses at the boundary surfaces and I and m are
direction cosines. -
In polar coordinalcs, Eq. {9.22) becomes
S,=0{+dym

(9.23)
Ses = G40 M + 0151

94 SOLUTION METHODS FOR THERMOELASTIC PROBLEMS

In general, two-dimensional thermoelastic problems invelve six unknowns of
stresses and strains. The mcthod of solution quite often is dependent on the iype
of structure under consideration. The following are some typical techniques used
in the solution of thermoelastic problems.

Direct Solution Using Equilibrium and Compatibility Conditions

A number of simple thermal stress problcms can be solved by mercly secking a
solution for the differential equations which describe them. Consider, for exam-
ple, a circular solid plate having uniform thickness t and sobjected to a temper-
ature distribution T = T{r). Equations (2.11) and (9.19) become {note that the
stresscs and strains are independent of §)

de Gy — Tgp
L 70 _ g 9,94
i (9.244)
- d
€gp~ € + 1 ———:"j" =0 (9.24h)

Equation {9.24h) may be cxpressed in terms of stresses as

—_y igﬂ _|_ GE ﬂ —_ __—.........{! 1 1'][”" — GM) = 0 (9.241‘)'}
dr dr dr r
Solving Egs. (9.24a) and (9.24h") yields
2 d dT
p 0 00 pdl (9.25)

dir? dr dr

P e e

4
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A direct integration ol Ey. (9.24) yields

&
rZ

E r
a, = _‘:—2 J Trdr+C, + (9.26)
[1]

For the solid plate shown in Fig, 94, r =0 at the center; hence Eq. (9.26)

becomes undefined because of the term C,/r%, To render a feasible solution, C,
must be set to zero; thus Eq. (9.26) becomes

E r
g, = — ‘:—2 I Trdr+C, (9.27)
H

From boundary conditions a,, =0 at r = R;,. Hence the constant of inte-

gration C, is
E [Ro
=% Trar
R Jo

and s, becomes

E r E Ry
7, = —Ot—z‘I‘T."dr-l-m—2 Trdr
B Rg Jo
r Ro
and Top = — AET & i'ig.[ Trdr+ 22 J Tr dr (9.28)
r Jo Ri Jo
Ty =0

For a hollow circular plate Gq. (9.28) becomes

.- KE ( ra . Rllz J‘Ra '[r )
G, =313 Trdr— | Trdr
rl RE - Rlz R; R

oE (PP + R} (™ r )
R e Tr d Trdr—Tr? 9.29
T o} (RE—R.‘z L, rdr + . r dr r { )
0',0“'—'-"0

Equations (9.26) and (9.27) are cases of generalized plane stress or plane strain

- problems (body lorces are zero) and thus apply equally to unrestrained open-end

cylindrical shells.

/N

Figure 9.4
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Stress Function Solution

1F a stress function @ = @(x, y) is chosen such that the stresses are defined by

g, = ‘(?"2'9 G = 9‘”_({) azq)
xx ayz ¥ axz axy = — ax (7}' (930}

then the equilibrium equations, Eqgs. (9.9) and (9.10), are satisfied with the body
forces set equal (o zero. If @ has to describe the true stross fteld, it must salisfy
not oy equilibrium but also compatibility and boundary conditions. Thus,
substituting Eq. (9.30) into Eq. (9.20) for the plane stress problem yiclds

do , ¥ o FT  &T
i’x‘ (31'2 a},z 8};“ ta axz + _a;i- =0 (931}

In polar coordinates, Eq. (9.31} becomes
(L2, L 27 1o 1oy
at et et \ar? + PPH 02 P

f& ta 12
+abl 5+ -—+5-3/T=0 (9.32)

I o N 1 3%
O, ="+ 35—
T rar P2 ant
&
a’ﬂﬂ = A2 (9.33)

For a given specific thermal stress problem, Eqg. (9.31) or (9.32) can be solved
by using techniques of solving differential equations.

Equivalent Load Solution -

Thermat stress problems may be handled in the same manncr as isothermal
prublems if the actual thermal loads are converted to what is called equivalent
static louds. In two-dimensional problems, the conversion is accomplished by
making the following substitution:

- ExT

Tpx = Opr + 1 —

- EuT

Gy = Gy + - (9.34)
a o,
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where &,,, ,,. ., = equivalent stresses (displacement stresses) .
Ouxs Typr Ty = actual thermal stresses

ExT

I = local uniform pressure counterbalancing free-cxpansion

strain

Equation (9.34) may be writlen as

_ EaT
Gy = Oxe — 1— v
_ ExT
03y = By T (9.35)
n.t)‘ = 6-xj‘ )

Substituting Eq. (9.35) into Egs. 9.9) and (9.10) and assuming that body
forces X and Y do not exist yicld

6-:;1. X + Tep v +X=0

{5.36)
5'“,_ r -} 6-.1,\-_ < NE }'7 = ()
where ¥ and T are equivalent body forces defined as
¥ = Ex oT
ST i—vax
(9.37)
V= Ea T
B I —vdy

If we assume the appiicd surface ‘tractions are zero, then the boundary condi-
tions, Eg. (9.22), become

(5.3%)

= ~h —h
S,=danmyagl

where S, and §, arc eguivalent surface tractions defined by

{9.39)
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In polar coordinates, Egs. (9.35) Lo (9.39) become

o = — EaT
- EaT
oo = Coo — 7 (9.40)
— ‘f
O = 0Gpa
aj'r.r+a_r&£+a—” o—-ﬂa+R=0
r r
(9.41)
g = 2
“'o+6,,‘,.+&+@=0
r r
where
F= — EaT ﬂ
t—v ar
{9.42)
65— EaT .31
I1—v 00
§ = 7l + Ef.’,;m
_ (5.43)
So = Ghom + @iyl
and
§ = 1EatT /
— (9.44)
5= -2
1—vw

. By examining Egs. {9.36), (9.38), (9.41), and (9.43), 1t is apparent that for any
given temperalture distribution, with the use of Eqs. (9.37), {9.39), (9.42), and{9.44)
the thermal stress problem can be converted to an equivalent isothermal stress
problem with conventional loads. Thus, solutioas of thermal stress problems
become identical Lo those of the isothermal ones. As an iltustration, consider the
unrestrained heam of Fig. 9.5 to be heated 1o a uniform temperature Ty. The
surface tractions at the ends of the beam, if we consider axial direction only, arc
aE T, . as shown.

These surface tractions will induce 2 constant equivalent axial stress a,, =
«ET, throughout the beam. Hence lrom Eq. (9.35) for the one-dimensional prob-
lem, the thermal stress is

Tog =0 — EaT =aETy — kT =0

which is the same result as was obtained in Sce. 9.2,

- okt A Ta B4 s

v 24 b S
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B =kl wTy=5
5
) e ——

Figure 9.5

Now let us assume that the beam of Fig. 9.5 is heated according to the
following (emperature distribution:

A2
T= To(ﬁ) @

“The surface tractions at the ends will now take the form P = aET, (/0 as
shown in Fig. 9.6.
These surface tractions produce equivalent end bending moments:

_ ¢ hEaT; 3EaTyl
M -—»f ey dy=—"3" ®)

-
where b = beam width and I = moment of inertia of beam area. From beam
theory, the equivalent stress due to the equivalent moment M is

My 3EaT

e =71 T e ¥ (e}

Thus, the actual thermal stress in the beam is
. 3y A3
= e 9T = «En,[g A (*)

9.5 THERMAL STRESSES IN UNRESTRAINED BEAMS WITH
TFMPERATURE VARIATION THROUGH THE DEPTH ONLY

3

Consider the beam of Fig. 9.7 to be subjected to a lemperaturc gradient
T = T(y}. From cicmentary becam thcory it may be concluded that

Oy =0, =0 =0y = 0
and
6.\‘.t = r;.\:\'(_“)
|
al Tt ‘ abTyie

S N

Figure 9.6
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] .
o

Figure 9.7

By assuming body forces are zero, il can be seen from Iigs. (9.9) and (9.10)
that equilibrivm is identically satisfied. The compalibility equalion [Lg. 9.2053
becomes

dl
E}E (0. +aET) =0 (9.45)
Therefore, the thermal stress can be obtained by simply integraling Eq. (9.45):

Owe= —aET + A1y + A, (9.46)

The constants of integration 4, and A, may be chosen such that for any temper-
ature gradient T(p), the resultant force and moment ind uced by a,, are zero over
the ends of the beam: )

Ja.:x d4 = jffn.v d4 =0 (9.47)
A A

Ultilizing Eq. (9.46) in [iq. {5.47) and solving for the constants yield the foliowing
expression for the thermal siress in the beam:

eE [© 3oEy [*
= —oET +— T dy Ty dy 9.
e aET +— L dy+ = f_ y d) (9-48)
Equation (9.48) may be written in a more conventional form as -
S, M
0= —aET + L4 =Ly (9.49)
- A 1
where
Sy = oca_[ Tdd M,= aﬁf Ty dA {9.50)
A A

with 4 and 7 being the cross-scctional arca and moment of inertia ol the beam,
respectively,
For beams of arbitrary cross section, Eq. {9.49) becomes

o S LMY =T MY I MR —T_M:
= —aglT it g ¥ ¥z . 2 yc
[N o + y, + = Ii-. ¥ 1= l;.z-z

:  (9.50)
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where
S5, = rzl;’J. T dA MY = a:EJ Tz dA M:; = aE-[ Ty dA (9.52)
a A 4

P . sclively,
Here I, and I, are moments of inerlia about (he y and z axes, respectively, and
» c

I..is the product moment of inertia o .
" As an iHlustration, consider the beam shown in Fig. 9.6, where T = T(y/c)™.

From [g. {9.50},
¢ ¥ 3
Sy= aEhJ- To(‘(—_) dy =
€ e 3ExTy!
My =akLh ,tTO - ydy= Se

Substituting the above cxpressions for S¢ and M, into Eq. (3.49) yickds the

bean thermal siress:
|3y (7Y
pocn22-(2)]

which is the same as obtained previously by usi_ng the equivalent ‘load mclt)nod.r
Thus, Fgs. (9.49 and (9.51) represent the equivalent load solution for beam

problems.

9.6 THIERMAL STRESSES IN BUILT-UP STRUCTURES

The thermal stress of built-up structures can be Fma!yzed egsﬂy by L‘;smg ;he
cquivaicnt load method. Technigues such as th_e stiffness matrix metho ,b enc gg
methods, etc. that are used in the analysis qf isothermal problems canl el::;d
identically for therma! problems once the equivalent thermal lx')ar.i.cis_ar»*:9 (ga 1\; Sumé
To illustraie, consider the determinate truss structure shown in Fig. 9. : ssume
that member 1 is heated to a uniform temperature T, above a cerlain da

1al

Figure 9.8
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temperature. Also assume that all members are of the same material and each has
a cross-sectional area A. The equivalent thermal load caused by the temperature

change in member 1 is AE¢T and is shown in Fig. 9.8, Using the equations of .

static equilibrium in conjunction with the joint method yields the forces in mem-
bers 1 and 2: i

Fa=0  F,=AEsT

Hence frem Eq. (9.35) for the one-dimensional problem, the thermal stresses
are

F AExT
o ="t BT, =55 4ET =0
A
F 0
a;=f—u{ETz=z——aE{0)_—_[]

Tt is appropriate to state al this point that determinaie truss struclures in
which any member undergoes a uniform change in temperaturc are stress-free if
we assume no conventional loads exist.

To illustrate the use of the stiffness matrix method in the solutien of thermal
problems, consider the indelerminate truss shown in Figure 9.9. Assume that
member | has an arca A and is heated {o a constant temperature T. The area of
members 2 and 3 is ﬁA each, From Chap. 6 the elcment stiffness matrix
relationships are:

Element I:

F:Jf 0 symmetric =0
F1_ 4810 1 51 =0 (@
F3 Ltfo oo %
| F3 0 -1 0 1 K3
Element 2:

F3 0.5 symmetric | [ 63

Bl _ AE|l o5 o5 & “ o

F3 L|-05 -05 05 =0

- LAl -05 -05 05 0.5 &E=0

1ralr

Figore 9.9

v
S
.
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i
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Element 3:

3 0.5 sy.mmetric &
) _ AEF —0s 0.5 & ©
il -05 05 05 =0
F 05 —05 —05 0.5 1=0
The overall reduced malrix can be obtained easily, as was done in Chap. 6.
and is given by )
0 _AE110 0 5% @
AEaT |~ L {0 20| )d%]

Inverting and solving for the unknown thermal displacements yield

- 857 p 10 0 0 [0
- =|alLT {e)
& A6 05 || AEaT -

The equivalent thermal loads on each element may be obiained from Egs. (a)
Lo (¢}:

Flement 1.

Ff=F31=0
}'_l ﬁ,‘ _ AT
| = — = 5
= = = AEaT .
or Fi=[UFr+F)*1it= — (tension)
Element 2:
Fs o — FY = AEaT
2% Ty 4
= ~. AExT
= —FY e
: 4
F AFT (tension)
or = :
? 2\/5
Flement 3:
e o Alad
F=-F=- i
I e AExT
r=—ly=y
~ T .
or Fy= API.— (tension)
5/
2
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Hencee the actual thermal stress in each rod is

Fl AE{XT FQT
g =— —gFT;, = - =
T T T T ek ==
F
Gy = 2 _qET, = —22AT o _ FaT
V24 2/2./24 4
0':,&(72

The preceding problem can be solved by using the energy method. This may
be acco‘m.phshed by making the structure redundant, as shown in Fig. 9.10. For
compalibility of deformation, the relative displacement in the direction of R
must be zero. Thus from Castigliano's theorem, 1

1Y
6l_-(§R_1=0

whclrc U is the total strain energy stored in the structure and R, is the unknown
equivalent internal load in member 1.

From the equations of static equilibrium in conjunction with the Joint
method, the equivalent internal loads in members 2 and 3 can be calculated:

_ EaAT - R,

F_Z:F3= \/5

Therefore, the strain energy U is
i ; 1 RIL t EaAT — R\
U=z =iy - !
25 AE "1 a8 zﬁAE( /2 )‘/5“"‘

1 E.xAT—R[)Z
T 2/24E ( V2 Vi

Performing the dilferentiation with respect to R, and setling the result equal to
zero yield

ey

Figure 9.10

4
§
|
!
!
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or
EaAT EaxT
m = A EaT =~ 5
ExAT EaT
Ty =3 = =

VN TR

which arc the same results oblained by using (he stiffness matrix technique. As
may be seen from the two preceding problems, the advantage of the stiffness
matrix method is that it yiclds not only the internal equivalent thermal loads but
also the actual thermal deflections.

Rigid-frame structures under the action of thermal loads are analyzed in the
sime manner as Lruss structures. First the equivalent thermal loads are calcu-
lated, and then any conavenicnt technique employed in conventionally loaded
structures can be used.

PROBLEMS

9.1 Find the radial displacement of a thin. circular, sofid plate which is subjected to a temperature
distribution 7" = T{r |

9.2 Find the radiat displacement of a circular cylinder whose ends are held between two ripic walls.
Assumie ¥ temporature detribution T = Tir).

9.3 Find the thermal steesses in strips | and 2 of the composite beam shown in Fig. P9.3. Assume
uniferm temperaturcs 7, and T, for strips § and 2, respectively. Also assume that no slippage takes
place al the bond line.

0

9.4 Find the thermaf stresses in the idealized structure shown in Fig. P9.4. Assume the skin and the
stringer to be healed 10 uniform temperatures T, and T, , respectively.

s

[ ] Skin
:, Slritgma
N

-

Figure P94
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9.5 The inner and outer surface temperatures of a circular cylindrical shell (inner radius = R; and
outer radius = R,) are kept constant at T; and T,, respectively. The end surfaces are perfecily insula-
ted. Find the steady-state temperatute distribution in the cylinder, and plot the results. Assume the
datum temperature to be T, . .
Himt: See Gatewaod, Jr., Aero. Sci, vol, 21, n0. 9, 1954, pp. 645-646.
&£T 14T

— =0

dr? * rdr

9.6 Refer to Prob. 9.5. Find the stresees in the cylinder. Assume unrestrained conditions. Plot the
results,
9.7 For the riveted structure shown in Fig. P9.7, find the loads on each rivet. The critical rivet load

P an. N I Y

@
®

IALL L L L

Ly
te— 2 in 40 in——-|~—'.-‘0 in—= Figure P97

and deflection are 1200 Ih and 0,006 in, respectively. Assume sleady-slale temperature distribution.
The following dala are given:

E; = E, = 107 Ibfin®
24, = A4, = 20 in?
o, =y = 10~ inf(in - °F)
2T, = T = 400°F above daium temperature
To = 80°F
Hint : See Gatewood, Jr., dero. Sei., val, 21, no. 9, 1954, pp. 645-646.

9.8 The general equation which describes the peneral state of stress in a one-dimensional thermally
loaded beam is

g, =¢E[-TQ) + Ay + B]

where A and § are arbilrary constants which depend on the end conditions of the beam. Fjad the
siress in an unresirained beam whose cross section is shown in Fig. P9.8 and subjected to a temper-
ature distribution given by T = T, ye™",

biry= hurB"

z Figore P9.3
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9.9 In Prob. 9.8, consider a beam whase cross scolion is shown in Fig, P9.9. The skin is made aut of
aluminum and is al @ constant temperature T,, while the web and flange are made out of different
material and al a consiant temperature T, Find the stresses in the skin, web, and flange.

(g) Assume that the beam is completely unrestrained.

{b} Assume thal the beam is resirained in axial compression.

Skin A= weh arca

fo—r

i

i

A,.= web arca

A, = Nange area Figure P99

9.10 The temperature of a heam of rectangular cross section, as shown in Fig. P2.I0, is T =
T, == *# Using the Airy stress lunction = p{x)f(y}, find the siress distribation throughout the
beam. Assume the beam Is unrestrained,

[
]

[ t—]

AL h Figare P9.19

9.11 Tresign the truss structure shown in Fig. P9.11. Assume 2024-T42 aluminum-alloy tubing con-
struction is uscd.

‘.00,’

1
200001 Figure P91
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9.12 Find the thermal stresses and deflections for each of the structures shown in Fig. P%.12

113} in

100 in
45° l
3}&
A=y =Ay=2int Ay =dy=4in’
Ey=E;=E;=10"lbfin® H=I=10in*
#, =g =ay=10"" infin °F E, = E; =107 lpfin?
T, = I00°F, T, = 200°F oy = 2; = 1077 infin °F
Ty = 400°F " T:=400"F
=200
Figure P'9.12

213 ¥Find the displacements for the structure shown in Fig. PO.13, Assume the beam is subjected
lo o temperdlure distribution given by T = 400)/h, as shown. Assume E = 107 Ib/in? and a = ;077
infin - “F} for both rod and beam.

i I g
‘\\\F**J=3i|a3zl=10§n"g—l——-8£ -
\ hid
N - f :

| 200 in ~ Figure P9.13

i
]
i
3

i
;
%

CHAPTER

TEN

DESIGN OF MEMBERS IN TENSION,
BENDING, OR TORSION

16.1 TENSION MEMBERS

Tension members are analyzed and designed more readily than other types of
members. The stress condilions existing in tension members at the ultimate 'oad
condilion are accuraiely known and are not subject to the uncertainties which
exist in joints, fittings, and other types of structural members, The allowable
tensile stress for a structural material is easy to determine, and a single value of
the allowable stress applics to members of any shape. It §s shown that the allow-
able stresses for structural members in bending, tarsion, or compression depend
on the shapes of the memhers and on other factors which are not considered for
tension members.

For a concentric tension load P on a member with a net arca A, the tensile
stress is found from the cquation o, = P/4. The allowable tension stross a,, is the
minimum guaranteed value for the material. The margin of safety may be calcu-
lalcd in the usual manncr as o, /o, — 1.

Tension members frequently must resist bending and compression stresses
under other loading conditions, and these other conditions often determine the
shape of a member, even when the tension load is the largest Ioad.

The primary tension structure in 4 semimonocogue wing consists of the skin,
stringers, and spar caps on the under surface. Although the positive bending
moments in & wing arc about twice as large as the negative bending moments, the
compression loads from negalive bending determine the design of most of the

299
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Figure 10,1

structure on the underside of the wing. The wing skin resists tension stress, but
buckles and becomes ineffective for compression stress. Thus the compressive
arca is less than the tensile area, and the allowable compressive stress is consider-
ably less than the allowablc tensile stress. Even though the compressive loads are
smaller, they must always be considered when the shape of the stilfening members
is determined and frequently they determine the required areas.

1.2 PLASTIC BENDING

In the previous calculations of bending stresses, we assume thal the stresses are
below the elastic limit, Fn most types of machine design and structural design, the
strength at the yield stress is the important criterion for design, and the conven-
tional elastic stress distribulion is satisfactory for use in design. In airlrame
structures, however, the ultimate strenglth of a member is the design criterion.
Before failure, the stress exceeds the elastic limit and is said to be in the plastic
range. The assumptions used in deriving the flexure formula o, = My/I no longer
apply.
The initially straight beam shown in Fig. 10-1a4 has bending stresses exceed-
ing the elastic limil. Plane sections remain plane after bending, and thus the
strain distribution is proportional to the distance from the neutral axis, as in
elastic beams. If the beam js deflected so that the extreme fiber has a strain e, ,
there will be a stress o, al this point, as shown by the stress-strain curve of Fig.
10.1b. For other strains ey, ¢;, and ey, the corresponding stresses g4, 94,08nd 03
do nol vary lincarty with the strains above the elastic limit, and the stress dis-
tribution on the beam cross section varies as shown in Fig. 10.2,

The ultimate resisting moment of a beam depends on both the shape of the

\ C _ ‘) .u

Figure 102
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b.cam cross scction and the shape of the siress-strain curve. Since there is no
snmglc theoretical relationship which applies to a general case, frequently an
empirical method is used {0 delermine the ultimate bending strength. A fictitious
stress oy, termed the bending modulus of rupture, is defined by the equation
ay = Mc/l, where M is the ultimate bending rmoment, as determined from tests of
siinilar beams, / is the moment of incrtia of the cross section, and c is the distance
from the beam ncutral axis to the cxtreme Fber. The true stress distribution is
shown in Fig. 10.2, and the fictitious straight-line stress distribution which yields
an equal bending moment and has 2 maximum value of ogg is shown by the
dol_ted line. For geomelrically similar scctions such as round tubes with the same
ratio of outside diameter 1o wall thickness Djt, the bending modulus of rupture
may be found for any material by means of tests.

The bending modulus of rupture for round tubes of chrome-molybdenum
steel is shown in Fig. 10.3 for various values of O/t and of g, the ultimate tensile

280 \
260 \

240

w Uousuuls of Ihin?y

\j@\d
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v
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3
= 120
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Figure 10.3
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stress to which the material is heat-treated. For the larger values of B/, the tube
walls are thin and tend (o cripple locally. The local crippling stress of the {ube
wall, which in itself is difficull to compute theoretically, corresponds to the stress
oy shown in Fig. 10.1. Thus the tests take inlo consideration the effects of local
crippling, as well as the effects of the shapc of cross section and of the stress-
strain curve. The bending modulus of rupture is proportional to the bending
moment, and the margin of salety may be computed from the usuul rclation,
opfa, — 1. The true maximum stress o, of Fig. 10.1 is nol proportional to the
bending moment and cannot be used in obtaining the margin of safety.

Example 1.1 A 1{ by 0.083-in stec] tube resists a bending moment of 25,000

in - Ib. What is the marpin of safety if the material is heat-treated to an

uitimate tensile stress ,, of 180,000 Ib/in*?

SoruTion The properties of a 11 by (L083-in steel tubc are D/t = 18.08 and
ifc =0.1241 in® From Fig. 10.3, o5 = 220,000 Ibj/in®. The fictitious bending
stress oy, is obtained from the simple flexure formula:

The margin of safely (MS) is now obtained in the usual manner:

220,000

MS = 201,000

—1=009

It is alse necessary (o determine a yield margin of safety. For this material,
the yield stress is 165,000 lb/in?. The applicd or limil bending moment is
4 % 25,000 = 16,670 in - b and so

16,670
= —2— = 134,000 Ib/in?
oy 01241 134,000 Ib/in
or the margin of safety for yielding is
165,000
=——-1=02 :
MS = 13,000 -

10.3 CONSTANT BENDING STRESS

For somec materials, the stress-strain curve remains almosl horizontal after the
clongation exceeds a value corresponding to the yield point. If a beam of such a
material is subjected to bending beyond the yicld stress, the bending stresses will
approximate those shown in Fig. 10.4. Both the tension and the compression
sircsses may be assumed to have constant values of 7y over the enlire area. The
bending moment is obtained by taking the sum of the moments of infinitesimal
forces ¢, dA4 about the neutral axis:

+ Fikfn ...‘.-.u-m.’ﬁf&{

LR
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}

ESIPRNE TR 1

e b e e ok

DESIGN OF MEMBERS IN TENSION, RENDING, OrR TORSION 303

o

Oy
—"—
i ‘).” d’.'l-..L - .
¢
S —
(- =iy
s d l
t
hv_l

L

Figure 14

£
M= o’oj- ydA (10.1)
e
In the cuse of a cross-seclional area which is symmetrical with respect to a
horizontal axis, the bending moment becomes
M = 200, (10.2)
where
(4
Q= _[ ydd (10.3}
it}

For the symmetrical area. the neutral axis corresponds with the axis of symmetry,
as in the case of clastic bending. For an unsymmetrical area, the nezutral axis is
not it Lhe centroid, but is lacated so that the cross-scctional arca above the-
ncutral axis is equal to the arca below i, since the total tension force must equal
the toial compression force,

For a rectangular beam of width b and depth 4, 4 = bh%/8. Substituting in
Eq. (10.2) yiclds_

ag hii?
4

The bending moduius of rupture o, can be found by equating the bending
moment of Eq. (10.4) to the expression which defines ¢,, or M = g, [/c. For the
reclangular scetion, I/¢ = bh*/6, and o), = 1.5q,.

The parabolic shear stress distribution for a rectangular beam in which the
stresscs_are below the clastic limit was obtained from the bending siress dis-
tribution, and does not apply for other distributions of bending stress. For a
rectangular cross scction, or for other similar cross sections in which the bending
modulus of rupture is considerably larger than the sctual stress, the shearing
stresses are seldom very high and may be approximated with sufficient accuracy.

The plastic bending of & heam in which the cross section is not symmetrical
about the neutral axis is considered by analyzing a numerical example. The area
shown in Fig. 10.5 has its centroidal uxis 0.2 in above the base. For plastic
bending with a constant stress o, the neutral axis will be 0.2 in above the base,
in order for the tension area to be equat to the compression area. The tension
and compression forces will be equal to 0.120 and will resist a bending moment

M= (10.4)
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0.120y Aty = 0.0480,
Al =0.0480p -~
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Figure 105

.

of 0.0480,, as shown in Fig. 10.5b. The elastic bending stress for this area is
obtained from the equation M = g, I/c = 0.027¢,. The bending modulus of rup-
ture is therefore equal to a, = (0.048/0.0272)6, = 1.7650,. The stress dis-
tribution of various bending moments is shown in Fig. 10.5¢. For bending mo-
menis less than M = 0.0272g,, the stresses are below the elastic limit and have a
straight-line distribution with the neutral axis at the centroid of the area, as
shown by curve |. For larger vaiues of the bending moment, the stresses will

exceed the elastic limit at the upper side of the beam, but remain below the elastic’

limit on Lhe fower side, with the neutral axis shifting downward, as shown by
curve 2. For further increases in bending moment, the stresses approach the
constant values shown by curve 4, with the neutral axis between the two
rectangles. '

104 TRAPEZOIDAL DISTRIBUTION OF BENDING STRESS

The stress-strain eurves for most aircraft materials can be approximated accu-
rately by a trapezoidal curve, as shown in Fig. 10.6¢. The idcatized bending stress
distribution is shown in Fig. 10.65. This approximalion for obtaining the bending
strength in the plastic range was proposed by Cozzone.” The bending moment
for the trapezoidal stress distribution is readily obtained as the sum of the bénd-
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ing moment for a conslanl stress o, as given by E‘q'. (10.2), and the bending
moment for a lincar stress distribution varying from O to oy, :

M =200, + d"; ! (10.5)

The term a,, may be introduced instead of 64, by substituting g, = 6, — 0y into
Eq. (10.5). Making this substitution and dividing by I/c give

= Me 2Q
Oy= === Gy + T (I/c 1) (10.6)

The term in parcntheses depends on the shape of the cross section and may vary
from 0 for concentraled {lange arcas to 1.0 for a diamond shape. If this term is
designated by K, Eq. (10.6) becomes

oy = 06, + Koy (10.7)
.2
where K = T — 1 {10.8)

Some vatues of K for virious cross scetions are shown in Fig. 10.7.

The value of g, should be delermined in such a way that the bending
moment resisted by the assumed trapezoidal stress distribution is equal to the
bending moment resisted by the actual stresses. Therefore, the correct value of oy
would depend somewhat on the cross-sectional arca. If the value of o, were
calculated for each areq, there would be no advantage in assuming a trapezoidal
stress distribution, since it would be necessary to calculate the true resisting
moment of the beam in order Lo calculate ¢g. Cozzone has shown that it is
sufficicntly accurate to calculute o, for a rectangular cross scction and to use this
vitlue for all eross sections.

Example 10.2 A beam with Lhe cross section shown in Fig. 10.8 is made of
atuminum-alloy forging. The true shape of the forging is shown by the dotted
lines, but the trapezoids shown by the solid lines are assumed. Calculate the

Sectivm N Section Iy
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Figure 10.7
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i bending modufus of rupture at the limit load can be caiculated from Eq.
{10.7}:

uitimate bending strength about a horizontal axis if 7, =05000, ¢, =
60,000, and the yield stress a,, = 50,000 Ib/in,

Sonurion The values of 7 and Q are calcutated for the assumed area, which
is composed of eight of the triangles (1) and four of the rectangies {2):

_3x0ﬁ12x1-‘+4x0.20x 12
- 12 3

20 =8 x 0.06 x 0.333 + 4 x 0.20 x 0.5 = 0.56 in®

gy = 6,4 Kag = 50,000 + 0.61 x 21,200 = 63,000 ib/in?
The aliowable vahic of Mc¢/f wouid then be 63,000 for the limit koad and

= 0.347 in* 1.5 % 63,000 = 94.500 Ib/in? at the ultimate or design load.

I

A s sy e

The bending modulus of rupture is now calculated from Egs. (10.7) and 1.5 CURVED BEAMS

{10.8):
Most beam structures are analyzed by the methods previously considered, in
_ 20 e 0.56 1 —06l which any initial curvalure of the axis of the beam is neglected. However, when
Iic T 0347 - the radius of curvature is of the same order of magnitude as the depth of the
!

heam, the stress distribution differs considerably from that for straight beams.
The stresses on the concave side of the bcam are higher than those for a similar
straight beam, and the slresses on the convex side are lower. When the maximum
stresses execed the clastic limit, local yiclding occurs, which permits a re-
distribution of stress. At Lhe ultimate bending moment, the stresses approach the

op = 03 + Kog = 65000 + 0.61 x 60,000 = 101,600 lb/in?

e A RNt TR < sty b, i s

The ultimate bending strength is

Fogl 0.347 * :
== ——— 3 M i . . . . . -
M ¢ 1016 1.0 33,300 in - ib - % same distribution as for the plastic bending of a straight beam. Thus the beam
i oo H i : 1
In this case, it would not be possible to wtilize the full ultimate bending i curva{ure has qle elfect O( reducing the yield strength but of not appreciably
trength because the stress at the applied load condition would exceed the ; changing the ultimate bending strength.
strengin because th 55 at the applice fond condl “ { The beam shown in Fig. 10.10 has an initial radius of curvature R measured

yield siress. The exact amount of permanent sct permitted at the applied or
limit load is not specilied clearly for a member in bending, but depends
somewhat on the judgment of the designer. In some cases, the bending mo-
dulus of rupture is not permitted to exceed the yield stress; or, for this
problem, the value of Me/! would not excecd 50,000 Ibfin? at the applied
load and consequently could not excecd 75,000 lb/int at the ultimale or
design load. Even at the yield stress, however, some plastic bending effects
may be considered, The slress-strain diagram for the material of Fig. 10.8, in
which the stress does nal exceed the yicld stress shown in Fig. 10.9, may be
represented by the trapezoid with ¢ = 21,200 and o, = 50,000 Ibfin®. The

3
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to the centroid of the cross scction. A plane cross section pp remains plane after
bending, and its relutive position after bending is shown by nn. A longitudinal
fiber of the beam of inilizl length L is extended a distance . Since 3 is measurcd
between the straight fines pp and an, it varies lincarly with the distance y from the
centroid to the fiber:
d=1ly +kyy

The terms k. k;. and k; arc determined constants. The length of the fiber L is
proportional to ils distance from the center of curvature:

L=kyR +7)
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Figure 10,10

The unit stress is now obtained as the product of the nnit strain ¢/L and the
elustic modulus E:

O-_Efs__ _’l‘*.'_k.?l
SELT T kAR + P

This expression may be simplificd by dividing the numerator by the denominator
and grouping the constants into two new, undelermined constants a and b:
b
R+y

c=a+ (10.9}

This sivess distribution is pictured in Fig. 10.10c.
If a resuitant tension force P acts at the centroid of the area, it must equal the
sum of the internal forces, that is, [ a dA. From Eq. (10.9) we have

dA

P:J-dAﬁuAH;f——— (10.10)
A R+y

where A is the total cross-sectional ﬁrca and a and b are undetermined constants.

Far the case of purc bending, the foree P vanishes. ) -
The external bending moment M about the centroidal axis must equal the

moment of the internal forces § fy dA:
wdA
M=£_\ u’AsaJydA i-hj.R-ky

The frst integral on the righl side of the equalion is 7ero because y is measured
from the centroidal axis. The second integral may be separated into two terms by

division:
: dA
Lﬂ,_j(]__L)dA:A_R heid i
R+y R+y R+y
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The bending-moment equalion may now be written as

dA

7 M =54~ bR R+y {10.11)
The unknown constant » can be found from Eq. (10.11) since all other terms are
known from the geometry and loading of the beam. The other unknown con-
stant, a, is obtaincd from Eq. (10.10). The stress distribution is then found from
Eq. (10.9). The effect of the axial load P is to change the constant a and the stress
¢ by an amount P/A. Hence the same stress distribution can be obtained by
superimposing the bending stresses for P = 0 and the stresses P/A resulting from
the axial foad P at the centroid of the area.

‘The extremc fiber stresses for various curved bcams can be determined as
ratios of the stresses computed by the flexure formula, These ratios have been
computed for various cross sections. The terms K for the equation ¢ = KMc/I
are plotted in Fig. 10.11 for a few common cross sections. It is observed that the
stresses always become infinite on the concave side when Rfc =1, which corre-
sponds to a sharp reentrant anple on the concave surface of the beam. Such
recntrant angles should be avoided in any structure or machine part.

Another effect of heam curvature which cannot be analyzed by simple theory
oceurs in beams with thin flanges, as indicated in Fig. 10.12. If the concave side of
a beam is in compression, the flanges tend (o deflect toward the neutral axis, as
shown in Fig. 10.12h. The bending stress is not distributed uniformly along the
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thy

(a) Figure 10,12

horizontal beam flange, but is much higher near the web than it is in the out-
standing legs, as shown in Fig. 10.12b. When the bending produces compression
on the convex side of the beam, the flanges delfect away from the ncutral axis, bui
the stress distribution along the horizontal wid:h of the flange is essentially the
same as shown.

10.6 TORSION OF CIRCULAR SHAFTS

The stresses resulting {from torsional moments acting on elastie cylindrical mem-
bers of circular cross section can be obtained readily. Tt has been found exper-
imentally that there is no distortion of any cross section of the shaft either in the
direction normal to the plane of the cross scction or in the plane of the cross
section. Any two cross sections of the shaft, such as those shown in Fig. 10.135,
have a reiative rotation about the axis of the shaft. Since the two cross sections
have no relative displacement radially, or along the axis of the shaft, the only
stresses are the shearing stresses in the circumferential and axial directions, as
shown in Fig, 10,135,

) Figure 1L13

gy e < i e i vt e e gt s z.wm‘ﬂ;@mémﬁa«m@&q
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The shearing strain y and consequeatly the shearing stress z, must vary
linearly in proportion to the distance r from the center of the shaft:

T, = Kr (10.12)

The term K is a constant of proportionality which is determined later. The
cxternal torsional moment T must equal the sum of the moments of the internal
shearing forces en the cross section:

'F=Jr,rdA=KJr2 dA (10.13)

The integral of Eq. (10.13) represents the palar moment of inertia of ihe cross-
sectional area, and vsually it is designated as J or I,. The value of X may be
found from Eq. (10.13) us K = T/4. Substituting this value into Eq. {10.i2) yiclds
the formula for torsional shear stresses in circular shafts:
Tr
T, = 10.14
; (10,14
The angle of twist of a circular shaft may be determined from the angle of
shearing strain v, The shearing modulus of clasticity G is defined as the ratio of
shear stress to shear strain:

G=2 (10.15)
¥
And G is reluted to E for an isotropic materia! only by the following equation:
E
- G = 10.16
A+ ) ( )

The shaft of radius #y shown in Fig. 10.13 twists through an angle ¢ in length
L. A point on the circumference of the upper cross section moves a distance trg

. during the deformation. This point is also displaced a distance vL, as shown:

dry=yL

The angle of twist ¢ may be cxpressed in other forms by substituting values from
Eqs. {10.15) and (10.14):

p=lifot 1% (10.17)

These equations apply only to torsion members with solid circular cross sections,
or to tubular members with hollow circular cross sections.

10.7 TORSION OF A NONCIRCULAR SHAFT

The stresses in a torsion member of arbitrary cross section cannot be obtained by
mexns of a simple, general cquation. A few special cases may be analyzed, how-
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ever, and some general properties of the shear stress distribution are examined. A
cylindrical torsion member ol arbitrary cross section is shown in Fig. 10.14a. The
small cubical element at the surface of the member is enlarged in Fig. 10.145. In
general, three pairs of shearing stresses 7,, T,, 73 exist on any such element; but
in the case where one face of this element is a free surface of the member, the
shear stresses t, and t; on the free surface must be zero. Thus the element at the
boundary has only the shear stresses t;, which arc parallel to the boundary.
Hence the shear stresses on a cross section near any boundary are parallel to the
boundary, as shown in Fig. 10.1da, The resultant of all shearing forces on the
cross section must be equal to the external torque.

The exaggerated deformations of a square shaft in torsion arc shown in Fig.
10.154. An element at a corner of the cross section may be compared to the
element shown in Fig. 10.14b, and since two perpendicular laces of the element
can have no shear stresses, ali the shear stresses 1, T;, and t; must be zero at 2
corner of the member. The shear stresses on the cross section have maximum
vaiues at the center of each side and have directions approximately as shown in

ld
Figure 10.15
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Figure 10.16 o @

Fig. 10.15h, The cubical clements at the corners remain cubical, as indicated in
Fig. 10.15a, but elements near the centers of the sides have rather large shearing
deformations. The cross sections therefore do not remain plane, but warp as
shown. ’

One type of member which is used frequently on flight vehicle structures has
a narrow, tectangular cross section. While such cross sections are inefficient for
torsion members, often they must resist some torsional stresses. For the cross
section shown in Fig. 10.16 of length b and width 1, the shear stresses must be
parallcl to the boundary. If the length b is large compared to the thickness ¢, the
end effects are small, and the shear stresses may be assumed to be distributed as
shown in Fig. 10.16b for the entire length & It can be shown that the shear stress

has the following value:
- T

1,=—3
b2

(10.18)
Equation (10.18} is accuralec when the width b is large compared to the
thickness t. For rectangular cross sections in which the dimensions are of the
same order, the maximum siress, which occurs at the middle of Lhe longest side, is
found by
T

eeht?

Values of « are given in Table 10.1. These values have been calculated by theor-
elical methods which are not within the scope of the present discussion. For farge
ratios of b1, the value of « is 0.333, which corresponds to Eq. (10.18). For smailer
values of bji, the effects of the ends are more noticeable, and the values of o are
smaller than 0.333.

The angle of twist of a rectangular shaft of length L can be obtained from

(10.19)

T, =

TL
=— 16.20
where ¢ is in radians and £ is a constant which is given in Table 10.1.
Table 10.1 Constants for Eqs. (10.19) and (10.20)
Bt 100 LS00 175 200 250 36n0 4 6 8 10 w

¢ 0208 023 023% 0246 0258 0267 0282 0299 0307 0313 0333
p 014l 0196 0214 0230 0249 0263 0.28] 0299 0307 031 0333
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The torsional properties of a rectangular plate are not appreciably aflected if
the plate is bent lo some cross section. such as thosc shown in Fig. 10.17,
provided that the end cross sections of the member are free (o warp. Thus these
seclions may be analyzed by Egs. (10.19) and (10.20). The angle of twisl for a
shatft of any cross section may be expressed in the form

TL
_—— o)
= o {10.21)

where K is a constant which depends on only the eross-sectional arca. By com-
paring Egs. (10.20} and (10.21), the value of K for a rectangular cross scction is
found 1o be pbid. For a cross section made up of several rectangular elements,
such as that shown in Fig. 10.18, the value of X is given approximately by

K=pbiti + 20,13 + Byby il (10.22)
Example 10.3 The round tube shown in Fig. 10.19« has an average radius R
and a wall thickaess t. Compars the torsional strength and rigidity of this
tube with that of a similar tube which is slit for ils entire length, as shdéwn in
Fig. 10.19b and ¢. Assume R/t = 20.

SoLution Approximate values of the area and moment of inertia are satis-

Figure 10.18

gl

BT

e A T e B R e i T

Sl g i sl

e AR S s

b s A i v ey R ol

e M 8.

DESIGN OF MEMBERS IN TRENSION, BENDING, OR TORSION 315

factory for thin-walled tubes. The area is equal to the product of the circum-
ference 27R and the wall thickness ¢. The polar radius of gyration is approxi-
mately equal to R, and the polar moment of inertia is then obtained as

foliows:
J=2nR% (10.23)

It is sufficiently accurate to use lhe average radius R in place of the outside
radius in computing the maximum shearing stress. The values of the closed
tube are obtained from Egs. (10.14) and (10.17):

=— = 0.24

s J 2R (1 )
TL TL

== 10.25

¢ JG  2aR*%G ( )

The slit tube is analyzed by Eqgs. (10.18) and (10.20), assuming & = 2nR and
@ =f§=0.333;
ir

= 10.26
& 2nRt* (10.26)
3TL
== 10.27
¢ 2zRG (10.27)

The ratio of shearing siresses for the two members is obtained by dividing
Eq. (10.26) by Eq. (10.24). The values of the stress and angle for the closed
tube are designated €., and ¢y, respectively:

The shearing stresses are therefore 60 times as high in the slit tube as in the
ciosed tube, or the closed tube would be 60 times as strong if the allowable
shearing stresscs were equal,

The torsional stiffness of the two members may be compared by dividing
Eq. (10.27) by Eq. (10.25):

2
q% - Eg_ - 1200 (10.28)
. o

D
¢
o) )
b N

) Figare 10.19
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For a given angle of twist, the closed tube resists 1200 times the torsion of the
open section; or, for a given torque, the open section twists through an angle
1200 times as great as the closed tube, We assumed that the open Lube was
frec to distort as shown in Fig, 10.19¢, or that the cnd cross scclions were not
restraincd against warping.

10.3 END RESTRAINT OF TORSION MEMBERS

In Sec. 10.7 we assume that the end cross sections of the torsion members are {ree
te warp from their original plane and that there are no stresses normal to the
cross sections. It has been pointed out that many aircralt structural members
must be constructed with thin webs and that such members are very inefficient in
resisting torsional loads unless they form a closed box. In some cases, it is
necessary 1o use open sections with thin webs; and in most of these cases, (he
ends should be restrained to provide additional torsional rigidily and strength.

The I beam shown in Fig. 10.20 resists part of the torsion by means of the
shear stresses distributed for the individual rectangles, as shown in Fig 10.16.
The remaiuder of the torsion is resisted by horizontal bending of the becam
flanges, as shown in Fig. 10.20b. The proportion of the torsion which is resisted
by cach of the two ways depends on the dimensions of the cross section and the
length of the member. This proportion aiso varies along the member, as more of
Lhe Lorsion is resisted by flange bending near the fixed end than near the frec end.

For members in which the webs are thin and the length is not great, ail the
torsion may be assumed to be resisted by flange bending. In the case of long
members with thick webs, ail the torsion ray be assumed to be resisted by the
torsional resistance of the rectangular elements. In some cases, however, it may
be necessary to calculate the propartion of the torsion resisted by each method.

A member which is not restrained at the ends twists as shown in Fig. 10.21.
The angle of twist varies uniformly along the length and may be computed from
Eyg. (10.21). For a member resisting torsion by means of {lange bending, as shown
in Fig. 10.20h, the flange bending stresscs vary from zero at the frec end to
maximum values at the fixed end. The angle of twist and the amount of £ross
section warping vary along the span. For the -beam cross section, Timoshenko
and Gere” give the following equations for the maximom flange bending moment

f} th Figure 10,20
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M___, for the maximum torsion resisted by web shears :T;,,,, and for t!'ie al.ag_le_of
thinsztx 0 in length L (the constant «a is a ratio of the relative flange bending rigidity

to the torsional rigidity):

M. =LatannZ (10.29)
max h a

L 10.30)

Tj‘m=T1«-scch; (10.
0=—T—(L—a tanh é) (1031)

KG a
b2 E (10.32)
45\ KG

i inerti bout a vertical
The term I, is the moment of inertia of one flange of the beam a
axis, K is {ieﬁncd by Eq. (10.22), and k is the beam depth bethcn centers of
fianges. The ana.lysis for the { beam shown in Fig. 10.20 also applx.es for a beam
of length 2L which has a torque of 2T applied at the center and which resists half

& ¢

1et) i

Figure 10.22
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the torque at cach end, if the ends arc not restrained against warping. In this case,
a cross section at the center of the beam is prevented from warping because of the
symmetry of loading. .

A channel cross section, such as that shown in Fig. 10.22q, frequently is uscd
as an aircraft structural member, 1f a channel member is restrained at the end, it
will resist (orsion by bending of the Manges in much the same manner as the
{-bcam flanges shown in Fig. 10.20b. The analysis for flunge bending is slightly
more complicated than for the 1 beam, because the vertical web of the channel
acls with the flanges in resisting flange bending, as shown in Fig. 10.224¢. The
cross scction shown in Fig. 10.225 acts in the same way as the channel section,
but the stress distribution is still morc difficult to analyze.

10.9 TORSIONAL STRESSES ABOVE THLE ELASTIC LIMIT

It has boen assumed that the stresses arc below the elastic limit in'the previous

anulysis of Lorsional stresses. In many design applications, the vitimate torsional
strength is desited. While there is not much published information concerning
stress-strain curves for specimens in pure shear, these curves will have the same
general shape as the tension $tress-strain curves and will have ordinates approxi-
mately 0.6 of those for the tension curves. Thus the torsional stresses in a round
bar are distributed as shown in Fig 10.23 when the stresses exceed the elastic
limit, : ’

As in the plastic bending of beams, it is convenient to work with a fictitious
stress instead of the exact stress distributions. This stress is desisnated as the
torsional modulus of rupture 14, which is defined by

Tr
r= {10.33}
where T is the ultimate torsional strength of the member. For stecl tubes, the
value of 7, depends on the proportions of the cross scction. The values of the
ralio T4/, are shown in Fig. 10.24 for various values of the ratio of outside
diameter 1o wall thickness D/, These curves are taken from MIL-HDBK-5.
Equation {10.33) applies to only circilar or hollow circular cross sections,

Ts

Fipure 10.23
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and Fig. 10.24 supplies information for allowable stresses on all such cross sec-
tions for various aircraft stecls. The plastic torsional stress distribution in non-
circttlar sections usually cannot be obtained by any simple analysis. Often it may
bu necessary to make static tests on torsion members of noncircular ¢ross sec-
tions to determine the allowable torsional moments to use lor design.

Example 104 A round stecl tube with 1-in outer diameter (OD} 0.065 in
thick resists a design torsional moment of 5000 in - Ib. Find the margin of
safety if the ultimate tensile stress g, = 100,000 Ib/in’.

SoLuTioN The values D/t = 15.38 and I/y = 0.04193 in? are obtained for this
tube. From Fig. 10.24, the ratio 14/, = 0.6 is obtained. The margin of safety
is therefore calculated as follows:

1 = 0.6 x 100,000 = 60,000 Ib/in?

ot = _ 59600 lbfin?
T T2y T 2 X 004193 /
- 60,000
= = 1 =0.007
MS =~ 1= 50600 "

Example 10.5 Design a round tubc to resist a torsional moment of 8()5)0
in - Ih. The minimum permissible wall thickness is 0.049 in, and the material
has an uitimate tensile stress &, of 100,000 1b/in®

SoLUTION A torsion tube must be designed by a trial-and-error process,
because allowable stress depends on the D/t ratio and cannot be determ}ned
exactly until the tube is selected. For tubes of approximately the same weight,
the larger I/y valucs are obtained for larger diameters, but the higher allow-
able moduli of rupture ure obtained for thicker tube walls. Thus sev.eral t.ubes
may have about thc same weight and strength, although tubes with hxght-:r
D/t ratios usually have a strength-weight advantage. Assume an average ratio

@ 0.7%
3
S
<] N
% : " > Y\ Gy = 80,000
E \i______ v
=
z o~ |
B 0.50 ~ f
£ ={mo.ooo )
2l e .1:5.0:30-} @, = 50,000
&1 ]
0.40 5

1 Figure 10.24
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Table 10.2
. il b I
Tube, in 100 in ' ¥y . Tr T, MS
14 x 0.04% 6.32 30.60 0.07847 53,000 51,000 T4
1% x 0.049 578 28.05 0.06534 54,000 61,500 =012

14 x 0058 615 2155 006187 56008 64,700 —0.12

-

t4/o,, of 0.60 as a first approximation, or T4 = 60,000 lbfin®. The required
tube propertics are now oblained as follows:
Required e = 2 = I = _8000
r y 1y 60000
or

[ .
Required i 0.0667 in®
The lightest lube which meets the requirement of 0.0667 in® is a 13- by

0.049-in tube with D/t == 30.60, I/y = 0.07847, and a weight of .32 1b/100 in.
From Fig. 10.24, 14f0,, = 0.53, or t; = 53,000 thfin®. The margin of safety is

T 8000 ,
U= ST = 2 x oo7ear - 000 1b/in
. 53,000
MS =T _ 1290 004
S=3 si000 =0

Other tubes are compared in Table 10.2. The 14- by 0.04%-in tube is the only
one which has a positive margin of safely. Any other tubes which are lighter
{han 11 by 0.049 in and which have a minimum wall thickness of 0.049 in are
obviously under the required strength.

10.10 COMBINED STRESSES AND STRESS RATIOS e

The design of members resisting tension, bending, or torsion is discussed in
earlier sections. Many structural members, however, must resist the simultianeous
action of two or mare of these loading conditions. I stresses are below the elastic
limit of the material, the normal and shear stresses at any point may be combined
by utilizing Mohr's circle. When working stresses based on the elasiic limit are
used, as in most types of structural design, it is customary to determinc the
principal stresses and the maximum shearing stresses at a point and to compare
these to the allowable working stresses,

When members are designed on the basis of ultimatc strength, it is not
feasible to calculate the true principal stresses in the case of plastic bending or
tossion. Even if the true siresses are known, it is difficult to predict the loads at

L T 1% e i e U
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which failure would occur under combined loading conditions. A tension member
fails when the average stress reaches , the ultimate_tensile strength g, for the
material, but a member resisting combined stresses may fail before the ‘maximum
principal stress reaches the value of ¢,,. Failure in pure shear, for example, occurs
when the principal tension and compression stresses are about 0.60,,. Various
theories of failure of materials under combined loading have beemloped, but
none gives a simple method of predicting the failure of all materials.

Shanley and Ryder have proposed a method which provides a practical
means of considering the combination of the fictitious stresses of bending or
torsion and of obtaining the allowable ultimate loads for combined loadings. This
method consists of using stress ratios and has been extensively adopted in the
analysis of flight vehicle structures. The stress ratio method may be applied to
almost any combination of two or more types of loading, aithough in some cases
it may be necessary to test some specimens in order to apply the method. The
method of stress ratios is applied first lo some special cases of loading and is
stated later in a general form. .

One of the simplest types of combined loadings is that of tcnsion and bend-
ing, as shown in Fig. 10.25. The stresses may be added algebraically, and for
small loads the stress is P/4 + My/I at any peint in the cross seclion, as shown
in Fig. 10.252. When the stresses exceed the elastic Iimit, however, the dis-
tribution becomes similar to that shown in Fig. 10.25h. The true stress dis-
tribution is diflicufl to caleulate, and il is convenical to usc the method of stress .
ratios in predicting the strength: For pure bending with no torsion, failure will
occur when the ratio of the applied bending stress o, to the allowable bending
stress o approaches unily (R, = 0,/ = 1). Similarly, for tension with no bend-
ing, failure will_ occur when the tension-stress ratio R, = ¢,f7,, approaches unity.
Since the stresses below the elastic limit add directly, it seems logical to add the
stress ratios, and tests substantiate this method. The failure under combined
tension and bending therclore decurs under the following condition:

R, +R =1 (10.34)

N Af

@) tht Figure 10.25
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The margin of safety is defined by the following equation, which corresponds
with previously used expressions when cither of the stress ralios is zero:

I

MS:mRb+R,_

1 (10.35)

For round tubes in combined bending and torsion, the stresses do not add
algebraicaily. For stresses below the elastic limit, the maximum siress at any
point may be obtained readily by using Mohr's circle, The maximum tension and
shearing stresses in the tube shown in Fig. 10.26a will occur at the support and
on the upper surface, as shown. The tension stress in the direction of the axis of
the tube o, is found from the bending moment M as follows:

Gy = —= (10.38)
I
The shearing stress z; on the planes shown is oblained from the torsional mo-
ment T;
. Ty

=T

(10.37)

The small element at the top of the tube is enlarged in Fig. 10.265. The principai
slresses and the maximum shearing stresses at this point on the tube are obtzined
from the stresses @, and 7, by Mohr's circle, as shown in Fig. 10.26¢c. The maxi-
mum shearing stress t,,,, is equal to the radius of the circle

e = hu(%)z 03y

Substituting values o, and 1, from Egs. (10.36) and (10.37) into Ey. (10.38) yiclds

2 2
M T T, (10.39)

mnax = 21/}’ - 2[/}’

T,

3]

ey Figure 10.26
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where T, is an equivalent torque defined by Eq. (10.39). If the torsion is larger
than the bending momenl, the maximum shearing stress may be used to predict
the strength of the tube. If the bending moment is large in comparison to the
torsion, the principal stresses are morc important than the shearing stresses. In
machine design practice, shafts in bending and torsion are designed so as to keep
the shearing stress of Eq. (10.39) and the principal stresses smaller than the
corresponding allowable working stresses, which are a certain fraction of the
yield stress.

When a tube is stressed beyond the clastic limit, Eqgs. {10.36) and (10.37} do
not yield the true stresses, but yield the fictitious stresses defined as the bending
modulus of rupture and the torsional modulus of rupture. Equations (10.38) and
(10.39), therefore, are not exact when the stresses are beyond the elastic limit.
When the torsion is large in comparison to the bending moment, however, Eq.
(I0.39) may be used to predict the ultimate for the allowable stress. A more
accurate method of designing tubes in torsion or bending is by stress ratios. The
bending and torsional moduli of rupture ¢, and t,, respectively, are calcuiated
from Egs. (10.36) and {10.37), and thc allowable values g5 and =1 are found by the
same meth -ds as for tubes in bending ot torsion only. The stress ratio in bending
Ry, = oy/uy is combined with the stress ratio in torsion R, = 1,ft4 in the same
manner as the loads arc combined in Eq. {£0.39). Failure occurs for the foliowing
condition: '

RE+RL=1 (10.40)
The margin of salety is
1

MS = ——==—=
i VR + R

Where cither the bending mament or the torsional moment is zero, Eqs. (10..40)
and (10.41) yicld values which were previously obtained for bending or torsion
only.

-1 (1041)

24t
Rl+ri=1

B4Ry =

€«

LY Ry Figure 10,27
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Equations (10.34) and (10.40) represent two ways in which stress ratios may
be combined, These equations may be plotled with the iwo stress ratios as
coordinates, as shown in Fig. 10.27. The graph for Eq. (10.34) is shown by the
straight line, and that for Eq. (10.40) by the circle. Other combinations of loading
conditions may be represented by a more general equation:

Ri+Ry= (10.42)

where the exponents x and y usually must be found experimentally by plolting
lest resuits, as shown in Fig, 10.27, and by writing an equation for a curve passing
through the points,

Example 10.6 A 2- by 0.095-in stccl tube is heat-treated 1o an wltimate tensile

strenglh g, = 180,000 1bfin?,

(a} Find the margin of salety if the tube resists a design tension load of 50,000
1b and a design bending moment of 30,000 in - Ib.

(b} Find the margin of safety if the tube resists a bending moment of 30,000
in - 1b and a torsional moment of 50,000 in - ib.

SoLuTion The tube properties are 4=0.5685 in?, D/r=21.05, and I/y=
0.2486 in>.

(a) From Fig 10.3, op = 211,000 Ib/in®. The stresses and slress ratios are

My 30000

Oh == G oege = 116,000 1b/in?
Rb~§—§~¥%masso
¢ = g = (5)—05*% = 88,000 1b/in?
R,—;L;=%%’6=o.4ss
The margin of safety is obtained from Eq. (10.35): &
- MS:Rb+R‘—1=—0.G35

The neealive margin of safety indicates thal the lube is unsatisfactory.

{(h} The stress ratio for bending is the same as computed in part {a). The
torsional modulus of rupture is obtained from Fig. 10.24, for D/t = 21.05
and t; = 0.58 x 180,000 = 104,600 1b/in®. The stress ratio for torsion is

Ty 50,000
Y= = 2w ozses 00
Ry =Tt =209% _ 4005
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The margin of safety is now calculated from Eq. (10.41):

MS = ———— — I = —0.07

T JRE+RE

The tube is unsatisfactory.

10.11 FAILURE THEORIES IN STRUCTURAL DESIGN

Since the stress-ratio technique was developed by Shanley and Ryder*® years ago,
many theories of faiture in structural design have been presented. The three most
commonly used are the maximum stress theory, maximum shear theory, and
maximum distortion energy theory.?”

In the maximum stress theory, fatlure is said to occur in a structural member
under the action of combined siresses when one of the principal stresses reaches
the failure valuc {yield stress, ultimate stress, etc) in simple tension gp. In a
two-dimensional state of stress, failurc is defined as follows:

Failure occurs when oy = tayg {o, > 03)
Failure occurs when o, = +ayp {o3 > o;)

or
Z‘I'= +1 {o > a3}
¢ (10.43)
2ol (o> o)
. .,

In the maximum shear theary, failure is said to occur in a structural member
under the action of combined stresses when the maximum shear stress reaches the
value of shear failure stress in tension, 7,,,, = 0¢/2. Under combined stresses in
two dimensions, three possible shear values exist:

Tg g — T
T1=-.;-=: i_z-_
G, o
z,_wzﬂ= ;t-zi {10.44)
Iy 0y
=—= 4+
BERTED

Therefore, failure is defined by one of the following:

Gy — 0= 99

Q

[ 5]
i
N
Q

Q




CHAPTLER

ELEVEN

BUCKLING DESIGN OF
STRUCTURAL MEMBERS

11.1 BEAM-DEFLECTION EQUATIONS

The methods vsed in the design of compression members, or columns, are based
on beam-deflection equations, Columns do not fail as a result of the direct
compression stresses, only as a result of the combined compression and bending
stresses. Since the magnitudes of the bending stresses depend on the bending
deflections, it is necessary to derive the column equations from beam-deflection
equations.

The equalions for beam deflections are derived from the customary assump-
tions that stress is proportional to strain and that the deflections are smdll in
comparison to the original dimensions. Only deformations resulting from bend-
ing stresses is usually considered, but if shearing deformations are appreciable,
thcy may be computed scparately and superimposed. An initially straight beam is
-shown with exagperated deflections in Fig. 11.1. The two cross scctions a distance
dx apart are parallel to the unstressed condition, but have a relative angle df) in
the stressed condition. The angie 8! may be oblained by considering the small
triangle between the neuiral axis and a point a dislance ¢ below the neutral axis.
The stress ¢ at this point is obtained from the Mexure formula:

_he

T

(11.1)

The longitudinal {iber a distance ¢ from the neutral axis has an clongation o dx/E

328
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Fis

Figure 11.1

i the length dx. The angle d? is obtained by dividing this clongation by the
distance ¢, as shown in I¥ig. 11.1;

o dx
= 112
dl == (11.2)
From Fgs. {11.1} and {1 1.3),
M
)= —— 113
d! I, dx {(1L.3)

The dellection curve of the beam can be represented by x and y coordinates,
as shown in Fig. 11,2, The beam is assumed to be initially straight and parallel to
the x axis. The deficctions are small, and the angle ¢ between a tangent to the
deflection curve and the x axis is small enough that it is sufficiently accurate lo
assume that the angle in radians, the sine of the angle, and the tangent of the
angle are all equal:

=sin=tan {J (11.4)
dy

0 == (11.5)
dx

i
RN

v

Figure 11.2
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From Egs. (1.3} and (11.5),

dy M :

dx®  El (1.6
All conventional methods of obtaining beam deflections are based on Eq. (1L.6).
It should be noted that the deflections y are measured positive upward, so that a
positive bending moment M produces a positive curvature d?y/dx®. Equation
(11.6) olten is derived from the assumption that y is positive downward, and a
minus sign is introduced because a positive bending moment would then produce
a negative curvatore. ’ .

11,2 LONG COLUMNS

Compression members tend to fail as a result of the lateral bending induced by
the compression load, an action which is commonly termed buckling. In (he case
of columns which are long in comparison to their other dimensions, elastic buck-
ling occurs, or the columns buckle when the cornpressive stresses are below the
elastic limit. Such columns are termed long columns.

The initially straight column shown in Fig. 11.3 is assumed to be held in the
deflected position by means of the compressive forces P. The bending moment at
any cross section is found {rom

M= —Py (1.7

It is assumed Ihat the material does not exceed the elastic limit at any point, and
therclore Eq. (1 1.6) is applicable. The differential equation of the deflection curve
is obtained from Egs. (11.6) and (11.7):

2ri—y=0 (11.8)

The general solution of Eq. {11.8} is

[p [P
= in J— x = 19
y=C, sin EI.\+C;cos T

This solution may be verified by substitution and must be a general solution
of ihe second-order differential equation because it contains the two arbitrary
constants C, and C;. In order to satisfy the end conditions shown in Fig. 11.3,
the deflection curve must pass through the points (x =0, y=0) and {(x=1L,

L 1 Figure' 11.3
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¥ = 0). Substituling the first condition into Eq. (11.9) yields C; = 0. The second
condition, that y = Q0 when x = L, may be satisfied when €; =0, which iz a
trivial solution, corresponding to the conditions of small loads when the column
remains straight. The only solution of interest in column analysis is that for
which the column is decRected and C, is not zero. This solution, in which the
column is buckled, is obtained when the value of P satisfies the condition

P
fEL=1r, I, 3xm, ..., 07

nniEl ‘
r P=e 11
o IE (11.10)
The value of P is obviously a minimum when » = 1, and higher valucs of # have
no significance in this casc, since the column will fail at the smallest value of P
that wili produce buckling, The critical, or buckling, load P, is therefore defined
as follows:

n*El

er =T (11-11)

Often it is more convenicul to work with ¢ buckling stress ¢, = P_ /4. This
may be found by introducing the radius of gyration of the cross-sectional area,
p= A into Eq. (11.11):

wiE
Tox =7 712
(Lip)?

The analysis of long columas was first published by the Swiss mathematician
Euler. Equation (11.11) [or Eq. (11.12}] is commonly called the Euler equation,
and the buckling load is alten called the Euler loed,

The value of C, cannot be obtained at the critical load. This value is eoual to
the maximum deflection § at the center of the column, which is indcterminate for
the assumed conditions. For loads smaller than P, the deflection C; or & must
be zero, or else the column remains straight. At the critical load, any deflection &
for which the maximum stress is below the elastic limit will satisly condilions of
equilibrium. This may be shown experimentally by loading a long column ina
standard testing maching. As the ends of the column are moved together, the
column remains straight until the Euler load is obtained. As the ends continue to
move together, the ioud remains constant at the Euler load, but the lateral
deflection 8 increases. 1f the elastic Hmil is not exceeded, the column returns to its
initial shape when the load is removed.

(11.12)

11.3 ECCENTRICALLY LOADED COLUMNS

In an actual structure, it is not possible for a column to be perfectly straight of to
be loaded exactly at the centroid of the area. The action of a practical long
column may be approximated by the member shown in Fig. 114, in which the
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TFigure 11.4

column is initially straight but the loads both have eccentricity a. The axes of
coordinates are taken as shown. The equation of the dcflection curve is still
represenied by Eq. (11.9) since Eqs. {11.7) and (1 1.8) are applicable, but constants
C; and C; must be found from the condition that the defleclion curve satisfy the
two conditions x =0, y =4 + a and x =0, dy/dx = 0. Substituting these two
conditions into Eq. {11.9) produces

[P
= = 1113
y=(& + a) cos £l x ( )

The value of 4 can be found now [rom the condition that y = a for x = L/2. By
substituling these values into Eq. (11.13) the following value of 4 is obtained:

P L
= —= 11.14
d+a a(scc / B 2) (11.14)

The deflection § of un eccentrically loaded column thus increases with an increase
in the load P, As the value of P reaches the Euler load P,,, as defined by Eq.
{11.11), the deflection becomes infinile, since sec {7/2) = co. Figure 11.5 shows the
relationship between P and 8 for various eccentricities a, as delermined from Eq.
{11.14). All curves are asympliotic to the line P = P, for this is the theoretical
buckling load regardless of the eccentricity of loading. A large deflection may
stress the material beyond the elastic limit and cause failurc before the Euler load
is obtained, since then the long-column equations would no longer apply.

1i4 SHORT COLUMNS
Columns of any specific matcrial are classified according io their slenderness
ratio L/p. For a slenderness ratio greater than a certain critical value, the column
is a long column and is analyzed by Eq. (11.12). Short columns have a slenderness
ralio less than this critical value. The critical Lfp corresponds to the value for
which the maximum compressive siress in the cohmmn is equal to the siress at
which (he compressive stress-strain curve deviates from a straight line, as shown
by point B in Fig. 11.6. Usvally this stress is considerably smaller than the yield
stress, point C of Fig. 11.6 at which the material has a permanent unit elongation
of 0.002.

Most flight vehicle materials have stress-strain curves similar to that shown
in Fig. 11.6, in which the stress-strain curve has a positive slope at all points. The
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o

a = .0001

4 =0.001
T~ g =0

&  Figure 11.5

conslant slope of this stress-strain curve below the elastic limit is equal to the
mudulus of elasticity E, and the variable slope above the elastic limit is termed
the tangent modulus of elasticity E,. Ductile materials, such as mild steel, may
have a zero or negative valuc of I, near the yield point. If E, is positive at all
points. a shor! column may remain perfectly straight when lorded to stresses
beyord the yicld point. il such a column has a slight lateral deflection, the
internal resisting moment is found from an equation similar to Eq. (116}, except
that E is replaced by £,, the tangent modulus for the compressive stress:
., d%y

M=E 155 (11.15)
I s infernal resisting moment is greater than the bending moment produced by
the load P, the column will remain straighl when loaded. If the internal resisting
moment is not as large as the external bending moment, the deflection will
increase and the column witl probably fail. When the bending moment of the
load P is equal to the resisting moment defined by Eq. (11.15), P may be obtained
in the same manner as in the Buler equation, but with E, substituted for E:

2
‘P=7I—;"—I (11.16)
: I,
. . 1
" L}{.’: Lif//’,.(-

/A
-
i /

/
/ |

o h v Figure 11.6
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This equation is called the rangent modulus equation, or the Engesser equation.

The tangent modulus equation does not quite represent the true conditions
for short columns. At point C of the stress-strain diagram in Fig. 11.6, a small
increase in the compressive strain produces an increase in compressive stress, as
determined by the portion CG of the curve, which has slope E,. A small decrease
in the compressive strain, however, produces a decrease in stress, as indicated by
line CB, which has slope E. If a short column deflects laterally in such a way that
the compressive strain on the convex side is decreased, the resisting moment will
be greater than that given by Eq. (11.15) because the modulus of elasticity for
part of the cross section is E rather than E,. Thus {he correct modulus of
elasticity should be a value between E and E,. Values of an effective modulus of
elasticity shonld be derived on the assumption that the column is supported
laterally and remains straight uatil the ultimate load is applied and then buckles
with no change in axial load. The column formula obtained by substituting this
modulus into the Euler equation is termed the reduced modulus equation and
[requently is referred to in the literature. ’

Shanley® has shown that the correct load resisted by a short column is
between the values given by the tangent modulus equation and by the reduced
modulus equation, The tangent modulus equation yields values which are slightly

low, since some strain reversal must take place before the ultimate column load is -

reached. The reduced modulus equation always yields values which are loo high,
since the column is nol laierally supported when the load is applicd. The tangent
modulus equation is used frequently, because it corresponds closely to test results
and is always conservative.

It is customary to represent column equations by plotting the average com-
pressive siress ¢, = FP/A against the slenderness ratio L{p. Figurc 11.7 shows such
curves. The slenderness ratio beyond which the material acts as a long column is
about 115. The stress at this point corresponds to the stress at point B of Fig.
11.6. For slenderness ratios lcss than 115, the compressive stress is higher, and the
tangent modulus of elasticity E, is smaller than E. Thus the poinis on the column
curve are below the Euler curve in the short-column range. The test points are
scen to follow the tangent modulus eurve very closely. Such test loads are always
slightly lower than theoretical loads because of unavoidable eccentricities of.tdad-
ing. The curves shown in Fig. 11.7 represent valucs for an actual specimen,
whereas similar design curves are based on minimum guaranteed properties of
the material and give somewhat lower stresses.

11.5 COLUMN END FIXITY

In the previous analysis, we assume that the column is hinged at both cnds so
that it can rotate freely. In most cases, however, compression members are con-
nected in such a way that they are restrained against rotation at the ends. In
order 1o have the means of determining the buckling load for a column with

[P
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various end fixitics, Fq. (11.8) is wrillen as follows:

“’4}' 2 ‘!2)' . .
— + k== 11.17
ot k dx? 0 _ ( )

where k2 = P/EI). The solution of Eq. {11.17} can be found easily:
§=C, sin bx + C, cos bx + C3x + Cy (11.18)

Constants €, through C, are determined from the boundary conditions at the
ends of the column. For instance, in the case of pin-ended columns, the boundary
conditions are

y=0 dyfdx*=0 atx=0
r=0 dipfdx*=0 atx=1L

_ For columns which are completely fixed at both ends, the boundary conditions

are
dy
K0 =0 0 0
n=o -2
W= (L)

Columns which are fixed at x =0 and pinned al x =L have the boundary -
conditions

A =0 L) =0
dy d*y
dx(0) dx*{L)
5 .
. — > Eul rlj g 7:2!':
wler Fo.oo, = =575
45 \H \\_‘/ 1. ¥ (L/ﬁ)'
-‘-‘-‘-"l-_.“
40 B o
3 nlk = \\
o 30i— Reduced nwndulus Fep. o, = mi A
x i | - ™.
X 28 1
al= l I riE,
:‘, ! Tangen! modulus By, o, = m
. 1
10 e s
201 7-04 solid rund rod, 028200
5 dismeter i ends
0 I 1 I i
0 20 40 7] BU 1e) 120 140
Lip
Figwe 11.7
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Upon substituting the boundary conditions in Eq. {11.18), a sct of four alge-
braic homogeneous equations is obtained. For nontrivial solutions, the determi-
nant of the undetermined coefficients C; to C, must vanish. This will yield 2
transcendental equation from which the buckling load is determined. For exam-

ple, substituting the last set of boundary conditions (column fixed at one end and -

pinned at the other) yields
C,+Cy=0
‘ KCi+C3=0
(sin kL)C, + (cos kL)Cy + LCy + C4 =0
(k2 sin kL)C, + (k* cos kL)C, =0
For nontrivial solutions of the above set of equations, the determinant must
vanish, Le.,

0 | ¢

k 0 i

sin kL cas kL L
Isinkl klcoskL O

Expanding yields the following:
E*kL cos kL — sin kL) =0
Since k? = P/(EI), k cannot be zero. Therefore

klLcos kL —sin kL =10

or
tan kL = kL (transcendental cquation)

The critical buckling load occurs at the smallest value of kL which satisfies the
transcendental equation above. This value can be shown to be equal to /2 7
Hence the critical buckling load is )

-
(11.19)

2nEl
- Per = Lz

if a compression member is rigidly fixed against rotation al bath ends, the
defleclion curve for elastic buckling may be determined by using the above
procedure and will have the shape shown in Fig. 11.8b. At the quarter points of
the fixed column, there will be points of reverse curvature, or points of contraflex-
ure. At points of contraflexure there is no curvature and hence no bending
moment. The portion of the column between points of contraficxure thus may be
treated as a pin-ended column, The length L’ between the points of contraflexure
is used in place of L in the column equations previously derived, and the slender-
ness ratio is defined as I'/p. An end-fixity term ¢ is used often and is defined in the

-
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; . 4 n”zié:l -3: o
following equaltion: R
opo TE _mE 1 ! 11.20
« = (R ur long columns only (11.20)
. L
or L=— for all columns (1L2Y
Je

For the {ixed-end condition of Fig. 11.8h, I = /2 and ¢ = 4. Thus the fixed-end
column will resist 4 times the load of u similar pin-ended column, if both are in
the long-column range. This samc relation does not hold in the short-column
range, because the value of E, in Bg. (11.16) is smaller for the smaller values of L.
This fact is evident from Fig. 11.7, wherc it may be seen that a reduction in L'/p
has a much smaller effect on o, in Lthe short-column range than it has in the Euler
columu range.

In order to oblain complete end fixily, the compression member must be
attached to a structure of infinite rigidity at both ends. This condition is ap-
proached less frequently in practice than the condition of hinged ends. Most
practical columns have end conditions somewhere between hinged and fixed, as
shown in Fig. 11.8¢. The ends are rigidly attached to a structure which deflects
and permits the ends to rotate slightly. The true end-fixity conditions seldom can
be determined exactly, and so conservative assumptions must be made. Fortu-
nalely, short columns usually are used, and the effect of end fixity on the allow-
able compressive stress is much smalier than it would be for long columns. '

Other common cnd conditions for columns are shown in Fig. 11.9. For the
column fixed at one end and free to both rotate and move laterally at the other
cnd, as shown in Fig. [1.9a, length L' is twice length L, since the columa is simila:
to one-half of the column with two hinged ends. The column with one end fxed
and the other end free to rotate but uot free to move laterally has an effective
length L' = 0.7L, as shown in Fig. [ Lb.

Welded trusses made of steel tubes frequently are utilized in vehicle struc-

Il

=11 1004
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1wl Figure 11.8
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(@) thy Figare 119

tures. The ends of a compression member in such a truss cannot rotate without
bending alf the other members at the end joints. Such a member is shown in Fig.
11.19. The problem of obtaining the true end fixity of such a compression
member is difficult, since the member may buckle either horizontally or vertically
and is restrained by the torsional and bending rigidities of many otber members.
For a steel-tube fuselage truss, usually it is conservative to assume ¢ = 2.0 for all
members. If a very heavy compression member is restrained by comparatively
lipht members, & smaller end fixity might be obtained. Similarly, a light com-
pression member restrained by heavy members may approach the fixity condition
¢ = 4, If all the members at a joint are compression members, they may all have a
tendency to rotate in the same direction, so that none helps restrain the othets,
and all should be designed as pin-endcd. Where this rare case cxists with mem-
bers in any plane, the members perpendicular to this plane probably would
supply torsional restraint to the joint. Tension members that connect to the ends
ol compression members supply greater restraint than similar compression mem-
bers. Often steel-tube engine mounts are designed with the conservative assump-
tion of pin-ended member with ¢ = 1.0. -
Stringers which act as compression members in semimenocoque wmg or

L
L’
n "._-“-_—‘-.-“'-.. -’ b d
e 'F&“
~
1 ~ A
i \,\ i
s i N
a | al

= — .
N Figure 11.10
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Figure 11.E1

L

fuselage struclures often are supporied by comparatively flexible ribs or bulk-
heads. Such a stringer is shown in Fig. | 1.11. Since the ribs or bulkheads are free
to twist as shown, their restraining effect is neglected and the effective column
length £’ is assumed equal to the length L between bulkheads. Where the bulk-
heads are rigid enough to provide restraint and clips are provided to aftach the
stringers 1o the bulkheads, a value ¢ = 1.5, corresponding to an effective length L’
of 0.815L, is sometimes wsed.

11.6 EMPIRICAL FORMULAS FOR SHORT COLUMNS

One disadvantage of the tangent modulus formula for short columns is that the
relation between the allowable column stress o, and L'/p cannot be expressed by
a simple equation. It is often more convenient Lo express this relationship by a
simple approximate equation which is reasonably close to the poinis obtaincd
directly from column tests or from the tangent modulus equation. The short-
column curves for many materials approximate the parabola

. ™2
7= — KG‘;) : (11.22)

The constants a,, and K must be choscn so that the parabola fits the test data
and is tangent to the Euler curve. By equating the slope of this parabola to that
of the Euler curve at the point of tangency and substituting the resulting value of
K into Eq. (}1.,22), the following cquation is obtained:

t 2
6. = 0.0 [1 _Eﬁ——;’é’—)] (11.23)

The term o, is called the column yield stress. 1t has litile physical significance,
since very short columns {Lp < 12) fail by block compression rather than
column action, and Eq. {11.23) is nol applicable in this range. The value of a4 is
determined so that Eq. {11.23) will fit short<olumn test data for values of L/p
above the block compression range.

The general sccond-degree parabola equation is shown in Fig. 1112 with the
corresponding Euler equation. The value of 5, represents the intercept of this
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Figure 1112

curve at the point L/p = 0. The parabola is always tangent to the Euler curve
when 6,4 = 0.9/2, as is found by solving Eq. (11.23) simultaneously with the Euler
equation. In the same way, the critical slenderness ratio, which_divides the long-
column and short-column ranges, is found tobe I'fp = . /2 5 . /Fjo;.

The short-column curves for most aluminum alloys and for several other
malerials are represented more accuralely by straight lines. A straight line
tangent to the Euler curve has the equation:

.o ( ) 0.385[:/;:)
I3 0 . *,’Efdru

The coordinates of the peint of tangency of this curve and the Euler curve are
Lip=S3 = JElay and g, = a,4/3 (see Fig. 11.13). The value of I'/p at this
point is the critical value dividing the short-column and long-column ranges.
Other materials bave column curves which may be represented by a semi-
cubic equation. A 1.5-degree equation which is tangent to the Euler curve has the

form
’ 1.5
G = %[1 - 0.3027(—“/—”“) ] (11.25)

7/ Efg.o

The coordinates of the point of tangency are again {ound by solving the_short-

(11.24)

o . =0 . 0.335L"/p
et 'y T Koy,
N\

w2k
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column and long-column equations simultaneously. The critical slenderness ratio
is Lifp = 1.327=,/ E/a 4 correspondiny to a stress of g, = 04290, .

Equations {11.23) to {11.25) and the Euler equation may be expressed in
dimensionless form by using coordinates B and R, as defined by

=4 _ 11.26
./ Efa.q ’ (11.26)
Uf

Ro= ot (11.27)

The Euler equation, Fq. (1112}, then becomes

R, = % {11.28)
Fauations (11.23) to {11.25) will have the following forms, respectively:
R,=10-02582 (11.29)
R,=10 -03027B'3 (11.30)
R,=10-03858 {1131}

Thesc equations arc plotted in Fig. [1.14. The dimensionless form of CXPIEssing
column curves has the advantage of showing column curves for all materials on a

.0
! | | |

\ |~ folwsou: &, =10 0.2542
05 \ T | | !

: t i
\\‘%s Paaboke K, = 1.0 0.3027408
0.6 \ \
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& R, =10 -0.3850 N
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11.7 DIMENSIONLESS FORM OF TANGENT
MODULUS CURYES '

The materials used in flight vehicle construction are improved frequently. Design-
ers must adopt new materials and processes which save structural weight, even
though the new mategials are more expensive than standardized ones. When a
new or improved material is introduced, it is difficult to make exiensive column
tests and ¢rippling tests in order to establish new design allowable stresses. Tt
would be much better to obtain simple compressive stress-strain curves for the
new material and to base new column and crippling allowable stresses on these
{ests than to test numerous built-up column specimens. The Romberg-Osgood'?
equation for the stress-strain curve, discussed in Sec. 4.3, provides the necessary
data for comparing similar materials.
The Romberg-Osgood equation of the stress-strain curve is

E=g+3" {1132}

where & and & are dimensionless functions ol the stress ¢ and the strain € and the
modulus of elasticity E:

L (11.33)
a1

F== (11.34)
O'I_ )

The stress o, is approximately equal to the yicld stress at a permancnt strain of
0.002, but it must be defined as the stress af a sccant modulus of clasticity of 0.7E,
in order for stress-strain curves with equal values of # to be geotmetricaily similar.

The tangent modulus of clasticity E, = da/de is rcadily obtaied from Egs.
(11,32) to (11.34):

E de de

"""__..E—=——=1 ; gt 11-35
E,  do ds +ne (11.33)
E 1

Lo 1436
E |+ ( )

Sce Fig. 11.15. Now the tangent modulus equation can be writlen as a single
expression which includes both the long- and short-column ranges, since Eq.
{11.36) represents the modulus of elasticity below as well as above the elastic

limit:
w*k,  mE 1 )
= = - {11.37
%= i P (1 e )

For low valucs of o, the cxpression in brackets is approximately unity, and Eq.
{11.37) corresponds to the Euler equation. The expression in brackets, corre-
sponding to E/E of Eq. (11.36), is plotted in Fig. 11.15 for various values of n.

ot AN e e
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. _!n order to plot column curves given by Eq. (11.37) in a dimensioniess form
similar to that shown in Fig. 11.14, the stress o, must be used rather than ¢ in
Eqs. {11.26) and {1 1.27):

’:,r"p
B=—" 11.38
./ Efa, (11.38)
1.2 \ =
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R =

(11.39)

2l

By substituting these valves from Eqs. {11.38) and (11.39) into Eq. (11.37), the
following column equation is obtained:

1
R.=123 (11.40)

t |

This equation is plotted in Fig. 11.16 for various values of n. )

‘The form of dimensionless column curve giver by Eq. (11.40) and Fig. 11.16
was proposed by Cozzone and Melcon’. They also use this same basic diagram
for local crippling, initial buckling of sheet in compression and shear, and buck-

ling of sheet between rivets, These further applications are discussed later. These -

column carves have a very distinet advantage when structures of new materials
are analyzed. It is necessary only to obtain the basic compression stress-strain
diagram of the matcrial. The shape factor # and the stress o, correspoading to
the yvield stress supply all the necessary information on the new material. All the
information obtained from tests of columns of one material are immediately
applicable to a new material.

11.8 BUCKLING OF ISOTROPIC FLAT
PLATES IN COMPRESSION '

A flal plate, in which the thickness is small compared to the other dimensions,
does not act as a number of parallel narrow beams when resisting bending
stresses. The inilially flat plate shown in Fig. 11.17a may be compared to the
narrow beam shown in Fig. 11.175. The initiafly rectangular cross section of the
narrow beam distorts o the trapezoidal cross section, because the compression
stresses on the upper face of the beam produce a lateral elongation, while the
tensilc stresses on the lower face of the beam produce a lateral contraction. The
cross sections of Lhe flat plate, however, must remain rectangular,

If the shaded clement of Fig. 11.17«, shown to a targer scale in Fig. 11.17¢, is

considered, it will have unit elongations €, and ¢, as follows: e
g 6
- ex=f—v;§ {1141}
and e, = % — % (11.42)

where v is Poisson’s ratio. In the plate, the clongation in the y direction must be
zeto if the plate is assumed to have no curvature in the y direction. Substituting
€, = 0 into Eqgs. (11.41) and (11.42) yields

7, = Vo, {11.43)

€, = EE (1 —v?) (11.44)
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Figure 11.17

Thus, when the flat plate is deflccted with single curvature in the x direction, the
stresses in the p direction are equal to Poisson’s ratio times the stresses in the x
direction. Similarly, the unit elongations in the x direction have the ratio of
1 — »? to the corresponding elongations in a narrow beam.

Since a flat plalc has smaller unit elongations than the corresponding narrow
beam, the curvature resulting from an equivalent bending moment will be smaller
by the ratio I — v% Similatly, if the termn MAET) of the general beam-deflection
relation, Eq. (11.6), is teplaced by M({l — v3)/(ED, the Euter formula for a flat
plate may be obtained as follows:

e El
P = T ViE (11.45)

This equation aE;pIies for the condition shown in Fig. 11.18 where the unioaded

edges are free and the loaded edges are simply supported, or free to rotate but
not free to deflect normal to the plane of the plate. Substituting I = bt?/12, L = 2,

Figure 11.13
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and P, = g, thinto Eq. (11.45) gives -
7 =t Ly
o= (—) . (11.46)

T11— v \a

For a plate simply supported on all four edges, as shown in Fig. 11.19, the
buckiing compression load is considerably higher. As the plate deflects, both
vertical and horizontal strips must bend. The supporting effect of the horizontal
strips may be sufficient to cause a vertical strip to defiect into two or more waves,
as shown in Fig. 11.19. It can be shown that the buckling stress is*®

- 2 2/,\2
n°E bm t
= | = 114
Ta = THL — v ( PR bm) (b) (11.47)
where m is the number of waves in the buckled sheet, The value of v is approxi-
matiely 0.3 for all metals. Since a large error in v produces only 2 small error in

d.., it is seldom necessary to consider the variation of Puisson’s ratio. Equation
(11.47) may be written as {ollows:

o, = KE(%)Z (11.48)

where K is a function of a/b and is plotted in Fig. 11.20 for v =0.3. Only the
curve of Fig. 1120 which gives the minimum value of X is significant, since the
sheet will buckle into the number of waves that requires the smallest load. It is
seen from Fig. 11.20 that the wavelength of the buckies is approximately equal to
‘the width b, or that m=1 for afb =1, m = 2 for a/b =22, etc. The ratio a/b at
which the number of waves changes from m to m + 1 is obtained from Eq. (11.47)
as afh = ./mim + 1). The buckling stress obtained from Eq. (11.47) for a square
plate with four edges simply supported is 4 times that obtained from Eq. (11.46)
for the plate with sides free and ends simply supported.

F=auah

T

“ .

EERWY

/

\
\

Figure 11.19

My

- JRETPTS

L R N

PG a5y A N 2 st M

BUCKLING DESIGN OF STRUCTURAL MEMBERS 347

4 vdges simply supported

m=4
7 » I .
s Fe—y T

6

™ |
|
, j
]
! !
|
| b
]
|
!
| ;
| i
1 {

Vo 3 12

alh

ta

I
_ e e e —
[YE T g i U
E O e e ———

Figure 1120

. The buckling loads for reclangular plales with other edge conditions also can
be found from Eq. (11.48)} by using the correct values of K. Values of K are
shown in Fig: 11.21 for various conditions. The loaded edges are termed ends,
and the unloaded cdges termed sides, as designated on the curves. A free edge
may rotate or deflect in a direction normal to the plate. A fixed edge, as shown in
Fig. 11.22g, is prevented from rotating or deflecting. The simply supported edge
shown in Fig. 11.22b is free to rotate, but not to deflect normal to the plane of the
plate. '

The true edge-fixity conditions for flaf plales in an airplane structure cannot
be calculated in most cases. It is necessary 1o estimate the edge fixity after the
supporting structure has been considered, in a manner similar to that for esti-
mating column end-fixity conditions. The upper skin of an airplane wing, for

.

i)
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73] Figure 11.21
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example, is compressed in a spanwise direction. If the stringers are flexible tor1-
sionally, they will rotate as the sheet buckles and will act almost as simple
supports for the sheet between the stringers, as shown in Fig. 11.23a. If the
stringers have considerable torsional rigidity, as do the “hat™ sections and the

Figure 11.23
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spar fMlange shown in Fig. 11,234, they will rotate only slightly and will provide
almost clamped cdge condilions. In most struclures, it is necessary to assume a
value for the term K of Eg. (11.48) which will represent a conservative mean
between simply supported and clamped edge conditions. .

1L9 ULTIMATE COXPRESSIVE STRENGTH OF ISOTROPIC
FLAT SHEET

The buckling of sheets in compression does not cause the collapse of a semi-
monocogue structure, because the stilfening members usually can resist stresses
which are much higher than those at which the initial sheet buckling occurs. We
showed thal a long column may resist a compression load when in the buckled
condition and that the load is the same for a small lateral deflection as for a large
deflcclion, provided that the stress does not exceed the elastic limit. The com-
pression load resisted by a fiat sheet with the sides free also remains constant {or
any kateral deflection. [T the sides are supported, however, the compression load
resisted by the shect will increase as the lateral deflection increases, because the
sides of the sheet must remain straight and consequently must be stressed in
proportion to the sirain in the direction of loading.

The plate shown in Fig. 11.24 is simply supported at ali four edges and is
loaded by a rigid block. The compression stresses are uniformly distributed as
shown in Fig. 11.19 if the load is smaller than the buckling load. The stress
distribution over the width of (he piate is indicated in Fig. 11.25 by lines 1 and 2,

Figure 11,24
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with line 2 indicating the stress at initial buckling. As the load is increased
beyond the buckling load, the stress distribution is indicated by lines 3, 4, and 3.
Near the middle of the cross section, the compressive stress remains approxi-

mately equal to the buckling stress, or a vertical strip acts in a similar manner to -

a leng column. At the sides of the sheet, buckling is prevented, and Lhe stress
increases in proportion to the vertical motion of the loading block. The load may
be increased until faiture occurs by crushing of the sheet at the sides, although in
common aircraft structures the stiffening members supporting the shcet usually
fail before the sheet fails,

The curve representing the distribution of compressive stress over the width
of a sheet is difficult to obtain, and even if it were known, it would be tedious to
usc in analysis. It is more convenjent to obtain the total corpression load corre-
sponding to a given compression stress at the side of the sheet. It is customary to
work with effective widths w, shown in Fig. 11.26, which are defined in such a
way that the constant stresses o, acting over the eflective widths wilk yield the
total compression load. Thus w is selected so that the area under the two rec-
tangles in Fig. 11.26a is equal to the area under the curve of the actoal stress
distribution, The total compression load P and the cdge stress ¢, can be found
experimentally, and the widths w may be calculated from

2wo, = P {11.49)

An approximate value of w may be oblained by assuming that a long sheet of
total width 2w will have a buckling stress of #,. From Eq. (11.48) and Fig. 11.20,

t .
o, = 3.52E(§;) &
w l
]L——'- @) 'r~—“--{
|
%”‘;:::lﬁ
W) Figure 11.26
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ar

w = 0.95¢ £

¢

Tesi resulls indicate thal this value is too bigh and that it is more accurale 10 usc

W= 0.85!\/E {11.50)
O-‘.

In obtaining Eq. (11.50}, we assume that the sheet is free to rotate at all four
edges. [n actual structurcs some degree of restraint always exists, and the effective
widths may be much greater in many cases. Tests indicate that stringers provide
considerable edge fixity at low stresses, but do not provide much restraint at
stresses approaching the ultimate strength of the stringers. Numerous other equa-
tions have been used in place of Eq. (11.50); no equations provide accurate cor-
relation with lest results under all conditions. Uncertaintics regarding the ef-
fects of cdge restraints in the actual structure, accidental eccentricitics in the
sheet, and the cflects of stresses beyond the elastic limit further complicate the
problem. Equation (11.50) yields a smaller effective width than do most other
equalions and is conservative for use in design. For normal aircrafl structures in
which the sheet is relatively thin, the weight penalty introduced by using Eq.
{11.50) is small; for high-speed aircralt in which the skin is relatively thick, a more
accurate analysis may be juslified, )

The buckling stress for a flat sheet with a large ratio of length to width, with
one side simply supporled and (he other free, can be obtainned from Fg. (11.48)
and Fig. 11.21. For K = 0385, 7, = 0.385E(1/b)%. The ultimate load resisted by
such a sheet when (he supporled side is stressed by a value ¢, is found by
considering that an clfective width w, resists the stress o, and by obtaining w; as

b From Eq. (11.50):
1 \2
g, = 0.385E<—)
. w,

E
wy = 0.62¢ -

or

A more conservalive value is recommended:

w, = 0.601 \/GE (11.51)

These effcctive siwet widths w and w, shown ir Fig. 11.27 are obtaincd from Egs.
{11.50) and (11.51),
Example 111 The sheet stringer pancl shown in Fig. 11.28 is loaded in

compression by means of rigid members. The sheet is assumed to be simply
supported at the loaded ends and at the rivet lines and to be free at the sides.




352 AIRCRAFT STRUCTURES

[ —

i

{_“4&._' l it ! LY |

SANY PO A | RS SSISNT J

%J:;Jm

iy n'l Iw t 1ty

+

C

H
AN 0N IR | AT N NS ~

g mw

Figure 11,27

Each stringer has an area of 0.1 in?. Assume E == 10,300,000 Ib/in? for the
sheet and stringers. Find the total compressive load P:

(a) When the sheet first buckles

(b) When the stringer stress o, is 10,000 lb/fin?

{r) When the stringer stress o, is 30,000 1b/in?

SoLuTioN (a) The sheet between the stringers is simply supported on all four
edges and has dimensions of a = 10, b = 5, and t = 0.040 in. From Fig. 11.20,
for afb = 2.0 the value K = 3.62 is obtained. The buckling stress is o, =
KE(1/bY = 3.62 x 10,300,000(0.040/5)* = 2390 Ib/in®. The edge of the sheet
has dimensions of @ =1 and b == 10 in and is simply supported on three

[ Fignre 1128
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edges and free on the fourth edge. From Fig. 11.21, K = 0.383, The buckliing
stress is o, = KE(#/6)® = 0.385 x 10,300,000(0.040/1)® = 6200 lb/in%

The sheet therefore buckles initialiy between the stringers. The total area
of the shect is assumed to be eflective before buckling occurs. The buckling of
a flat shecl in compression is a gradual process, and the load does not drop
appreciably when buckling occurs. The load is therefors caiculated as fol-
lows:

A=3x01+12 x 0.040 = 0.78 in?
P=0g.A=2390 % 0,78 = 1865 1b

(&) The effective sheet widths are obtained from Eqs. (11.50) and {11.51):

E fi0,300,000 ]
W= 0.85\/;r = 0.85 x 0.040 W =109 in
s .
w, =060 {—=077in
o-f

The effective sheet area is
A, = {4»\; + 2wt = {4 x 1.09 + 2 x 0.77) x 0.040 = 0.236 in*
The total compressive load is
P=g,4=10000(0.3 + 0.236) = 5360 lb

{c) The solution is similar to that of part {h):

/E /10,300,000 .
w = (.85¢ a_—: = (.85 x 0.040 W = 0.63 in
E
w, = 0.60¢ f— =044 in
r]-C

A =03+ (4 % 0,63 + 2 x 0.44) x 0.040 = 0.436 in?
P =0, 4 =380,000 x 0.436 = 13,080 b

11.10 PLASTIC BUCKLING OF FLAT SHEET

In the discussion of buckling of sheet clemients, we assume that the stress does not
exceed the proportional elastic limit for the material, This elastic buckling action
for flat shects is similar to the elastic buckling of long columns in that the
modulos of elasticity is the only significant material property. Equation (11.48)
for shect buckling is similar 1o the Euler equation for columns, and in each case
the buckling stress is proporlional 1o the modulus of elasticity of the material.

In the case of sheet clements for which the thickness is greater in comparison
to the other dimcnsions, the compressive stresses will exceed the elastic limit
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before buckiing will occur, as is the case for short columns, Equation (11.48) will
be valid in this case if the tangent modulus of elasticity E, is substituted for the
modulus E: '

£\? .
o, = KE, 5) (11.52)
This equation may be writlen as
KE
a, =—3 11.53
- oy (H.33)
Equation {11.53} is similar to the tangent modulus equation for short columns:
n2E,
0. =73 11.54
({L/p)? (159

The tangent modulus curve and other curves for short columns were plotted with

values of o, as ordinates and values of L/p as abscissas. Values of o, and b/t

could be similarly plotted from Eq. (11.53) for a known value of K. In fact, the

column curves can be used for plastic sheet buckling if the values of b/t are

multiplied by a constant which is cbtained by equating the right side of Eq.
(11.53) and the right side of Eq. (11.54) as foliows:

: L n b :
Equivalent = = ——= - (11.55)
pJKt '
A typical column curve for an aluminum-alloy material is shown in Fig.
11.29. The allowable column stress is obtained from the curve for a known value
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Figure 11.3¢

of I'fp. In the short-column range, the theoretical tangent modulus curve may be
replaced by the more conservative straight line, in order to accouat for accidental
eccentricities or other unknown conditions. Similarly, the curves in Fig. 11.29
vield the allowable buckling stress for a flat plate in the plastic, or short-column,
range. The value of o, may be obtained for any known value of (n/\/IE)(bjr).
Either of the shorl-column curves may be used, depeading on the possible initial
eccentricities of the sheet element and the degree of comservatism desired. The
valee of K is obtained rom Fig 11.20 or 11.21.

One common application of plastic buckling is the buckling of compressive
skin between rivels atlaching the skin to the stringers or spar caps. A skin
element of this type is shown in Fig. 11.30. The rivets have a uniform spacing s
along the stringer, and the restraint is such that the skin element of length s and
indefinite width has clamped ends and free sides. The element therefore resists 4
limes the load of a similar element with hinged ends, which was analyzed by Eq.
{11.46). Substiluting a = 5 and E = E, into Eq. (11.46) and multiplying the right-
hand side by 4 (to account for the end fixity) yield

nE, (ﬁ)z
g = —— [ -
L — v s

e 3.62E,
O s?
The tangent modulus short-column curve may be used in solving Eq. {11.56). An

equivalent slenderness ratio may be obtained by equating the right-hand sides of
Eqs. (11.54) and {11.33):

or, for v = 0.3,

{11.56)

Equivalent E. .2 :_ 1.65 - (11.57)

p Jie2t t

Example 11.2 Find the compression buckling stress for a sheet 4 by 4 by
0.125 in with all four cdges simply supported, assuming that the tangent
madulus column curve for the material is represented by Fig. 11.29.

SoLution For this sheet @ =b =4 and t=0.125. From Fig. 11.21 for
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afb = 1 and simply supported edges, K = 3.62. From Eq. (11.55) the equiva-
lent Lipis

Rt e oin 28

From Fig. [1.29, o, = 28,000 Ib/in®. If this point had been on the right»hanld
portion of Fig. 11.29, corresponding to the long-column or clastic range, the
buckling stress would correspond to that given by Eq. (11.48).

Example 11.3 The angle extrusion shown in Fig. 11.3] is loaded in com-
pression. Each leg of the angle buckles as a plate simply supported on the
ends and on cone side and fres on the cther side. Find the siress at which this
buckling occurs. Assume that Fig. 11.29 represents properties of this material.

Sorumion Foreach leg, b= 1, a =8, and ¢t = 0.072. For a/h = 8 the valug of
K from Fig. 11.21 is approximately 0.385. The equivalent I'/g is

1
/Kt J0383 * 0072
From Fig. 11.25, 6, = 20,500 Ib/in.

The type of failurc indicated for this section is typical of crippling failures for
aluminum-alloy extrusions. The ordinary short-column curves apply only to
round tubes or to stable cross sections which do not cripple locally, Since light
extrusions are used extensively as column members in aircraft structures, the
subject of crippling failure is very important and is discussed ia detail later.

Example 11.4 An 0.040 sheel is riveted to an extrusion by rivets spaced 1 in
apart. What compression stress in the extrusion will produce buckling of the

04072
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Figure 11.31
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sheel betwecn rivets, as shown in Fig. 11.30, if the sheet has column proper-
tics as represenied by Fig. 11,297

Sorution From Eq.(11.57) the equivalent Lfp is

1(5-= 165 —— = 41
’ ooa0 ~ 412

From Fig. 11.29, o, = 31,300 Ib/in%,

11.11 NONDIMENSIONAL BUCKLING CURVES

The plastic buckling stresses in Sec. 11.10 are obtained from column curves of the
type shown in Fig. 11.29. A column curve of this type is applicable to only one
malterial, since the column curve is affected by the shape of stress-strain curve, the
modulus of clasticity, and the yicld stress of the material. There are numerous
advantages to plotling column curves in dimensionless form, as shown in Fig.
11.16 and as discussed in Sec. 11.7. When several materials have stress-strain
curves of the same gencral shape, as indicated by the value of s, a single-column
curve presents the data for all these materials. Test information for any one of the
malerials is therelore applicabic to all of them.

Cozzone and Melcon propose that the nondimensional curves of Fig. 11.16-
be used for all problems of plastic sheet buckling, interrivet buckling, and local
erippling of compression members. The curves of Fig. 11.16 are presented by

a, E 1

o, EF (11.58}
where o, is the allowable average stress for a column for sheet buckling, or for
crippling, and @, is the sccant yicld stress corresponding to the stress at the
intersection between the stress-stradn curve and a line through the origin having
slope 0.7E.

For columns, the term B is dt,ﬁncd by Eq. {11.38):

B _Le (11.38)

TC oS Efﬂ';
For plastic sheet buckling, the value of B is obtained from Eqgs. (11.53) and
{11.58): ’

L

- VEK/o,

For interrivet buckling, the value of B is obtained from Eqgs. (11.56) and (11.58):
0.5255/1t

N BTy

(11.59)

B= (1160}
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Thus the values of B may be calculated from Egs. {11.38), (11.59), or {11.60), and
then the value of o,/¢; may then be read from the proper curve of Fig. 11.16.

11,12 COLUMNS SUBJECT TO LOCAL CRIPPLING FAILURE

The column equations previcusly derived are applicable to closed tubular see-
tions with comparatively thick walls or to other cross sections which are not
subject (o local crippling failure. Many of the columns used in semimonocoque
flight vehicle structures are madc of extruded sections or of bent sheet sections
and fail by local crippling. The assumed cotumn curve is that shown by line A of
Fig. 11.32, where the o, is the crippling stress. Tests of columns of extrusions or
bent sheet with thin walls subject to local crippling yield values represented by
curve B of Fig. 11.32 and indicate that sections subject to crippling failure should
be analyzed by different column equations than stable cross sections of the same
malterial,

- . . . A
Usually it is desirable to make tests which will cover a range of slenderness

ratios for cach thin-walled scction which is to be used as a column. This pro-
cedure is not always practical for preliminary design, since the designer, having a
wide choice of cross sections, must be able to select some sections and predict
their strength at an carly stage of the design. Tests on aluminum-alloy columns
subject to crippling failures show that the short-column curve closcly approxi-
mates a second-degree parabola, as represented by Eq. (11.23) or (11.29). The
crippling stress o, is substituted for the stress o, as follows: ’

_ 7. ALfp)
g, = ﬂ-cclil - 42K ] (1E6])

\= 10
L@
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As in the case of other short-column curves, Eq. (11.61) does not apply for very
short columns (L/p < 12} because the end supports increase the crippling stress.
Thus the crippling stress o, can be obtained by testing a column with an I'fp of
about I2. An approximate valuc of the crippling siress may be derived by finding
the sum of the plastic buckling strengths of the rectangular elements of the cross
seclion.

The column cross sections shown in Fig. 11.33 may be considered as made of
rectangular plates of width &, thickness ¢, and length a, which is large in compari-
son to b. The plates with widths designated b are assumed to be simply sup-
ported on both sides, and those with widths designated b are assumed to be free
on one side and restrained on the other side. In the case of the angles shown in
Fig. 11.33a and e, the plates are assumed to be simply supported on one side,
since the two plates buckle at the same stress and neither plate supplics any edge
restraint for the other. In the case of the other cross sections, however, the plates
which have one side free have edge conditions between the clamped and simply
supported cases for the other side. This difference on edge restraint is seen by
comparing the buckled form of the angle shown in Fig. 11.31 to the buckled form
of the channel shown in Fig. 11.34. The legs of the angle buckle in one haif-wave
regardless of the length of the column, as is the case for a Hat plate with one side
free and the other side simply supported. The legs of the channel buckle into the
same number of half-waves as the back of the channel which buckles in approxi-
mately square panels, as shown in Fig. 11.34. -

The initial buckling stress of the plates may be smaller than the stress at
which collapse of the member occurs, since the corner resists load after the initial
buckling. This effect is considered empirically by assuming the efeclive width s to
be less than the total width, as shown in Fig. {1.33e. The extrusions resist a
greater load at ‘the corners than the bent sheet sections, as indicated by the
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Figure 1134

widths & in Fig. 11.33. The edge conditions for the plates in a bulb angle ex-
trusion of the type shown in Fig. 11.33 f depend on the bending stiffness of the
bulb, but usually it is assumed that the bulb supports the plate as indicated.

After the plastic buckling stress is determined for each element of arca by the
method of Secs. 11.10 and 11.11, the total crippling load on the cross secticn is
found as the sum of the loads on the individual areas. If the areas have dimén-
sions &,t,, by t;, and b3ty and buckimg stresses o1, 04, and o,, then the total
crippling stress is

a‘lbltli‘“’-@bZ tz + Gy b3 Is Eﬂ'bl
bty + byty + bty T Zbt

e = {11.62)
The denominator of Fq. (11.62) may not be equal fo the total area because the
corner areas are not included. The crippling oad is obtained by multiplying the
stress a,, by the total area, and it may be greater than the numerator of Eq.
(11.62) because of the load on the corners.

Example ¥1.5 Find (he equation of the short-column curve for the extrusion
shown in Fig. 11.35 given that E = 10,700,000, n = 10, and ¢, = 37,000.

SoLuTion Assume the colurnn curve for this mateial is represented by Fig.
11.29. For plastic buckling, the equivalent I'/p is obtained from Eq. {11.55)
with K = 3.62 from Fig. 11.21. For area 1, b/t = 1.364/0.05 = 31.3; for area 2,
bft = 0.70/0.093 = 7.52. From Egq. {11.55), -

L
. Equivalent « = e — = 1.65 ~
e~ UK ¢

N

E\\ =

1O
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For area 1, the equivalent Ljp is 1.65 x 313 =51.6; for area 2, it is
1.65 x 7.52 = 12.4. From Fig. 11.29, ¢ = 29,000 for area 1 and & = 45,000
Ib/in? for area 2. From Eq. (11.62),

_ Tobt 29,000 x 1.564 x 0.05 + 45000 x 0.70 x 0.093 x 2
Tee =5 T 1.564 % 0.05 + 2 » 0.70 x 0.093

= 39,000 Ibfin®

The crippling stresses for the individual areas also can be determined

from the nondimensiona! curve of Fig. 11.16. From Eq. (11.59),

bjt b
= / =0.0308 -
4/ 10,700,000 x 3.62/37,000 t
For area 1, B=10.0308 x 3.3 = 0.965. From Fig. 11. 16 agla, = 0?7 or
7 = 28,500 1b/in?.
For area 2, B = 0.0308 x 7.52 =0.232. From Fig. 11.16, #/s, = 1.20, or

a = 45000 lb/in?. These check the values obtained from Fig. 11.29. The
short-column curve is now obtained from Eq. {11.61):

_ o (Lip)”
%= ““[! 4’E |
39,000(E/p)?
472 10,700,000
= 39,0001 — 0.0000923(Z/p)*]

= 39,000[1 —

Example 116 Given the section shown in Fig. 11.36, assume that # = 10,
E = 9700, and g, = 46,000. Find the crippling stress for the cross section.

Sorution The web is assumed to be simply supported on both sides, with
K =3.62, and buckles into approximately rectangular panels in a manner
similar to the channel section shown in Fig. 11.34, The hall-waves are ap-
proximately 1.12 it long; therefore, the flanges may be considersd as simply
supported at ends .12 in apart and on one side. From Fig. 11.21 for

| W ! 1w !
1 i

o4 B o E BN

c c 0.644
0.064—| [+~ i - 4
¥
N
A=0.13602 h
F=0.030 !
i . Figure 11.36
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afb = 2.000, K = 0.60. From Eq. (11.59),
bjt ' f

= -\/EKIG';

3 0.5/0.064 0693 _
/9,700,000 x 0.6/46000 !

For the flanges,

For the web,
o £.12/0.064 = 0.633
+/9.700,000 x 3.62/46,000 )

From Fig. 11.16, /o, = 0.88, or ¢ = 40,500 Ib/in?, for the flanges, and
ofa, = 0.905, or @ = 41,600 Ib/in® for the web.
From Eq. (11.62),

Tobt Tob 2 x 40,500 x 0.5 + 41,600 x 1.12

“~ Tbt b 2% 0.5+ 112 !
= 41,000 Ib/in?
11.13 NEEDHAM AND GERARD METHODS FOR ;

DETERMINING CRIPPLING STRESSES

More recent semiempirical methods than that of Sec. 11.12 for the determination
of crippling stresses of columns were developed by Needham®® and Gerard.*5-*?
In the Needham method, the structural member section Is divided into angle
elements, as shown in Fig. 11.37. The crippling strength of these elements can be
established by theory and/or tests. The crippling failure strength of the member
section then can be determined by summing the crippling strengths of each angle |
element that makes up the total section. Through extensive tests Needham ar-
rived at the following semicmpirical equation for the crippling stress of angle
sections:

o

ke E:.‘ g, 0.5 :
_ g, = ﬁ?ﬁ)g" (11.63) .
Cut
|
Cut— ll —Cut
|
Cul

) th) (¢}

Figure 11.37 (a) Two edges [rec; (#) one edge Free; {c) no edge free.
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where o, = crippling stress
E, = compressive modulus of clasticity
o, = matcrial compressive yield siress -
 a+b

i 2t

k. = constant coeflicient whose magnitude depends on support condition
of angle edges: &, = 0.316 for the twao edges fiee, 0.342 for onc
edge Iree, and 0.366 with no edge free

The crippling stress for the actual inember section is obtained by utilizing the
following equation:

g = Tog A;

-= (11.64)

where o, = meniber section crippling stress
a; = ith angle crippling stress, calculated from Eg. (11.63)
A; = ith angle cross-ecctmml arca

Gerard’s method®® for calculating crippling stresses is a generalization of
Needham's method. His extensive investigation led to the formulation of three
semiempirical cquations for determining the crippling stresses in various shapes’
of structural members.

For sections with straight unloaded edges such as plates, tee, cruciform, and
H sections, the following crippling stress equalion applies:

1/27]0.85
=067 ["; (F) ] (11.654)
U'ﬂ.

For sections with distorted unloaded edges such as tubes, V-groove plates, angles,
stiffened panels, and multicorner sections, the following crippling eguation

applies:
2 g\
— 0.560, [" (H) ] (11.65b)
A \Gy
For sections such as (wo corner sections, J, Z, and channel scqtions, the lollowing
equation applies:
IJIA ]0.75
T = 3200 =" (11.65¢)
I [(Er/nf}'}”a

where A = sectivn arca and y = number of fanges which make up the scction
plus the number of cuts required to divide the section into 2 number of flanges.
See Fig. 11.38. The maximum crippling stress g, must not exceed those specified
in Table 11.1 unless il is verified experimentally.
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i i

Cul — _

(c} (ef} (]

Figure 1£.38 (z) Busic angle section: g = 2: (b} tube: g = 4 culs + 8 flanges = £2; {c) basic T section;

= 3:(d} Hl section; g = | cul + 6 Nanges = 7; (¢) cruciform seclion; g = 0 cut + 4 flanges =4

Table 11.1
Section shape Maximum o,
L 076,
T. +.H C.8¢,,
Z.hu [l.9¢:rLjr
O, mullicorner 0.8,

11.14 CURYED SHEET IN COMPRESSION

A thin-walled circular cylinder loaded in compression parallel to its axis may fail
by local instability of the thin walls. This type of failurc is similar to that which
occurs in the compression skin of semimonocoque wing and fuselage structures.
The compression buckling of flat sheets was considered, but most actual struc-
tures are made of curved sheets, and the curvature has a considerable effect on
the buckling and ultimate sirengths. A eylinder which is loaded in compression
will assume a buckled form similar to that shown in Fig. 11.39. The number of
circumferential waves depends on the ratio of R/r, where R is the radius and ¢ is

—— ,
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the wall thickness of the cylinder. A large number of waves develop for 2 large
value of R/t. The length of the longitudinal waves is the same magnitude as the
length of the circumferential waves, For the high ratios of R/t which are common
in semimenocoque wing and fusclage skins, the wavelengths are so smail that a
sector of a cytinder, with simply supported edges as shown in Fig, 11.40a resists
approximately the same buckling stress as the complete cylinder. This sector
corresponds Lo the skin between adjacent stringers, as shown in Fig. 11.406. For
smaller values of R/t, the length of the circumferential waves is grcatcr, and the
stringers or edge supports of Fig, | [.404 prevent the formation of the waves and
thus increase the buckling stress.

The compression buckling stress for a thin-walted cylinder may be deter-
mined theoretically in a manner similar to that used in obtaining the buckling
stresses of flat plates. The classic analysis of cylinders, which is based on the
assumption of small displacements, yiclds

Cex

v = 0.60613-1% (11.66)

if Poissan’s ratio is 0.3. Test values, however, are much lower than those given by
Cq. (1166}, and test results show considerable scatter. This is in contrast to the
excellent correlation between theoretical and experimental values for the buckling
stresses for flat sheet.

Yon Karman, Dunn, and Tsien® have shown that the assumptions made in -
the analysis by the classic theory are in crror. In the case of buckling of a flat
plate, a longitudinal strip of the plate is supported elastically by lateral strips
which exert restraining forces in proportion to their deflection. When the flat
plate buckies, it may buckle in either direction, and the load after buckling
remains equal to the buckling load, as in a Euler column. In the case of a
compressed cylinder, however, the longitudinal strips are supported by circumfer-
entinl rings which exert restraining forces that are not proportional to their radial
deflection. The stifTness of a circular ring increases as it is deflected outward and
decreases as it is defiected ioward. Thus the thin walls of a compressed cylinder
buckic inward much more readily than they buckle outward. The buckling is
accompanicd by a sudden decrease in both the load and the length if there are no
eccentricitics of the walls, The buckling load is considerably reduced by small
cceentricities of the walle. The buckling stress depends on the rigidily of the
testing machine, sincc any icsting machine has some clasticity, and the plates of

Figure 11.40
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the machine move together slightly as the resistance of the specimen decreases
The large elfects of specimen cccentricity and of testing machine elasticity explair;
the large scatter of test results. .

If the compression load on a eylinder P is plotted against the axial com-
pressive deformation e, curves similar to those shown in Fig. 11.41 are obtained
Curve ! represents a Lheoretical curve for an ideal cylinder in which the walls are.
pcﬂcclly cylindrical and homogeneous. The point A, corresponds to the theo-
rct:cu} buckling stress, obtained from Eq. (11.66), which cannotl be determined
::xpcnmentally by the most careful testing because the upper branch of the curve
is 50 close to the lower brafich. At a deformation e corresponding to point By, the
cylinder assumes a buckled form and the load drops. If the dcformation, has
exceeded t_hat corresponding to B; before buckling occurs, the cylinder suddenly
decrez;scs in length when buckling occurs. Because of the elasticity of the testing
machine, the plates of the machine move together and the cylinder decreases in
length when the load drops, even for test specimens with small eccentricities, as
represented by curve 2. ’

?uckling loads obtained experimentally are represcnted by points 4, and A,
of F:g.. 11.41. In the case of unstilfened cylinders, these buckling loads represent
the ultimate strength of the cylinder in compression. Several empirical equations
hz.we been derived from experimental results, and the various equations yield
widely divergent values of buckling stress, as might be expected because of the
scatter of test values. Kancmitsu and Nojima propose the following equations:

mo of F\ F\12
£ =9 E) +0.16(I) (11.67)

where L is th? length of the cylinder, This equation appears to give satisfaclory
agreement with test values within the ranges of 500 < R/t <3000 and
0.1 <« L/R < 2.5

Another equulion'which yields reasonable values of the buckling stress for
smaller vatues of R/t is obtained as approximately one-half of the value of Eq.

(11.66}):

o

i
=03E— .
- R (11 68)

. . . - . - ‘f .
This equation yields results which are much higher than experimental values in

Bh
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cases where R/t is large. Perhaps it is reasonable to use Fq. (11.68) for values of
R/t less than 500 and to use Eq. {11.67) for the range in which it applies.

In the case of curved shect which is stiffened by longitudinal members, as is
common In semimonocogque construction, the sheet would resist a buckling stress
as given by Eq. {11.48) il there were no curvature and an additional stress, as
given by Eq. (11.67), because of the curvature. While there is little theorstical
justification for adding these buckling stresses, this procedure is substantiated
reasonably well by tests.

The compression buckling stress for curved skin on the upper surface of 2
wing is increased considerably by the negative air pressure on the sheet. Since the
curved sheet has a tendency to buckle inward, the aerodynamic forces reduce this
tendency. Equation (11.67) is very conservative in this casc. It i very important
to prevent the buckling of the wing skin of high-speed aircraft because of the
aerodynamic drag of the irregular airfoil section.

The ultimate strength of a stiffened, curved sheet panel may be found in a
similar manner to that used in obtaining the ultimate strength of a flat sheet
panel in Sec. 11.9. In addition to the compression load resisted by the stringers
and by the eflective widths of skin acting with the stringers, the sheet beiween
stringers resists load because of ils curvature, even though it has buckled. The
load resisted by a buckled, curved sheet is indicated by the right-hand portion of

the curves of Fig. ‘1t.41. While this load depends on the elongation e cf the
stringers, many other unknown factors are involved. The method for calculating
this load is to assume that a skin widlh of b — W between slringers resists a |
stress of 0.25Et/R, as shown in Fig, 11.42. As an alternative method, this stress
might be calculated by Ea. {1 1.67). Where this buckling stress for the curved sheet
cxceeds the stringer stress @, , the entire shect area is assumed to resist a stress g, .

Example 11.7 For the wing shown in Fig. 11.43, R =150, t = 0.064, b=6,
and the rib spacing is L = 18 in. Find the compressive stress in the skin at

which the buckling occurs if E = 107 b/in®.

I

' e

;“\.p—— “.{

Vigure 11.42 Figure 11.43
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Sorution The buckling stress is obtained us the sum of the buckling stress
for a flat sheet simply supported on four sides, as obtained from Eq. (11.48),
and the buckling stress for a cylinder, as obtained from Eg. {11.67). From Egq.

(11.48),
2 2
o, = KE(%) = 362 x 107 x (95;6—4) = 4110 ib/in?

L6 1.2
Tew of L £y
z 9(R) +0.16<L

0.064\"° 0.064\'-*
—9( 50) +0.16( 18 )

o, = 2130 - 1560 = 3690 Ib/in?
The total buckling stress is the sum of these two values:

g, = 4110 + 3690 = 7300 Ib/in>

From Eq. (11.67),

1115 ELASTIC SHEAR BUCKLING OF FLAT PLATES

The buckling of rectangular plates which resist direct compression stresses is
discusscd in Sec. | 1.8. Other types of stresses, such as shear stresses and bending
stresses, also may produce elastic buckling of thin plates. Only loads in the plarie
of the plate are discussed here, and components normal to the plane of the plate
are assumed to be zero.

The elastic buckling stresses for thin rectangular plates in shear can be caleu-
lated theoretically. The analysis is beyond the scope of this book, but the results
may be expressed in the same form as Eq. (11.48) if Poisson’s ratio v is assumed
constant for all materials:

I 2
T, = KE(E) A11.69)

The values of K are plotted in Fig. 11.44 for v = 0.3 and for the two conditions of
all four edges clamped and all four edges simply supported. The term ¢ is the
plaic thickness, and E is the elastic modulus of the plate material. For the
compressed plate discussed in Sec. 11.3, the width b is perpendicular to the
dircction of loading and the length a is parallel to the loads; but since the plate in
shear is loaded on all [our sides, the dimension b is considered as the smaller of
the two plate dimensions. The critical shearing stress 1,, is uniformly distributed
along all four sides of the plate.

The rectangular plate which is loaded in pure shear has principal tension and
compressive stresses al 45° to the edges. These principal stresses are equal to the
shearing stresses. The dizgonal compression stresses cause the sheel buckling, and
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Figure 11.44

when buckling occurs, the wrinkles Torm at approximatel_y 45° angles to the
edges. The buckling shearing stresses 1., are conside:rably.htgher %hzfn the huck-
ling compression stresses o, for plates with equal dimensions. Thxs isa resuit of
lhe restraining effect of the diagonal temsion in the plate which is loaded by
shearing {orces. . ) )

The criticel buckling siresscs in a thin plate loaded in bf:ndmg as shown in
Fig, 11.45 also can be calculated theoretically and expressed in the same form as
the equations for compression and shear buckfing:

£\? (11.70)
Ub“ = KE E =

where a;,, is the critical maximum bending stress s:‘xown in Fig. 11.45 and K is
given by the curve of Fig. 11.45 il all four edges are simply suppox:ted.
In the case of buckiing of thin plates under the combined action of two of the
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conditions qf compression, shear or bending, the initial buckling stresses have
been determined empirically by the method of stress ratios. The initial buckling
occurs when one of the following equations is satisfied:

Compression and bending:

Ry +R =1 (11.733
Compression and shear:
R, +R =1 (1L72)
Bending and shear:
RE+RI=1 (11.73)

where Ry, R, and R_ represent the ralios of the stresses in the plate Lo the critical
buckling stresses ¢,/0,_, 0 /o, , and tft,,.

{116 ELASTIC BUCKLING OF CURYED
RECTANGULAR PLATES

A large part of the structure of a semimonocoque airplane consists of the outer
shell, or skin, This skin usually is curved to provide the nccessary aerodynamic
shape, and it must resist tension, compression, shear, and bending stresses. In
addition to the conditions of ultimale strength and yield strength, which must be
considered in the design of flight vehicle structural members, often the skin must
be designed so that it will not wrinkle under normal flight conditions. Skin
wrinkles or other surface irregularities seriously affect the airflow in the case of
high-speed aircrafl, but may be permissibic for slower-speed aircraft. Unfortu-
naiely, both the buckling sirength and the ultimate strength of curved plates
depend on many uncertain factors and are difficult to predict accurately. Initial

R -;-\wv-ﬁd-.-ti\‘*ﬂ{
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plate eccentricilics, air pressure normal to the plate, and conditions of the sup-
ports are difficult to evaluate; yet they may have a considerable effect on buck-
ling loads, : ’

The buckling stress for a curved plate in shear, such as shown in Fig. 1146, is
higher than the buckling stress for a flat plate with corresponding dimensions.
The buckling stresses obtained experimentally usually are smaller than those
calculaled theorctically for an ideal plate with small deflections. A condition
similar to thai described in Sec. 11,14 for plates in compression exists for plates in
shear; the theoretical buckling stresses for flat plates correspond closely with test
results for practical plates, but theoretical buckling stresses for curved plates
usually are higher than values obtained experimentally. .

The theoretical shear buckling stresses for curved plates have been calculated
by Batdosf, Stein, and Schildcrout®® For a constant value of Poisson’s ratio,

.y =03, the shear buckling stress 7., may be expressed in the form of previous

buckling equations:

3 2

T, = K, E(E) (11.74)
Theterm K, is a function of the ratios a/b and b*/(rt) and is plotted in Figs. 11.46
and 11.47. When the circumfcrential length is greater than the axial length, Fig.
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147 is applicable; when the axial Jength is greater, Fig. 11.46 must be used. The
dimension b is smaller than the dimension a in either case. Both figures apply
only to plates for which all four edges are simply supperted. The points at the left
side of the charts, for b%/(rt} = 0, correspond to the buckling stress coefficients for
flat plates, as given in Fig, 11.44.

For design purposes, it is necessary to consider the elfccts of initial accidental
eccentricities, which always cause the buckling stresses to be smaller than the
theoretical values. Ofien the desigrer must use judgment in evaluating these
eflects for a particular structure. An empirical equation is proposed:

‘

2
i
T = KE(E) + K E- (11.75)

where the first term represents the buckling stress for a Nat plate, as giver by Fig.
1144, and the last term represents the additional stress which can be resisled
because of the curvature, The value K, = 0.10 is recommended. By rewriting Eq.
(1175} and comparing it to Cq. (11.74), the following relations are obtained:

B? ty?
= K. —\E -
(K KL H)E(b)
K’=K+Klr_ {11.76)
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The values of K, from Eq. (11.76) are plotted as the dotted lines in Fips. 11.46 and
11.47, assuming K, = 0.10. The values obtained from Eq. (11.75) are seen to
represent conservative approximations for all values shown on the chart, except
for the case of large values of a/b and b%/{rf) shown in Fig. 11.47. Except for this
range, Lg. (11.75) approximates most of the available test information closely and
conservatively and may be used in practical design. While the theoretical curves
of Figs. 11.46 and 11.47 apply only to plates with simply supported edges, Eq.
(11.75) may be used with Fig. 11.44 for plates with clamped edges or for other
edge conditions, by interpolation of Fig. 11.44.

11.17 PURE TENSION FIELD BEAMS®!

The ultimate strength of thin webs in shear is much greater than the initial
buckling strength, In the case of structural members which are not exposed to the
airstream, such as wing spars, the shear wcbs may be permitled to wrinkle at a
small fraction of their ultimate loads. To describe the manner in which loads are
resisted by shear webs after buckling has occurred, it is convenient to consider a
pure fension ficld beam in which the web buckles when the sheating forces are
initially applied. Such a web never exists in practice, since even very thin webs
have enough buckling resistance to affect the stress distribution appreciably.

The beam shown in Fig. 1148« has concentrated {lunge areas which arc
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assumed fo resist the entire beam bending moments. The beam web has thickness
t and depth h between centroids of the flanges. The vertical stilfeners are spaced
uniformly at a distance d along the span. The shear force V' is constant for all
cross sections. The shear flow at all points in the web is therefore equal to V/h,
and the shear stress at all points 7, is V/(th). If the web is shear-resistant, a web
element at the neutral axis of the beam is stressed, as shown in Fig. 11.49. On the
vertical and horizontal faces X and ¥, the element resists only, the shearing
stresses 7 and no normal stresses. The principal stresses ¢, and g, occur on planes
al 45” to the horizontal, as shown in Fig. 11.495. The magnitudes of the principal
stresses are determined by the Mohr circle construction of Fig. 1149, from
which g, = 6, = 1. If the beam web of Fig. 11.48a is assumed to be extremely
flexible, it will not be capable of resisting the diagonal compressive stress. Then it
will act as a group of parallel wires, inclined in Lhe direction of the lcnsion
diagonal, or at an angle « of approximately 45°, as shown. Such a group of wires
cannot resist any of the beam bending moment, and it is customary 10 assume
that every element in a tension field web resists the same stress as an element at
the neutral axis. A web element for a pure tension field web is therefore stressed
a5 shown in Fig. 11.50. The shearing stresses on the vertical and horizontal faces
have the same values T = V/(th) as for the shear-resistant web. These planes, X
and Y, also have tensile stresses o, and o, respectively, which are obtained from
the Mohr circle construction in Fig. 11.50c. From the geometry of the circle, the
leagths of lines QX and PY are 1/sin «, and the lengths of lines PX and QY are
z/cos «. The following stresses are obtained:

g, =1COs (11.77)
gy=tlana (11.78)
S S| (11.79)

g, =" T
sin ot COS & Sin 2%

The relationships expressed by Egs. (11.77) to (11.79) may be obtained with-
out the use of the Mohr circle construction by referring to Fig. 11.48b. The web
of thickness t, which resists a maximum tensile stress a,, is assumed to be re-
placed by wires a unit distance apart which resist forces of o,. The yertical

g,

O ™ g RY
fF, >\ :
¥ 45° a-r{ oy :
o,l X X l_",-
I

¥ % \ ¢ : % U

a,

* O 0, = ag |y .
(a} (] )

Figure 11.49
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component of the wire tension is then g, sin &, and the horizontal component is
o, cos «. Along a horizontal line through the wires, the spacing is 1/sin a, corre-
sponding to a horizontal web area of ffsin «. The web tension stress ¢, on the
hotizonlal planc is oblained by dividing the vertical component of the wire
tension o, sin @ by the web arca #/sin a:

) 6, =0, 5N’ « (11.80)

‘The shearing stress ¢ on a horizontal plane is found by dividing the horizontal
component of the wire tension g, cos.a by the web area t/sin o

T = 0, Sin € cOs & {11.81)

Equation (11.8]) corrésponds to Eq. (11.79). Simnilarly, a vertical line through the
wires gives spacing of 1/cos o corresponding to a web area of tfcos a. The hor-
izontal web stress o, is obtained by dividing the horizontal component of the
wire tension by the area: ’

g, = 0, COS” & (11.82)

Equations {11.77) and (11.78) may be obtained from Egs. (11.80) to (11.82)

The teasion field beam also differs from the shear-resistant beam in the
manner in which stresses arc transferred to the stiffeners, beam Aanges, and
riveted conmections. The vertical stiffeners in a shear-resistant beam resist no
compression load; they only divide the web into smaller unsupported rectangles
and thus increase the web buckling stress as calculated from Eq. (11.43). In a
tension field beam, however. the vertical web tension stresses g, tend to pull the
beam fanges together, and this {endency must be resisted by compression forces
in the stiffeners. Each stiffener must resist a compressive force P that is equal to
the vertical tension force in the web for a length d equal to the stiffener spacing,
as shown in Fig. 11.51a:

‘ vd
P =g, id = W tan o {11.83}

The vertical web tension stresses also tend (o bend the beam flanges inward.
The flanges act as continuons beams supported by the stiffeners. If the ends of the
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M=g,0d%]24

M=gyrd?fi2

) Figure 11.51

flanges are assumed to be fixed against rotation, the flange bending-moment
diagram is as shown in Fig. 11.515. At the stiffeners the bending moment is

o td®  Pd
=t = 11.84
iz 12 (11.84)
Midway between the stiffeners the flange bending moment is
a.td®  Pd
== 11.85
24 24 { )

The direction of the bending moment is such thal it produces tension on the
outside of the flange at the stiffeners and con the inside of the Nange between the
stiffeners.

The horizontal components of the web stresses ¢, tend to pull the end
stiffeners together with a force o, th = V cot a. This force is resisted equally by
the two spar flanges, producing compression forces of V{cot a)/2, which must be
superimposed on the forces M /I that result from beam bending.

The riveted connections for a shear-resistant web must be designed to resist a

load ¢ =1t per unit length. In a tension field web connection, the harizontal |

riveied joints must resist shear flows g as well as tension forces of ¢ tan & per unit
length in a perpendicular direction. Hence all horizontal riveted joinls must

tesisl forces of ¢./1 + tan® a = g sec « per unit length. The vertical riveted joints
at the ends of the beam or at web splices must resist shear flows ofg = 1.t and
tensiic forces of o, ¢t + g cot a per unit length. Thus, the joints must be designed
for a load of ¢./1 4 cot? & or g csc & per unit length. This force does not apply
for connections between the web and intermediate stiffeners, since no appreciable
load is transfecred by this connection.

[n earlier chapters, various shear-flow analyses are made in which the webs
arc assumed to resist pure shear. These analyses remain valid even though the
webs are in tension feld, since the tension stresses on the X and Y planes mmay be
superimposed on the shearing stresses without affecting the shear-flow analysis,
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Example 11.8 The beam shown in Fig. 11.52 is assumecd to have a pure
tension field web. Draw frec-body diagrams for the stiffeners and Janges, and
plot the axial loads in the stiffeners and fanges. Assume o = 45°,,

Sorutton The shearing stress on a horizontal or vertical plane of a web
element is T = V/{th) = 6000/{0.020 x 20) = 15,000 I5/in®, The running shear
Is g = t,f = 300 Ibfin. The Lension stresses o, and ¢, on Lhese planes and the
tension loads per inch also equal t, and q. The compression load on an
intermediate stiffener, P = Vd/h, is 3000 ib. The stiffener at the left end has a
compression load of P£/2 and an additional compression force of 6000 tb
applied at the lower end. Both beam flanges have compression loads of
V/2 = 3000 Ib at the lefl end. The beam flange loads vary linearly along the
span. At the support, the flange loads from beam bending M/h are 5000
x5} = 15000 Ib. The compression flange resists a load —M/h— V/2 =

~3000 Ib.g i
M%MM } 18,660 Ib

3000 I 300 tfin -1800
— -
TS RN U N
_tsoom 4 1500 36001 3000 1b 001 1500 I
w3000 1b 000 I
200 fin
I (000 ) ~3000 1b
3000 b
—7500 1o
7500 1b 3000 1b

150015 30001» 30001 30001s 30001b 1SCOIb
3000 ib ,LJ_,_},LJ,JLJ.,_H __T.._J‘L_f.._f, 12,000 b

—_—
300 Ib/in

- 3000 b (LI

Figure 1153
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— 18,000 b, and the tension fange resists a load of M/h — V/2 = 12,000 1b.
The free-body diagrams are shown in Fig. 11.53. All intcrmediate stiffeners
resist the same loads. )

11.18 ANGLE OF DIAGONAL TENSION IN WEB

This angle may be determined from the deflected geometry of the beam.

framework, cousisting of the flanges and stiffeners, has equal stifTness in resisting
the horizontal tension ¢, and the vertical tension o, the two tension stresses will
be equal and o« will be 45°. In practical beams, the flanges are much more rigid in
resisting compression loads than are the stiffeners. The siiffeners deform in com-
pression and permit the flanges to move together, while the stiffeners remain
approximately the same distance apart. The horizental web stress ¢, is therefore
greater than «¢,, and the diagonal lension stress o, has an angle less than 45°.
This angle may be determined from the deflecled gecometry of the beam.

The beam shown in Fig. 11.54 is initially horizental, and it has a shearing
dcformation y at all cross sections. Bending deflections are not considered here.
The deformation y is caused by axial elongations of the stiffencrs and flanges and
by the elongation of the web diagonal resulting from the diagonal tension stress.
A scction of the beam of length & cot « and depth /i is considercd, and the value
of = required to produce a minimum deformation y is determined. All clongations
are assumed positive as tension in the derivation, although the stiffeners and
- Manges will always be in compression and have negative elongations. The defor-
mations of the length, & cot a, of the beam in Fig. 11.54 will be the same as those
for the truss shown in Fig. 11.55, if the unit elongations in the horizontal, vertical,
and diagonal directions are the same for the two structures.

The iotal elongation of a vertical stilfener is equal to the product of the unit
clongalion e, and and the length k. This clongation causes a shearing defor-
mation y,, as shown in Fig. 11.55a, which is obtained by dividing the total

elongation by the radius /i cot a:
he,

Y1 =m=ey tan & ‘_._.(11.86]

The beam flanges have a unit elongation e,, or a total elongation ofe | cot

— i cost o

Figure 11.54
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@ in the horizontal length considered. The angular deformation y, is obtained by
dividing this deformation by the radius k, as shown in Fig. 11.55b:

y; = e, cot & ‘ (11.87)
The diagonal strip of the web has a unit clongation ¢ and a length h/sin «. The
angular deformation ¥4 is obtained from the geometry of Fig. 11.55¢:

e

= — 11.88
. P nacosa { )

The total shearing deformation for the beam is the algebraic sum of the three
camponeits:

Y=—Y1—-¥%21t7;

Substituting from Eqs. (11.86) to {11.88} yields
y=—g¢ tana —e cota+ .__e____ (11.89)
. sin & cos & ‘

The angle of the web diagonal tension o will be such that the deformaticn y is a
minimum. Differeniiating Eq. {(11.89) and equating dy/de to zero yicld

tan? g = o= {(11.30)

wherc ¢ = ¢,/E is the unit strain along the web diagonal, e, is the unit strain in
the beam flanges resulting from the compression caused by the web tension o,
and e, is the unit strain in the vertical stiffeners caused by the compression load
P. All strains are positive for tension and negative for compression. The bending
of the beam flanges and the slip in the riveled joints at the flanges have the same
effect as an elongation e, and may be included in {he analysis.

The unit elongations used in Eq. (11.90) depend on the stresses, which in turn
depend on the angle . It is therefore necessary to solve this equation simul-
taneousty with other equations obtained from the web stress conditicns. For
normal beam proportions, the flanges do not compress appreciably as a resuli of
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the tension field stress, and ¢, may be assumed zero. The web diagonal strain ¢ is
a,/E, or 21, cse 2o/E, from Eq. (11.79). The unit strain e, is obtained as —z, ¢d tan
a/A.E, where 4, is the eflective area of a vertical stiffener. Substituting these
values into Eq. (11.90) gives

c014a=ﬁ+ 1 (11.81)
A,

The cffective stiffencr area is equal to the true stiffener area 4 if the stiffener
consists of two members symmetrically attached on opposite sides of the web,
Where a single stiffencr is attached to only one side of the web, it is loaded in
bending as well as compression. The compression load P has an eccentricity e
measured from the center of the web to the centroid of the stificner arca. The
combined bending and compiession stress al 4 distance e from the ncutral axis is

where g is the radius of gyration of the stilfener cross-sectional arca and
A
A=y
1+ (e/p}

The differentiation of Eq. (11.89} may appear questionable, since the clonga-
tions ¢, €., and e, are treated as constant with respect 1o &, Equation (11.91] also
may be obtained by substituting values for the strains as functions of & into Eq.
{L1.89} before dilferentiation, which is a more rigorous mathematical procedure
but yieids the same angle «. Equation {11.90}, however, is a gencral expression for
the angle of the principal planes at a point in any structure with two-dimensional
stress conditions when the strains e, e,, and e are known, Lahde and Wagner®®
first applied this equalion to the analysis of tension field wébs. Langhaar®® ex-
pressed the strain e in terms of 2 known distortion y and equated de/dex o zero in
order to find the angle o for the maximum or principal strain. The angle « thus
obtained is equal to that yiclded by Eq. (11.90). Langhaar also expressed the total
sirain energy as a function of x and equated the derivative of the strain energy to
zero in order to find the angle «, which vielded a minimum of the total Strain
cnergy._This also gave the same result as that obtained from Eq. {11.90). If flange
bending and other deformations are considered, the value of ¢, is greater than
that used in obtaining Eq. (11.91). -

(1192)

11.19 SEMITENSIGN FIELD BEAMS

In Sec. 11.18 we assume that the beam web is perlectly {lexible and is not capable
of resisting any dingonal compressive stress. In practical beams, the webs resist
some diagonal compressive stress after buckling, and thus they act in an inter-
mediate range between shear-resistant webs and pure tension ficld webs. Such
bearns are termed semitension field beams, partial-tension field beams, or incom-
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pletely develaped diagonal tension field beams. The pure tension field theory is
conservative for the design of all parts of a practical beam, but may yield stiffener
loads or flange bending moments which are as much as § times the true values.
Hence a more accurate theory is necessary for design purposes.

The theory of pure tension field beams was first published by Wagner in
1929. Since then, many investigators have studied the problem of semitension
ficld bcams. Lahde and Wagner®® published empirical data in 1936 which were
based on strain measurements of buckled rectangular sheets, These data provided
information for the practical design of beams, but the test points had consider-
able scatter because of the diffically in making strain measurements of buckled
sheet. Many aircraft manufacturers conducted tests and developed empirical
design [ormulas, but usually, one particular type of beam has been tested, and the
equations must be used with caution in designing beams of different materials or
proportions different from those on which the tests were conducted. The most
extensive test program has been conducted by the NACA under the direction of
Paul Kuhn. Kuhn et al*! and Peterson®? measured strains in the vertical stiff-
eners of a large number of beams and derived empirical equations from these
measurements. The stiffener stresses supply information required for the stiffener
design and for the design of the flanges to resist secondary bending, A theoretical
anaiysis of the stresses in a buckled rectangular sheet has been made by Levy et
al.>3-%* While some simplifying assumptions are made in the analysis, it provides
valuable information regarding the stress distribution in the web. The analysis of -
Levy et al. shows that the stress conditions vary considerably at different points
in the web and that any practical analysis in which the same stress conditions are
assumed at all points will have some discrepancies with observed test conditions.

In the analysis of semilension field beams by Kuhn et al, it is assumed that
part of the shear load kV is resisted by pure tension field action and that the
remaining load (I — kj¥ is resisted by the beam acting as a shear-resistant beam.
All points of the web are assumed to have the same stress distribution, except for
the web adjacent to the vertical stiffeners. This portion of Lhe web is riveted to the
stiffeners and does not wrinkle. THe stresses in the web may be found by multi-
plying the valucs showu for a shear-resistant web in Fig. 11.49 by 1 — k and those
shown for a pure tension field web in Fig. 11.50 by k and then superimposing
them. The values shown in Fig. 11.56c represent the total stresses on herizontal
and vertical planes and arc found by superimposing the conditions shown in Fig.
11.564 and b. The angle « is obtained from Eq. {1190} with sufficient accuracy.
There is a conservative error involved in using Eq. (11.90} for partial tension field
webs, since this equation yields the angle of principal stress. The principal tension
stress for the clement of Fig. 11.56¢ has an angle which is between the 45° angle
for the principal stress of the element of Fig. 11.56a and the angle & for the
element of Fig. 11.56h.

The diagonal tension factor & is given by the empirical equation of Kuhn et
al.:

k = tanh (o.s logso Ti) (11.93)
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which is plotted in Fig. 11.57. The angle « is obtained from Eg. (11.90) after
functions of &, &, and A, are substituted for the strains. Valucs of tan « are plotted
as functions of k and td/A, in Fig. 11.58. Since Eq. (1 1.90) must be solved by trial
for tan , it is much more convenient to use Fig. 11.58 than to solve the equation
for each particular case, ‘

The stress conditions for any web element are known after k and « are found
and are as shown in Fig. 11.56c. The stiffener compression forces and the flange
bending moments are proportional to the vertical component of the web tensile
stress @, which is shown in Fig. 11.56:

o, =kt tan a (11.94)

Figure 11.56
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The stiffener compression load P is obtained as follows:
P=o,td=krtd tan a (11.95)

The flange bendiﬁg moments are obtained from the stress o,, as in Eqgs. (11.84)
and (11.85), for pure tension field webs, but the values of 5, and P are smaller for’
semitension field webs:

o, td®  Pd
S A g ;
M T G at stiffeners (11.84)
2
AL _ Pd .
_L.'Z 4 =7 betv.vc?n stiffeners (11.85)

The compression load on a vertical stiffener is resisted by the stiffener and by
the effcctive web that is riveted to the stiffencr. If sufficient rivets are provided
that the web wrinkles do not extend through the riveted joint at the stiffener, as
in the customary construction, the web must have the same vertical compression
strain and approximately the same compression stress as the stiflener at the rivet
line. An effective width of web equal to 0.5(1 — k)d is assumed by Kuhn et al. to
act with the stiffener, and the stiffener compression stress then has the following
value:

_r

e T A, + 051 — kyd

Since the values of k are obtaincd empirically from measurements of ¢,, an

approximate expression for the effective width of web will yield an accurate value

of o, if the same effective width is assumed in calculating & from experimentally

deterimined values of 6,. It seems probable (hat the true effective widths of the

web are less than those assumed and that the empirical values of k thus yield
conservative values for o, and the flange bending moments.

(11.96)
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The riveted joints between the webs and the beam flanges must be designed
for the resultant of the shearing stress 7 and the tension stress o, or for a running

load of \/2* + {0,)* 1. Similarly, vertical web splices must be designed for a run-

ning load of \/t* + (4,)* £. The rivets connecting the vertical stiffeners to the
beam fianges should be designed (o transfer the load P, = A4, o, according to the
above theory. In actual beams, frequently it is impractical to provide this
strength. The theoretical analysis by Levy ¢t al and many tests indicate that the
stiliener load decreases near the end of the stilfener and thal as much as half of
this load is transferred to the web near the end of the stiffener rather than to the
beam flange. In practical beams, it is customary to provide a total strength in the
rivets connecting the stiffener to the flange and the rivets conuceting the end of
the stiffener to the web to rtesist the load P,. The stillener-web rivets which are
assumed to transfer part of this load P, are spaced as close to the end of the
stiffener as possible.

The allowable strenglh for beam webs has sometimes bezn oblained by
equating the calculaied diagonal tension stresses to the allowable tension stress
for the web material, with empirical corrections for rivet holes and various stress
concentration factors. More accurate web strength predictions can probably be
obtained by equating the total web shearing stress © to ar allowable stress 4,
obtained from tests of beams of common proportions. These allowablc stiesses
are plotted in Fig. 11.59 as functions of #/r,.. The curves of Fig. 11.59 were
obtained by analyzing data from extensive tests of semitension ficld beams, The
tests were conducted under the supervision of 5. A. Gordon of the Glenn L.
Martin Company.
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It is assumed that the web-flange rivet spacing is in the normal range of 3 to
5 times the rivet diameter. A smaller rivet spacing reduces the net area exces-
sively, while a very large spacing may permit the web wrinkies to extend through
the rivet lines. The allowable web stresses often arc plotted as functions of the
sheet thickness, with the heavier shect gages resisting higher stresses, This prac-
tice is permissible because stiffener spacings usually are kept to a maximum of
about 8 in, even for very heavy sheets, and the thicker webs thercfore have lower
ratios of z/1_,. For geometrically similar webs, however, the allowable stress
would be independent of the web thickness. Where beam flanges and web stiff-
eners are attached symmetrically to both sides of a web, the edge of the web is
better supported and resists higher stresses than those given in Fig 11.59 for
Aanges aitached to only one side of the web.

Example 11.% Determine the margin of safety for the web intermediate stiff-
eners, and riveted joints of the beam shown in Fig. 11.60. The web Is,
20245-T Alclad sheet, and the flanges and stiffeners are 2024S-T extrusions.

SoLutiow The buckling stress for the web in shear is obtained from Eq.
(11.69) and Fig. 11.44. The web dimensions for computing buckling stresses
are meastred between rivet lines, as a = 15 and b = § in. By cntering Fig.
11.44 with a/b = 1.875, the values K = 10.3 for clamped edges and K = 5.9
for simply supported edges are oblained. An average value, K = 8.1, is uvsed
because of the restraining effects of the flanges and stiffeners. It is given that
E = 9,700,000 1b/in*. Substituting in Eq. (11.69) vields

2 i
7, = .R:EG) = 8.1 x 9,700,000 x (0'?%) = 1260 Ibfin?

The shear stress is

¥ 10,000
_—— Io/i 2
Tk T 16 x 0032~ 120 Ib/in
N
a=8 g 8 8 8]
[=0.032 l_r ’ §
E s T N
15 . Q
h=Lko}
| \
Prerr e TRy e A
0051, 730
R AN

AN 430 AD 46 L in

v T
x——- %]*—%—V F=100000 2y 430 AD S (2 rivets)

A=0.1100 &1
! =0.0151n?

Figure 11.60
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The web depth £ is always the distance between centroids of the flange areas,
rather than the distance between rivet lines, when used in shear stress or
shear-flow calculations. .

The effective stiffener area is computed from Eq. {11.92), since the stiff-
eners are attached to only one side of the wcb and are loaded eccentrically.
The stiffener radius of gyration is p = |/ I/A 0.015/0.110 = 0.37 in. The
stiffener eccenlricity is ¢ = 0.40 + ¢/2 = 0.416 in. The effcctive stiffener area is
obtained from Eq. (11 92]

0.11

am— 04 i
. AT T  pargiay - Mo

The ratio of web arca to efective stiffcner area is
td 8 % 0.032

4" oo o2
This ratio and t/r_, detcrmine the stress distribution in the beam:
T 19,500
o 1260 =7

From Fig 11.57, k = 0.53, and from Fig 11.58, tan « = 0.79. From Fig. 11.59,

the aliowable web stress is 7, = 20,400 ib/in? The margin of safely for the

web in shear is

z, 20,400
Web MS =X — 1 = {0 — 1= 004

The vertical component of the web tension g, is obtained as follows:
g, =tk tan « = 19,500 % 0.53 x 0.79 = 8160 Ib/in*
The stilfener compression load is obtained from Eq. (11.93):
P=g,td=28160 x 0.032 x 8 =20901b
The lead per inch in the web-flange rivets is
= \/rl +olt=  19,500% 4 8160% x 0.032 = 660 Ib/in

The allowable load for one §-in A17S-T rivet is 375 lb shear and 477 Ib
bearing on a 0.032 gage shest, as obtained from ANC-5. For the 4-in spacing,
the allowable rivet load is 750 1b/in, as determined from the shear strength:

Rivet MS = 660 —-1=014

The maximum compression stress in the stiffencr, resuiting from the
eccentric compression load, is obtained from Eq. (11.96):

2090

= 19,200 Ib/in®

% = 0.049 + 0.5(1 — 0.53) x 0.032 x 8
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This siress exists in the leg attached to the web and decreases to zero or a
tension stress in the outstanding lcg. The allowable stress is the compression
crippling stress for a leg with b = 0.70, ¢t = 0.051, or b/t = 13.7, as computed
by the methods of Sec. 11.9. The allowable crippling stress is approximately
22,000 1bfin?,

22,500
19,200

The allowable comptession stress in the stiffener depends on many fae-
tors and is only roughbly approximated here. The attached leg of a stiffener
usually is made at least one gage thicker than the web in order to prevent a
forced crippling from the web wrinkles. Since the outstanding leg is not
highly stressed in compression, it supplies torsional rigidity, and the attached
leg probably can be assumed to have one side clamped and the other szde
free in compulting the crippling stress.

The two rivets connecting the stiffener to the flange are 35-in A17S-T
rivets with a single shear strength of 596 Ib each. They must transfer the
compression Joad in the stiffener:

‘P, =0, A, = 19,200 x 0.049 = 940 Ib

The remaining part of the force P is resisted by compression in the effective
sheet and is not transferred by the rivets. The margin of safety of the two |
stiffener-flange rivets is

MS = - [ =015

2 x 596
= {=02
M3 940 1=027

PROBLEMS

1L1 A long columa has an initial curvalure defined by the equation yg = sin (mxfL). Derive an
equation for the additional deflection y by inlegrating Eq. (11L.6). Show that the center deflection & is
defined by .

Fpae—
=TT hr,

where P, is defined by Eq. (11.1%). Compare values of § + a from this equation to those obtained
from Eq. (11.14) for P/P_, = 0.2,0.4, 0.6, 0.8, 0.9, .95, and 100,

112 From the expressions R, = | — KB and R, = I/B? derive Egs. {11.24} and (11.31) by cquating
the slopes of the Lwo curves at their poinl of tangency. Find the coordinates of the poinl of tangency.
11.3 From the expressions R, — | — KB? and R, = 1/B* derive Egs. (11.23) and (11.29) by equating
the slopes of the 1wo curves at their point of tangency. Find the coordinates of the point of tangency.
114 Find the column fvads which may be resisted by round steel tubes heat-ireated to an ultimate
tensile strength of 180,000 Ibfin?, with the ends welded before heat treatment. The dimensicns are:
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Tube size L

1 % 0.05 20 2
14 x 0.049 20
14 x 0.065 40 I

1t = nos 30 P

5 Repeat Prob. 11.4 for steel heat-treated to an ultimate tensile strength of 150,000 Ibfin?,

116 Repeut Prob. {14 for steel heat-treated to an ultimate tensile strength of [25,000 Ibfin2
TL7 The skin of the upper side of un airplane wing is made of 2024-T6 Alclad. The stringer spacing is
5 in. and the rib spacing is 20 in7 Assuming the edges to be simply supported, find the compression
buckling stress for skin gages of {4) 0.020, (6) 0.032, (¢) 0.040, and () 0.064 in.
11.8 Repeat Prob. 11.7, assuming the values of X to be the average of values for simply supported
edges and clamped edpes.
[1.9 Caleulate points on the curve for m = | of Fig. 11.20 for values of afb 0f0.25,0.33, 8¢5, 1, 2, 3,
and 4. Calculate poinis on the curve for m = 2 for values of afb of 0.50, 0.66, 1,2, 4, 6, and 8. Noic the
similarity between the two curves, and devise a system of coordinates which would show all the
curves of Fig. 11.20 as a single curve.
11.10 Calculate the compression buckling stress for a sheet with a = R in. b = 4 in, and ¢ = 0.156 in.
The angeat modulus cofumn curve for the material is shown in Fig. 11.29,

{u} Assume all four edges are simply supported.

{h) Assume all four edges are clamped.

(c) Assumae the ends are simply supported and the sides arc free.
IL11 Solve Prob. 11.10, using 2 dimensionless buckling curve for n = 10. Assume E = 10,700,000
and ¢, = 37,000 Ibfin?.
ILIZ Find the buckling stress {or a column with {4} bolh ends fixed. (h) both ends free, (¢} one end
fixed and one end [ree.
11.13 Use the Rayleigh-Ritz method 10 find the buckling load for a colemn with brth ends pinned.
11.14 The skin on a fuselage is supported by siringers which are spaced al 5 in and by rings spaced at
20 in. Assume E = 107 1b/in® and an average between simply supported and clamped-edge condi-
tions, [ind the shear buckling stresses for the flat sheet if (a) ¢ = 0020, (b)) ¢ = 0.032, (¢} ¢ = 0.040, and
{d} t = 0.064 in.
11.15 Plot the axial loads in the flanges and stiffzners of a pure tension ficld beam similar to that
shown in Fig 1146 with k=10 o, d = [{ in, and V = 10,000 1b. Compute ihe flange bending
ntoments and the load per inch on all rivets. Assume & = 45°,
11.16 Solve Example 11.5 by the Needham method and the Gerard method, Compare your results,
11.17 Solve Example 11.6 by the Needham methed and the Gerard method. Compare your refults,

CHAPTER

TWELVE
JOINTS AND FITTINGS

12.1 INTRODUCTION

A flight vehicle structure is manufactured from many parts. These parts are made
from shcets, extruded sections, forgings, castings, tubes, er machined shapes,
which must be joined to form subassemblics. The subassemblies must then be
joined to form larper assemblies and then finally assembled into a complete flight
vehicle. Many parts of the completed vehicle must be arranged so that they can
be disassembled for shipping, mspccnon, repair, or replacement and are usually
joined by bolts.

In order to {acilitate assembly and disassembly, it is desirable for such con-
nections to contain as few bolts as possible. For example, a semimonocoque
metal wing usually resists bending stresses in numerous stringers and sheet el-
ements distributed around the periphery of the wing cross section. The wing
cannot be made as one continuous riveted assembly from tip to tip, but usually
must be spliced at {wo or more cross sections. Often these splices are designed so
that four bolts transler all the loads across the splice. These bolts connect mem-
bers called fietings, which are designed to resist the high concentrated toads and
to transfer them to the spars, from which the loads are distributed to the sheet
and stringers. The entire structure for transferring the distributed loads from the
sheet and stringers outboard of the splice to a concentrated load at the fitting and
then distributing this load to the sheet and stringers inboard of the splice is
considerably heavier than the continuous structure which would be required if
there were no splice.

389
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Many uncertamtms exist concerning the stress distribution in fittings, Manu-
facturing tolerances are such that bolts never fit the holes perfectly, and sezall
variations in dimensions may affect the stress distribution. An additional margin
of safety of 15 percent for. military airplanes and 20 percent for cmi alrpIanes"rs
uscd in the design of fittings. A common procedure is to mult:p]y “the design loads
by a Tit ttmg factor of 1.15 or 1.20 before the stresses are calculated. This fitting
factor must be used in designing the entire fitting, including the riveted, bolted, or
welded joint attaching the fittig to the structural members. The fitting factor
need not be used in designing a continuous riveted joint, although the stress
distribution in such a jointsds also indeterminate.

The allowable stresses for rivets are rather conservative to account for such
uncertainty.

122 BOLTED OR RIVETED JSOINTS

Bolied or riveted joints must be investigated for four types of failure: boit or rivet
shear, as shown in Fig. 12.1; bearing, as shown in Fig. 12.2; tear-out, as shown in
Fig. 12.3; and tension, as shown in Fig. 12.4. The Lrue stress distribution is rather
complex and is discussed later. It is customary to assume a simple uniforni or

@ EE[“:‘_V:;—— ,

Fipure 12.1 Figure 12.2

JOINTS AND FITTINGS 391

40°

Figure 12.3

average stress distribution in all cases, and the allowable stresses which are used
in design are also average stresses which have been obtained from tests of similar
joints:

Lt is thereforg possibie to predict the strength of a joint with an accuracy of a
few pe perccnt altbough the true maximum stresses may be 3 or 4 times as much as
the average s stresse'i The average ¢ stress for any of the four types ypes of failure is

’ P
o= 12.1
" (2.0
where o is the average stress, P is the load, and 4 is the area of the cross section -
on which failure may occur. The margin of safety (MS} is found from

Ms=2e_1 (12.2)
- a

where o, 15 the allowable stress and the stress ¢ is obtained from the load P,
which includes the safely factor of 1.5 and usually the fitting factor of 1.15 or 1.2
as well. If this fiiting factor is included in the stress @, the margin of safety should
be zero or a small positive value. Some designers may not include the fitting
factor in the stress ¢, and thus they must show a minimum margin of safety of
0.15 or 0.20 from Eq. (12.2). In any analysis, it should be clearly stated whether
the fitting factor is included in the wiaTgim™ “ofgafety, The symbol @, always
represents At aiowable stress; And the symbol 7 TEPTESCnts a calculated stress. A
subscript is used to designate the type of stress; that is, 7, and t are shearing
stresses, o, and g, are bearing stresses, o, and o, arc tensile stresses, 7, ando,
are compression siresses, and o, and o;, are bending stresses.

o

o —
S T
\\ P =
c\u)m —j‘_- — P lb/rivet
T —_—

) Figure 12.4
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For investigating the shear strength of a bolt or rivet, the area to be used in

Eq. {12.1} is the area of the bolt or rivet cross section, or 4 = nd’/4, where d is the

diameter of the bolt or rivet. See Fig. 12.1. The shearing stress is then obtained
from Eq. (12.1):

(12.3)

In Figs. 12.1 through 12.4, the bolt is shown to be in single shear and one plate is
assumed to be rigid in bending, so that the forces on the thin plale are In static
equilibrium. Hence the bolt would resist a bending moment Pt/2 at the cross
section subjected to shear. 1t is shown later that this bending moment on the bolt
doecs not exist in most actual single-shear connections, and it is customary te
disregard this bolt bending moment when the two plates are clamped together by
the bolt. When a washer or a filler plate is used between the two stressed plates,
the bolt bending must be considered.

The bearing failure of a riveted or bolted joint usually consists of an elonga-
tion of U the hole in the plate, as shown in Fig. 12.2a. The allowable beanng stress
usually depends on the permmsxbie elongatmn of the hole. For riveted joints, the
allowable bearing stress is determined by arbitrarily specifying a hole elongation
equal to a certain percentage of the rivet diameter. The bearing failure is some-
what similar to the tear-out failure shown in Fig. 12.3, and the allowable bearing
stress for rivets is reduced when the rivets are too close to the edge of the sheet.
The bearing stress is assumed to be uniformly distributed over an area 4 = id, as
‘shown in Fig. 12.2. By substituting this area into Eq. {12.1}, the equation for the
assumed average bearing stress is obtained: .

P
Ty =
br ld

Balt holes always must be slightly larger than the bolt t diameter. If the joint is
subjedtéd to shock or vibrational loading, as in a landmg gear member, there is a
much greater tendency for a bolt hole to elongate than when the joint resists only
static loading. Similarly, when relative rotation of the two parts occurs, lhc bolt
hole is more likely to become enlarged. In such cases, the bearing stress riast be
low in order to prevent frequent replacement of the bolt or the hole bushing. The
licensing agencies therefore specify that a _bearing factor of 2.0 or more be usza""fn
obt’tm ning the bearmg stress when a”bolted JOlﬂt !s ‘subject to relative rotmon

under design loads or to shock or vibration loads. This bearing factor is used in
p[acé"éf the Titting factor, rof in addition to the fitting factor.
A tear-out failure of a bolt or rivet hole is shown in Fig. 12.3. The plate

material fails in shear on the areas A = 2xt, and the tear-out stress is found from

P
VR 12.5
T (12.5)

(i2.4)

The distunce x is. ohlamed as length ab in Fl“ 123, but it is Lonscrvuuw te use
.___"_.‘t"'—w T e, —
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lengih ¢d, which is casier to calculate. It is scldom necessary.to calculate the
tear-oul stresses for riveted joints in a sheet of the type shown in Fig. 124, Erom
practical considerations, it is desirable to keep the distance from the Q\_ggmf the

TheFeis o danger of tear-vul with this edge distance.

A riveted or bolted joint must be investigated for a possible tension fajlure
through the bolt or rivet holes, as shown in Fig. |24, The tension stress is
assumed to be uniformly distributed over the area A = (w — d)t for the boited
fitting shown in Fig, 12.4a.

.i%‘? rivels to the edgc 6l the sheet equal to at_ lt,db{ two dnmetcrs of the rwet and

P
= 12.6
ST w—dit (126)
For the riveted joint shown in Fig. [2.4h, the tension stress is
P
= 127
i {s—d (27)

where P = load per rivet
5 = rivel spacing
d = rivet diameter
t = sheet thickness

Example 12.1 The fitting shown in Fig. 12.5 is made of a 1014 aluminum
{orging, for which &, = 65,000, 7, = 39,000, and o, = 98,000 lb,/m1 The bolt
and bushing are made of steel for which e, = 125,000, 7, = 75,000, and

o = 175,000 Ib/in®. The fitting resists limit or applied loads of 15,600-1b
compression-and 12,000-1b tension. A fitting factor of 1.2 and a bearing factor
of 2.0 arc used. Find the margins of safety for the fitting for various types of
failure.

15,000 1b r
compression 2 il 0

12000 b
tensian l l . \
NV
- 0.70R
[ 1.50
1.40
, Q0625

0,125 Figure 125
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SoruTion The design or ultimate fitting loads are obtained by muliip]ying
the loads given by a safety factor of 1.5 and a fitting factor of 1.2:
Design fitting lo.ads: n

15,000 % 1.5 x 1.2 = 27,000 ib ' compression

12,000 x 1,5 x 1.2 = 21,600 1b tension

The beaﬁng of the bolt on the bushing is investigated by using the bearing
factor of 2.0 in place of the fitting factor of 1.2: )

Design bearing loads:

15,000 x 1.5 x 2.0=45,0001b compression
12,000 x 1.5 x 20=36,0001b tension -

The bolt is in double shear; therefore one-halfl of the 27,000-Ib load must be
resisted by each cross section of the bolt in shear. From Egs. (12.3) and {12.2):

4 x 13,500 -
=——2—— = §8,600 1bfin
05 f
and MS = %ﬁ%g- —1=009 includes fitting factor

The bearing stress also is calculated from the larger of the foads for tension
and compression. From Egs. (12.4) and (12.2), the bearing of the bolt on the
bushing is investigaled:
45000

T 0.5625 x 0.5

175,000
T 160,000

For bcari-ng of the bushing on the forging, one need only use the fitting
factor, because the bushing fits tightly in the hole:
_ 27,000

T 0.5625 x 0.625

_ 98,000
~ 76,800

T = 160,000 Ibfin®

~1= 0.09T includes bearing factor

=

O = 76,800 Ibfin?

—1 =029 includes fitting factor

The tear-out of the bolt hole is investigated first by assuming that the length
x shown in Fig. 12.3 is equal 1o ¢d rather than ab:

cd = 0.70 + 0.125 ~ 03125 = 05125 in

The tension load must be used in calculaling Lhe tear-out stress, since the
compression load produces no stress on this cross section. From Egs. (12.5)
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Lo, r
. R x=et R 1t — = sin? 40° -Ewsd-ﬂ“

R
NG .
40°
= . - Figure 126

and (12.2),

21,600 2

T X 05125 x 05625 - - 400 Ibfin
39,000
d _—— = i i

an MS 37,400 1 =004 includes fitting factor

A more accurate valuc of the distance x may be calculated from the equation
given in Fig. 12.6. The term in brackets may be pIotteE‘:l for various values of
#/R in order to reduce the labor of the calculations, where it is necessary to
repeat such calculations frequently. For R = 0.7, r = 0.3125, B = (.125, and
x = 0.562, ’

TT2% 0.5?(156200.5025 = 34,000 Ib/in’
and MS = 33:2(0)8 —-1=0.14 inciudes fitting factor
The tension stress through the boit hole is obtained from Eq. {12.6):
= —%;Zg?o.sszs = 49,600 lofin?
MS = 2;,% —1=013 includes fitting factor

!

12.3 ACCURACY OF FITTING ANALYSIS

The ultimate strength of a fitting usually may be calculated accurately by the
methods previously described. Truc stress distribution at stresses below the elas-
tic limit often is much different from the assumed distribution. Before the
ultimate strength of the fitting is reached, however, the material yields and the
stresses are redistribuled so that they usually approach the assumed stress dis-
tribution. Because of this plastic yielding of the material and because the allow-
ablec shear and bearing stresscs are oblained from tests on specimens similar to
those in the actual struclure, it is possible to achieve accurate calculated strengths
by means of inaccurate assuraptions. While the conventional methods are satis-
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=)
N[m A

-

Figure 12.7

factory for making design calculations for fittings, the designer must keep in mind
the true stress distribution and must avoid condilions of high local stress wher-
ever possible.

One very commen case of stress concentration, shown in Fig. 12.7, 1s that of
a tension plate containing a circular hole. For small loads, the tensile stress at the
side of the hole is 3 times the average tensile stress in the plate, as indicated by
line [. As the loads increase, the stress at the side of the hole exceeds.thg elastic
limit, and oeal pIHsTE yleﬁimg of the 1 materml _gccurs pear the hole, The stresses
pear The hole femani ‘almost €onstant at the yzeid point, while the strésses at a
distance from the hole increase with the load, as indicated by line 2. Before failure
occurs, yielding has progressed over the entire width of the plate, and the stress is
‘constant over the net section, as shown by curve 3. Thus the customary assump-
tion that failure occurs at a load equal to the product of the uitimate tensile stress
and the net area is accurate for ductile materials. Brittle materials, which fail
suddenly with no plastic elongation, should never be used for aircraft structural
members.

Stress concenirations are much more serious in engine parts on which the
loads are repeated millions ol times thun in aitframe parts on which the maxi-
mum loads occur only a fow times during the life of the airplane. In airframe
design, usnalily it is safe to consider only average stresses and to ncglect stress
concentrations, although certain unfavorable conditions, such as radial cracking
of sheet around holes when the holes are press-countersunk, may lead to service
failures from stress concentrations.

The double-shear connection shown in Fig. 12.8 is assumed to resist one-half

G

.

|
i

Figure 123
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the load by shear on cach boll cross scction, Manufacturing tolerances may
permit the hole in the lower lug to be slightly to the left of the hole in the upper
lug, as shown. For small loads, then, the entire load is resisted by shear on the
upper crass section. As the load is increased, the parts deflect so that the lower
end of the bolt is also bearing on the lug, but the upper lug continues to resist
more than one-half the load. The fitting factor is intended to account for such
eccentric loading conditions; in this case, the use of a fitting factor of 1.2 is
equivalent to the assumption that one side of the fitting may resist 60 percent of
the total ultimate load,

Most of the bolted and riveted joints in aircraft structures are single-shear
joints. For the joints shown in Figs. 12.1 and 12,2, we assume that one member is
rigid, and only the forces acting on the other member are considered. For this
assumed loading, the bolt resists a bending moment of Pt/2 and the heavy
member resists a larger bending moment. The usual single-shear joint has both
members of comparable size. At first it might appear that each of the members
shown in Fig. 12.9 could be treated in the same manner as the upper member of
Fig. 12.2b. In fact, many textbooks show the forces as in Fig. 12.9, and this
assumed stress distribution is customary and satisfactory for design. The forces
shown in Fig. 12.9 cannot be in equilibrium, however, because there is an unbal-
anced moment Pt on ihe plates in Fig. 12.9¢ and a similar unbalanced moment
on the pin in Fig. 1295, The correct stress distribution must be as shown in Fig.
12.10. For the forces P lo balance, they must act on the same line, as shown in
Fig. 12.10a The stresses in the plate are no longer P/4, but must also include
stresses from the bending moment Pr/2. If the plate width is b, the plate stress is
PIA + MyfI:

£ Pt 6 P 3P
NI W n Tt h : (1z8)
At the inside faces of the plates, the teasile stross from Eq. (12.8) is 4P/4, and at
the outside faces the compressive stress is 2P/ 4, as shown.

In order for the pin to be in equilibrium under the bearing stresses, it must
bear on opposite corners of the hole, as shown in Fig. 12.105. The most opti-
mistic assumption of bearing stresses is the straight-line assumption shown in
Fig. 12.10c, which yields maximum bcaring stresses 4P/(th) at the inside corner
and 2P/(th) at the outside corners. I the pin does not fit tight in the hole, the

N |
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th) Figure 12.9




398 AIRCRAFT STRUCTURES

Y 4
/
| M Ty
r [ : 4 ! —p
L"_L‘:_?__]L_ i
4
(a) A p
[ ks
| /s A ———— P
1 o “id
L (c)
(-’7]_

Tigure 12.10

bearing stresses must be higher than those assumed. Thus, for the single-shear pin
joint between plates of equal thickness, the maximum plate tension siresses and
the bearing stresses are both 4 times the values assumed in Figs. 12.2 and 12.9.

The bending moment in the pin of Fig. 12.10 is zero at the cross section of
maximum shear, and the maximum pin bending moment is s¥Pt at a cross
section a distance /3 from the inside of the plates.

The ultimate strength of conventional riveted and bolted joints approaches
that assumed in the original simple analysis, because of the clamping action of

_ the rivet heads or bolt heads. For a riveted joint between two sheets in tension,

the bending and tension stresses in the sheets exceed the elastic limit, and the
sheets deform as shown in Fig. 12.11. The two forces P are almost in the center
plane of the sheets, as shown in Fig. 12.11a, as the ultimate strength is ap-
proached. The moment Pt of the bearing forces on the rivet is balanced by the
moment of clamping forces under the head of the rivet, as shown in Fig. 12,115
These forces on the rivet head have a moment arm D which is slightly less than
the diameter of the rivet head. The bending moment in the rivet shank varies
from Ptf2 at cach end of the shank to 0 at the plane of rivet shear. After plastic

e
P ot = £ = ——ap- [
ta) L]
— 2]
i —— 1 I —_—

(U

(e Figure 12,11
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yiciding bas progressed in the sheet, the bending stresses shown in Fig. 12.10a arc
climinated, and the sheel is in almost uniform tension at all points. The angular
change in the sheet is arclan {¢/D),.as shown in Fig. 12.11c¢, and the lotce excrted
by the rivet head on the sheet is just sufficient to keep the resuitant tension in the
center plane of the sheet. The foree triangle at the bend in the sheet is represented
by Fig. 12.11d. The angular change in the sheet is cxaggerated in Fig. 12.11 Fora
rivet shank diameter of 4 times the sheel thickness and a rivet bead diameter D of
twice the shank diameter, the angle is arctan {t/D) or arctan .

Where a tension joint has two lines of rivets, the deformation is as shown in
Fig. 12.12. If the tension stresses in the sheet werc uniform at all points, the sheet
would deform as shown in Fig. 12.124. Beiween the rivet lines, however, the
sheets have only one-half the average tensile stress that they have at the ends and
therefore may resist the bending deformation and assume the deformed shape
shown in Fig. 12.12b, The forces on the rivets will remain approximately as
shown in Fig. 12.11b, since the clamping forces on the rivet head must balance
ttie moment of the bearing forces.

Any riveted or bolted single-shear joint will have stress conditions which
vary between the extreme conditions of Fig. i2.10 and 12.11. At low loads, the
shect must resist bending stresses, as shown in Fig. 12.10; but as local yielding
occurs, the stresses are redistribuled so that they approach the conditions of Fig.
12.11. The ultimale strength is predicted accurately from an assumed averape
tension stress in the sheet and an average bearing sircss on the bolt or rivet.
Many types of “blind™ rivets or of countersunk rivets do not provide a suflicient
amount of clamping action by the rivet head, and strength calculations based on
simple stress distributions must be verificd by tests.

1t is interesting to compare the action of aircraft rivets with the action of
hot-driven steel rivets, such as thosc ussd in bridges, buildings, boilers, and
other steel structures. The steel rivet is upsei when red-hot and cools and con-
tracts in placc. The contraction makes the rivet slightly smaller in diameter than
the holc and provides a residual tension stress in the rivet approximately equal to
the yield stress of the rivet material. The rivet tension clamps the plates so tightly
that small loads arc resisted by friction between the plates, and the rivet shank
bears on the hole only at higher loads. This tension does not exist in aircraft
rivets, which are driven at room temperatures.

1t is common aircraft practice to assume the same allowable bearing stresses

Figure 1212
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for single-shear joints and the double-shear Joints of the type shown in Fig 12.5.
The common practice in bridge or structural steel design is to use higher allow-
able bearing stresses for joints in double shear. This practice is logical, since the
eccentric distributions, as shown in Fig. 12.10, are climinated in double-shear
joints,

When several similar rivets or bolts act together in a joint, il is customary to
assume that each rivet or bolt carries a proportionate share of the load. This
assumption is very inacccurate when the joint is not highly stressed; but is more
accurate as the loads approach the ultimate strength of the joint and local plastic
vielding and rivet “slip” have occurred. In Fig. 12,13 the deformations of the
various rivets in a double-shear joint are exaggerated in order to show the
relative motion between the plates, although the actual plates would be in close
contact and the actual deformation would consist of hole clongations as well as
rivel shear deformations. It is assumed that the two outside plates have the same
total area A as the inside plate and that the average stress in all plates is p = P/A.
If each of the five rivets transfers one-fifth to the total load, as commonly as-
sumed, stresses in the various plates between rivets will be 0.2p, 0.4p, 0.6p, and
0.8p, as shown in Fig. 12.13. Between rivets | and 2, the outside plates resist
tensile stresses of 0.8p, and the inside plate resists a tensile stress of 0.2p; there-
fore, the outside plates must elongate 4 times as much as the inside plate. Thus,
rivet 1 must be deformed much more than rivet 2 and must resist a higher shear.
Between rivet 2 and rivet 3, the outside plates have 1.5 times the stress and
deformation of the inside plate; therefore, rivet 2 must resist more foad than rivet
3. Study of other deformations shows that the end rivets 1 and 5 are equally
stressed and must resist much higher shears than the other rivets. Rivets 2 and 4
are equally stressed and resist higher shears than rivet 3. '

In the casc of a longer line of bolts or rivets than that shown in Fig, 12.13, the
end bolts or rivets are still more highly stressed relative to the bolts and rivets
near the center of the line. As the load is applicd gradually, first the two end
rivets must resist most of the load, until they slip or yield in shearing and bearing.
Then the load is transferred to the next rivets in the line, until they also slip and
transfer load to other rivets. The ultimate strength of the joint is accurately
predicted as the sum of the strengths of the individual rivets, provided thére is
enough ductility to permit each rivet to slip considerably and vet still retain its
maximur strength after slipping. It is desirable, however, to vary the plate areas
in order to obfain approximaicly constant tcnsion stresses in the plates and thus
distribute small loads more equally to all the rivets or bolts. Bolted or riveted
Joints in brittle materials arc undesirable, since the end bolts may fail before they
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deform enough to redistribute the load, and then each boit in lh.c line will fail i'n
turn. Some spot welds do not have enough ductility to be satisfactory for this
type of loading, and occasional rivels are used in most lines of spot welds so that
a progressive fuilure will not extend past the rivet,

124 ECCENTRICALLY LOADED CONNECTIONS

In many conneclions, the resultant foree does not act through the cc.nter of the
bolt or rivet group. In such cases, it is usually convenient to‘ superimpose the
eflcets of an equal parallel force acting at the center of the rivet group and. a
moment about the center which is equal to the product of the force a:nd 3:5
distance from the center, The rivet forces in the typical connection si}own in Fig.
12.14 may be obtained by superimposing the forces for the concentric loading of
Fig. 12.15q and for the moment Re, shown in Fig. 12.!5b._

First we assumec that all the rivets are critical in single shear and that all

(a) thy

Figure 12.15
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plates are rigid. For the concentric load shown in. Fig. 12.15a, the shearing
stresses on all rivets are assumed equal, The force P, on any rivet resulting from
the concentric load is - )
RA

P ==

> |

where A js Lhe area of the rivet cross section and A is the total cross-sectional

{12.9)

area of all the rivets in the group. For a rivet group of n rivets of equal area, Eq.

(12.9) reduces to the following form:
P == {12.10}

The resultant of the forces on the individual rivets passes through the ceniroid of
the areas of the rivet cross sections; hence this point must be vsed as the center of
moments for the rivet group. '

When the rivets resist a moment, the shearirig stresses are assumed to be
proportional to the distance r from the centroid of the rivet areas. The force P,
on any rivet of area A resulting from this moment is

P, = Kr4 (12.11)

The constant K is obtained by equating the sum of the moments of the individual
rivet forces to the external moment:

M =XP.r=KZrid (12.12)

The constant K may be climinated from Eq. {12.11) and (12.12) and the force P,
obtained:

_Mrd
T SrRA

Equation {1213} is similar in form to the common equations for bending or
torsion. ’

The resultant force P on any rivet can be determined now from the com-
ponent forces P, and P,, as shown in Fig. 12.15¢. When an algebraic solution is
desired, usuaily it is more convenient to obtain the horizontal and vertical com-.
ponents of the rivet forces. The distance r does not need to be calculated if the
coordinates x and y are used. From Fig. 12.16 and Eq. (12.13), the following
equations for the components P, and P, arc obtained:

P, (12.13)

;

—MyAd MxA

ch T 524 L vz 4 Pr S eelg L v.2g o
Ix*A+ Iyt4 7 Zx*A 4+ IytA (12.14)

The method of analysis for an cecentric connection, like methods of analysis
for several other types of fitiings, must be considered only as a rough approxi-
mation. Where bearing stresses are critical in the design of the boits or rivets, it is
customary to substitutc P,, the allowable bearing load for each bolt or rivet, into
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Figure 12.16

Egs. (12.13) and (12.14) in place of the shear area A. Tn some cases, it may be
assumed that the loads on all bolts or rivets approach their ultimate strengths,
rather than that the loads are proportional to r or that bolts or rivets near Lhe
center are not highly stressed. Frequently bolts or rivets are attached to members
which are more rigid in one direction than another. If the supporting structure is
rigid horizontally but flexible vertically, for cxample, it may be assumed that an
applied moment is resisied by horizontal rivet or boli forces, rather than by
forces perpendicular to the radial line. Where both standard bolts and rivets are
used in the same conneclion, it is neccssary to design the connection so that
cither the rivets alone or the bolts alone can resist the total foad. Rivets fill the
holes completely, but bolts must be slightly smaller than the holes; consequently,
bolts resist no loads until rivets slip enough to be permanently damaged, Close-
tolerance, drive-fil bolts are occasionally used with rivets, and each may be
assumed (o resist & proportionate share of the load.

Example 12.2 Find the resuliant force on each rivet of the connection shown
in Fig. 12.17. Also {ind the margin of safely of the most highly stressed rivet.
All rivets arc +5-in-OB aluminum alloy in single shear, and the sheet 1s 0.051
gage 1024 dluminum Alelad.

SoruTtion The rivet loads are calculated in Table 12.1, The centroid is deter-
mincd by inspection, and values of x, x?, y, and 3* are tabulated in columns 2
to 5, respectively. The rivet forces P, and P, arc obtained by dividing the
loads of 1800 and 300 Ib by 6, since these loads are resisted equally by each

Table 12,1 Analysis of riveled connection

Rivet x v L [ P, P, P, P, P
(1) @ 3 ST &) ) 7) & @ 0w {11 (12)
1 -1 1.5 1 225 30 —120 180 50 — 80 -30 133
2 1 [ 1 225 300 --120 180 50 80 130 221
3 —1 0 t 1] 300 0 300 50 -3¢ —30 302
4 1 0 t 0 m 1] 300 50 80 130 327
5 —~1 -1.5 1 2.25 it 120 420 50 B0 -30 422
6 1 -5 ! 223 10 120 420 50 20 130 440
z 6 9.00
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Figure 12,17

of Lhe six rivets. The values of P, and P, are lound from Eqs. (12.14). Since
A is the same for ali rivets, the values of 4 may be omitted from Egs. (12.14).
The moment M is 1200 in - Ib. The values P, and P, are each obtained as the
sum of the terms in the two preceding columns, with care being taken with
regard to the algebraic signs, The resultant rivet forces I* are found as the
square root of the sum of the squares of the rectangular components P,
and P,. _

The allowable lcad for the rivet is obtained from MILHDBK-5 as
593 Ib. Rivet 6 resists the greatest load, 440 Ib. The margin of safcly is
obtained from these loads:

593
MS =20 1 =035
1t has been assumed that the loads of 1800 and 300 1b were design fitting
loads, or that they were obtained by multiplying the applied or limit loads by
the safety factor of 1.5 and the fitting factor of 1.2 or 1.13.

12.5 WELDED JOINTS

Welding is used extensively for stecl-tube truss structures, such as engine mounts
and fuselages, and for steel landing gears and fittings. The most common'type of
welding consists of heating the parts to be joined by means of an oxyacetylene
~ torch and then using thern together with a suitable welding rod. The grain
structure of the material at the weld becomes similar to that of cast metal, and it
is more brittle and less able o resist shock and vibration loading than is the
original material. Aircraft tube walls are thin and more difficult to weld than
other machine and structural members. All aircraft welding was previously torch
welding, but electric arc welding has been developed so that it is also satisfactory
for the thin aircraflt members. In arc welding, the welding rod forms an electrode
from which current passes in an arc to the parts being joined. The-clectric arc
simultaneously heats the parts and deposits the weld metal from the electrode.
The heating is much more localized than in torch welding, and the strength of
heat-treated parts is not impaired as much by arc welding as by torch welding.
Design specifications normally require that the same allowable stresses be used
for arc welding and for torch welding.

© e e
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(irt Figure 12.18

The strenath of welded joints depends greatly on the skill of the welder. Often
the siress conditions arc uncertain, and it is customary to design welded joints
with liberal margins of safety. It is preferable to design joints so that the weld is
in shear or compression rather than tension, but frequently it is necessary to have
welds in tension. Steci Lubes in tenston are usually spliced by “fish mouth” joints,
as shown in Fig. 12.18«, which are designed so that most of the weld is in shear
and the local heating of the tubc at the weld is not confined to one cross section.
Where a bull weld must be used, as shown in Fig. 12,185, the weld i1s not
perpendicular to the centerline of the tube.

Fuselage truss members often are welded as shown in Fig. 12.19a. Only the

horizontal meniber is highty stressed, and usually the size of the other mombers is
determined as a minimum tube size, because they resist small ioads. When these
members are highly stressed, it is necessary to insert gussct plates, as shown in
Fig. 12.19b. Steel lubes often have walls as thin as 0.035 in and the welder must
control the témperature to keep from overheating the thin walls and burning
holes in them. It is extremely dilficull to weld a thin member to a heavy one,

Figure 12.1Y
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because more heat is required for the heavy member. The thickness ratio of parts
being welded should always be less than 3 : 1 and prefecably less than 2: 1.

The allowable load on the weld metal in welded seams is specified in MIL-
HDEBK-5 by the following equaiions: .

P = 32,600Lt {low-carbon stcel)
(12.15)
P =048Lta,, (chrome-molybdenum stecl)

where P = allowable load, b
= length of welded seam, in
¢t = thickness of thinnest material joined by weld in lap welds belween
two steel plates or between plates and tubes, in
t = average thickness of weld metal in tube assemblies (cannot bec as-
-sumed greater than 1.25 times thickness of welded stock), in
,, = 90,000 Ib/in® for material not heat-treated after welding
o, = ultimate tensile stress of material heat-treated after welding, (heab
trcatabie welding rod must be used), but not to exceed 150,000 Ib/in*

The local heating during welding also reduces the allowable tension or bend-
ing stress in the material near the weld. For normalized tubing with no heat
treatment after welding, the aliowable tensile stress is 90,000 Ib/in® near the weld
for tapered welds making an angle of 30° or less with the axis of the tube and
80,000 1bfin? for other weids. For tubing which is heat-treated after we!dmg, the
allowable tensile stress is a,.

Example 12.3 The 13- by 0.065-in chrome-molybdcnum stce!l tube shown in

Fig. 1220 resists a limit or applied tension load of 15,000 1b. Find the margin

of safety of the weld and of the tube near the weld if L, = 2.5, Lz =3, and

=0.20 in; the tube area is A = 0.293 in?.

(a) Assume that the ultimate tensile stress a,, is 100,000 Ib/in? before welding
and that there is no subsequent heat treatment.

{(h) Assume that the tube assembly is heat-treated to a ¢, of 180,000 lb/in?
after welding and that the limit load is 22,600 Ib.

SoLuTioN («) The weld on the curved end of the tube is neglected, since loads
transmilled Lo this portion of the tube tend only 1o straighten and flatien the
end of the tube and do not increase the tensile strength of the weld appreci-
ably. Because the load P is applied at the center of the tube, one-half of this
load is resisted by the weld on each side of the tube. Thus the two welds of
length L, must resist the load of /2. The ultimate or design load is obtained
by multiplying the applicd load by the safety factor or 1.5:

P=15000 x 1.L5=22,5001b
The allowable load P, is obtained from Eq. (12.15). The tube thickness

a

¢t = 0.065 is critical since the forging thickness t; is more than twice the tube
wall (hickness. The length L, is welded lo the tube on both sides of the

JOINTS AND FITTINGS 407

Figure 12.20

forging; therefore o length L= 5 in must resist half of the load. The allow-
able load is

% 048Lta,, = 0.48 x 5 x 0.065 x 90,000

or

P, = 28,000 Ib
The fitling fuctor of 1.20 must be included in the calculation of the margin of
safety: - '

P, 28,000
1.20P  © T 1.2 x 22,500
This margin appears small for 2. weld, but was calculated vonservatively. The
ultimale {ensife stress in the tube near the weld is 90,000 lb/in® since for a
slotted tube, the weld makés an angle of 0° with the tube axis. The ailowable
tension in the tube near the weld is

P, = 90,000 x 0.293 = 26400 1b

It is notl nceessary to use a fitting faclor here, since the tube itsell, rather than
the {itting, is beiny mvestigated:

MS =

—1=004"

26,400
MS = 57500

- 1=017

{h) The allowablc load is computed in the same manner as for part (a), but
now e,, = 150,000 Ib/in®:

P,
- = 0.48 x 5 x 0.065 x 150,000
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or
P, = 46,400 ib
The design load is |
P = 22,000 x 1.5 = 33,000 Ib
The fitting factor is includcd in calculating the margin of safety:

46,400

= 2 1=01
33,000 12 8

MS

The allowable tensile stress in the tube near the weld is 6,,, and
P,=g,A4 = 180,000 x 0.293 = 52,700 ib

_ 52,700

MS = 33,000

—1=0.:60

PROBLEMS

12} An end fitting similar to those shown in Figs. 12.5 and 126 is made of steel with an ultimate
tensile strength o, of 180,000 Ibfin® and has no bushing. It has ad-in stcel bolt in double shear, a
thickness of 0.5 in, and dimensions R = 0.5 and ¢ = Q.05 in, as shown in Fig. 12.6. Find the maximum
limit loads in tension and in compression il the fitting factor is 1.2 and the bearing factor is 1.0,
Obtain allowable slresses from MILHDBK-5. :

12.2 Design a fitting 10 resist a limit tension load of 15,000 and a limit compression lead of 20,000 1b.
Assume the materials and unit stresses to be the same as those used in Prob. 12.1.

123 Design an end fiting of stecl with an uitimate tensile sirength of £25,0001bfin®. The applied or
limit toads are 15,000-ib tension and 20,000-Ib compression. Use a Riting factor of 1.2 and a bearing
factor of 2.0.

124 Tind the margin of safety for the joint shown in Fig. 1217 R, = 3000 1b, R, = 200 Ib, and the
rivels are made of $-in-diameter 2017-T, in single shear. The piate is 0.072 gage 2024-T, clad
aluminum. -

125 Assume the tube of Fig. 12.20 to be 2 by 0.083 in with¢, =02, L, = 3.0, and L, = 4.0 in. Find
the allowable load P il (a} the tubc has an allowablie stress o, of 95,000 Ibfin? and (b) the assembly is

-

heai-1reated after welding to a tensile strength o, of 150,000 Ibjin>. -

APPENDIX

A
MOMENTS OF INERTIA, MOHR’S CIRCLE

A.1 CENTROIDS

The force of gravity acting on any body is the resultant of a group of parallel
forees acting on all elements of the body. The magnitude of the resultant of
several parallel forces is equal to the algebraic sum of the forces, and the position
of the resultant is such that it has a moment about any axis equal to the sum of
the moments of the component forces. The resultant gravity force on a body is its
weight W, which must be equal to the sum of the weights w; of all elements of the
body. Il the forces of gravity act parailel to the z axis as shown in Fig. A1, the
moments of all forces about the x and y axes must be equal to the moment of the
resultant:

Wl=xw +xw,+ -+ =Zxw or J"x dw (A.1)
Wi=jyw+ w4+ - =Zpw or J-y aw {A2)

If the body and the axes are rotated so that the forces are parallel to one of the
other axes, a third moment equation can be uscd:

WZ=zw, +z,m;4+ - =ZFzw or fz aw {A3)

409
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Cealer off

¥ . . Figure A.1

The three coordinales ¥, §, and £ of the center of gravity may be obtained {rom
Eqs. (A1) to (AL3):
xdW

I
]
Ly
-
£
oy

== A4
= or (A-4)
_ Zyw {ydw AS
R (A.5)
_ Iaw {zdw AG
=T o (A.6)

The summations or integrals for Egs. (A.4) to (A.6) must include al'l elements of
the body. In many engineering problems, the weights and coordinates of .the
various items are known, and the center of gravity is obtained by a summalion

procedure, rather than by an integration procedure, ) o
In the case of a plate of uniform thickness and density which lics in the xy

plane, as shown in Fig. A.2, the coordinates of the center of gravity are

- jxdW_wfdi__deA 4 (AT
SETW T T wd 4 -

W =nd

i e I Cenler of
it = d —_—
\ /;__r.m!y N
=

\

Figure A.2
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)_J_j‘ydW_w_fydA__j’ydA
w wd A
where 4 is the area of the plate and w is the weight per unit area. It is seen that
the coordinates X and 5 will be the same regardless of the thickness or weight of
the plate. In many engincering problems, the properties of areas are important,

and the point in the area having coordinates X and j as defined by Egs. {A.7) and
(A.8) is called the centroid of the area.

(A.8)

A2 MOMENT OF INERTIA

In considering inertia forces on rotating masses, it was found that the inertia
farces on the elemenis of mass had a moment about the axis of rotation of

L,= n:jrz dM

as shown in Fig. A.3. The term under the integral sign is defined as the moment
of inertia of the mass about the z axis:

I,= Jrl aM (A9}
Since the x and y coordinates of the elcments are easicr to tabulate than the
radius, lrequenlly it is convenicnt to use the relation
P2 = x4 p?

or
I.= J.xz dM + Jyz dM {A.10)

An area has no mass, and consequently no inertia, but it is customary to
designate the following properties of an area as the moments of inertia of the area
since they are similar to the moments ol inertia of masses:

,=jy2 dA (A1)
I,= sz dA (A.12)
¥
Y ot
Figure A3 -
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Figure A4

-

The coordinates are shown it Fig. A.4. The polar moment of inertia of an area is
defined as ’

{,= J-r2 dA (A-13}
From the refationship used in Eq. (A.10),
Pt =x? 4y’
I,,=Jx2 dA-i-J-yz dd =1, +1, (A.14)

It is frequently necessary to find the moment of inertia of an area about an
axis when the mement of inertia aboul a parallel axis is known. The moment of
inertia aboul the y axis shown in Fig. A5 is defined as follows:

I, = sz dA (AI3)
Substituting the relation x = d + x' in Eq. {A.15) yields

I= J(d + XV dA

=d? j.dA+2d_[x'dA+jx”‘ dA

or
I, = Ad® + 28 Ad + I (A.16)

where ¥ represents the distance of the centroid of the arca from the axis, as
defined in Eq. (A.7), I} represents the moment of inertia of the area about the ¥
axis, and A represents the tolal area. Equation (A.16) is simplified when the ¥
axis is through the centroid of the area, as shown in Fig. A.6:

I,=dA4d*+ 1, (A1T)

The term I, represents the moment of inertia of the arca about a centroidal axis.
The moment of inertia of a mass may be transferred to a parallel axis by a
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--———~¢.’_—--q.—.\".1
x

A

v ¥ Figure A3

similar procedure to that used for the moment of inertia of an area. For the mass
f;hown in Fig. A.7, the following relations apply, where the centroidal axis C lies
in the xz plane:

1= ja-ﬁ M = _[(x2 + 7' dM
- j [+ xy + y*] dM
= J (@ 4+ 2dx’ + 2 + yO dM
and substituting ¥* = x? 4+ y? gives

i =d2JdJM+2de’dM+JrfdM

Since x’ is measured from the centroidal axis, the second integral is zero. The last
integral represents Lhic moment of inertia about the ceatroidal axis:

1= Md*+1, (A.18)

7]

Figure A6 Figure A7
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$!

Equalions (A.17) and (A.18) can be used to find either the moment of inerlia
about any axis when the moment of inertia about a parallel axis through the
centroid is known or the moment of inertia about the centroidal axis when the
moment of inertia about any other parallzl axis is known. In transferring mo-
ments of inertia between two axes, neither of which is (hrough the centroid, it is
necessary first to find the moment of inertia about the ceniroidal axis, then to
transfer this to the desired axis, by using Eq. (A.17) or (A.18) twice. It is seen that
the moment of inertia is always a positive quantity and that the moment of
incrlia about a centroidal axis is always smaller than that about any other
parallel axis. If Eq. (A.16) is used, it is necessary {o use the proper sign for the
term ¥'. All terms in Eqgs. (A.17) and (A.18) are always positive.

The radius of gyration p of a body is the distance [rom the inertia axis over
which the entire mass would be concentrated in order to give the same moment
of inertia. Equating the moment of Inertia of the concentrated mass to that for
the body yields o ’
pPPM=1

or

p= \/% 3 (A.19)

It is scen that the poinl where the mass is assumed (o be concentrated is not the
same as the center of gravily, except for the case where I, in Eq. (A.18} is zero.
The point at whicl the mass is assumed 1o be concentrated is also different for
each inertia axis chosen. :

The radius of gyration of an area is defined as the distance from thc inertia
axis to the point where the area would be concentrated in order o produce the
same moment of inertia: ,

pad=1

or

d : (A-20)
P=\4

The moment of inertia of an area is obtained as the product of an area-and

the square of 2 distance and usually is expressed in units of inches to the fourth

power. The moments of inertia for the common areas shown in Fig. A8 should

- T
1 /\ P .

. v : j e ¢ ¢
. T ‘f L
i

I=bhH12 ’ [, = hn¥36 =
1

(1} ) {¢

Iigure A.B
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Figure A9

be memorized, since Lhey are used frequently. Moments of inertia for other areas
may be found by integration or from engineering handbooks.

Example A.1 Find the center of gravity of the airplane shown in Fig. A.%a.
The various items of weight and the coordinates of their individual centers of
gravity are shown in Table A.1. It is customary to take reference axes in the
directions shown in Fig. A.9b with the x axis parallel to the thrust line and
the z axis vertical. While the z axis is at the wing leading edge in this
example, it may be taken through the propelier or through some other con-
venical reference point.

SoLuTion The y coordinate of the center of gravity is in the plane of sym-
metry of thé airplane. The coordinates X and Z are obtained from Egs. (A.4)
and (A.6). The terms W, Zxw, and Xzw are obtained by totaling columns 3, 5,
and 7 of Table A.1.

P = 126
w 4243
Iwz 26,109
=== =62
W 4243
Table A.1
Na. Ttem Weipht w x wx z wz
(n )] 3 (@) &]] (5) 4!
[ Wing proup 697 2256 + 15,781 409 +28,574
2 Tuil group §56 198.0 30,904 331 5E71
3 Fuscluge group 792 498 39430 39 3,092
4 Landing gear {up) 380 192 7,297 —117 —4,429
5 Engine section proup 160 ~38.6 —6,179 =11 —1,138
] Power plant 1,M2 —48.8 — 63,674 —6.0 —7,782
7 Fixed equipment 156 339 27164 3.5 2621
Total weight empty 4,243 50,723 36,109
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Example A.2 Find the centroid and the moment of inertia about a horizontal
axis through the centroid of the area shown in Fig. A.10. Find the radii of
gyration about axis xx and about axis ¢cc.

SoLuTioN The area is divided into rectangles and triangles, as shown. The
areas of the individual parts are tabulated in column Z of Table A2, The y
coordinates of the centroids of the elements are tabulated in column 3, and
the moments of the arcas Ay are tabulated in column 4. The centroid of the
total area is now obtained by dividing the summation of the terms in column
4 by the summation of the terms in column 2:

The moment of inertia of the total area about the x axis will be obtained as
the sum of the moments of inertia of the elements about this axis. In finding
the moment of inertia of any element about the x axis, Eq. {(A.17) may be
written as

I,=A4y"+1,

where I is the moment of inertia of the element of area A about the x a_xis, y
is the distance from the centroid of the element to the x axis, and I, is the

moment of inertia of the element about its own centroid. The terms Ay® for -

-

Table A2 -
Element A ¥ Ay Ayt Iy
) 2 3 (4 (5 ()
i 12 1 12 12 40
2 1.5 25 375 9.4 0.2
3 1.5 2.5 3.75 9.4 0.2
4 2 5 s 00 360
Total 210 9.5 3308 404
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all the elements are oblained in column 3 as the product of terms in columns
3 and 4. The values of I are found from the equations shown in Fig. A.8.
The moment of ineriia of the entire area about the x axis is equal to the sum
of all terms in columns 5 and 6:

I, =3308 4 40.4 = 371.2 in*

This moment of incrtia may be transferred to the centroid of the entire area
by using Eq. (A.17) us {ollows;

Ic = Ix _(ZA)}-)Z

where £ A represents the total area and ¥ represents the distance from the x
axis to the centroid of the total area, Thus

I =1371.2 —270(2.94%) = 138.0 in*

The radii of gyration may now be obtained as defined in Eq. (A.20):

I, {3712 )
px—\/;_- 70 =371lin
. . f1380 .
e “\ﬂﬁ / 570 =226 in

Example A.3 In a metal stressed-skin airplane wing, the sheet-metal covering
acts with the supporting spanwise spars and stringers to form a beam which
resists the wing bending. Figure A.1la shows a cross section of a typical wing
which has a vertical web and extruded angle sections riveted to the spar web
and to the skin. The stringers are extruded Z sections which are riveted to
the skin. Thé upper surface of the wing is in compression, and the sheet-metal
skin buckles between the stringers and is ineffective in carrying load. The

1 2 3 4 5
T
'/ 'y
4]
\\L—J-_J-————L

e e el
L

— ., . .( )
9 R 7 4

n Figure A.11
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skin is riveted Lo the stringers at frequent intervals, and a narrow strip of skin
adjacent to each stringer s prevented from buckling and acts with the string-
er in carrying compressive load. The effective width of skin acting with each
stringer is usually about 30 times the skin thickness. On the underside of the
wing, the entire width of the skin is effective in resisting tension. It is usually
sufficiently accurate to assume the area of each stringer and its effective skin
to be concentrated at the centroid of its area in computing the moment of
incrtia of the arca. The wing cross scction would then be represented by the
nine elements of area shown in Fig. A.11b. The moment of inertia of each
clement about its own%entroid is neglected. In this particular wing, the skin
and siringers to the right of the spar are very light and are assumed to be
nonstructural.

The moment of inertia of the area shown in Fig. Allb is obtained about
horizontal and vertical axes through the centroid of the total area. The areas
and coordinates of the elements are given in columns 2, 3, and 6 of Table A3

Sorution This example is solved by the method used for Example A2,

except that the column for f is omitted. Table A.3 shows the calcuiations for
the moments of inertia about both the horizontal and vertical axes.

—824

T PO L ST
hen A FEY: 1156
I = 2310 — 7.135(11.56%) = 1358 in®
=212 066

7.135
7. = 3316 — 7.135(0.667) = 328 in*

Table A3

Elemen: A x Ax Ax? z Az Az*

(3 (2 3 4 (5 {6) 4] ®)

i .358 —34.5 —12.34 426 +8.6 308 2.5

2 0.204 —28.1 —573 161 +9.6 1.96 188 .
3 0395 — 199 —7.85 156 + 100 3.95 39.5 :
4 £.204 - 101 —2.06 21 +9.6 1.96 12.8

5 1.615 +0.5 +.81 8} R 14.21 125.2

6 1.931 +0.5 +.97 1 -5 —11.0 62.8

7 0.752 - 101 -17.60 77 —52 -39t 20,4

8 0.784 -224 -~ 17.65 394 —d4.3 —3.37 14.5

9 0fr  —347 —3092 1074 =24 -4 3l
Total 7.135 — 5240 2310 472 3316
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A3 MOMENTS OF INERTIA ABOUT INCLINED AXES

The moment of inertia’ of an area about any inclined axis may be obtained from
the properties of the area with respect to the horizontal and vertical axes. For the
area shown in Fig. A.12, a rclationship between the moments of inertia about the
inclined axes x’ and ¥ and the axes x and y may be found. The moment of inertia
about the x" axis is-

L= Jy'z dA (A21)
The coordinate 3 of any point is

y =ypcos ¢ —xsing (A22)
If this value of 3 is substituted in Eq. (A.21), the following value is obtained:

I, = (cos® ¢)fy2 dA — {2 sin ¢ cos ¢) -[xy dA + (sin® ¢) J‘x” dd  [A.23)

The integrals must cxtend over the entire area. The angle ¢ is the same regardless
of the ciement of arca considercd and is therefore a constant with respect to the
integrals. The first and Jast integrals of Eq. (A.23) represent the moments of
inertia of the area about the x and y axes. The second integral represents a term
which is called the product of inertia I,

I,= J.xy dA (A.24)
Equation (A.23) may now be wrilten as
T 1, =1I,co8* ¢ — I, sin2¢ +1,sin® ¢ (A.25)
A similar expression may be derived for the moment of inertia about the )/ axis:
I, =1.sin" ¢ + I, sin2¢+1, cos® ¢ {A.26)
v r
‘p |t
..-“‘
e
[e] } Figure A2
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If Eqs. {A.25) and {A.26) arc added, the following refationship is obtained:
L+l,=1,+1,

From Eq. (A.14), the sum of the moments of inertia about any tweo perpendicular
axes is seen to be equal to the polar moment of inertia, which is the same
regardless of the argle ¢ of the axes.

The product of inertia about the X' and 3 axes is defined as foliows:

Loy = J’.\"y’ dA {A.27)

By substituting the relations
X=xcosp+ysing
and
YV=ycos ¢ —xsing

into Eq. (A.27), the following value of T, , is oblained:

Xryt

{5 = (cos? ) jxy dA — (sin? ¢) J.xy dA

+ (sin ¢ cos @) J._vz dA — {sin ¢ cos ¢) f_\'z A

or Iep = 1,,(cos® ¢ —sin® ¢} + (I, — 1) sin ¢ cos ¢ (A.28)

A4 PRINCIPAL AXES

The moment of incrtia of any area about an inclined axis is a fanction of the
angle ¢, as given in Eqs. {A.25) and {A.26). The angle ¢ at which the moment of
inertia f, is a maximum or minimum is obtained from the derdvative of Eq.
(A.23) with respect to ¢

df

dqb = —2I, cos ¢ sin ¢ — 21, cos 2¢p + 2, sin ¢ cos ¢

This derivative is zero when I, is 2 maximum or minimum. Equating the deriva- -

tive 10 zero and simplifying yield -
(I, —1I,)sin 2¢p = 21, cos 29

21,
or tan 2¢ = I_—]L {A.29)
Since there arc two angles under 360% which have the same tangent, Eq. (A.29)
defines two values of the angle 2¢, which will be at 180° intervals. The two
corresponding values of the angle ¢ will be at 90° intervals, Tt ean be shown that
the value of T, will be 2 maximum about one of these axes and & minimum about
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the other. These two perpendicular axes about which the momcnt of inertia is a
maximum or minimum are called the principal axes.

The product of incrtia about the inclined axes may be expressed in terms of
the angle 2¢, by making use of the trigonometric relations

sin 2¢p = 2 sin ¢ cos ¢ (A3D)
and cos 2 = cos? ¢ —sin? ¢ (A31)
Substituting these values in Eq. (A.28) yiclds
I.—1TI
My =1, cos 26 + —’52—2 sin 2¢ (A.32)

An important relation is obtained for the anglc at which 1., is zero. Substituting
. = 0in Eq. (A.32) produces

I
tan 2¢ = —2%*‘—

I, —1I,
This is identical to the cxpressmn defining the principal axes in Eq. (A.29). The
product of inertia about the principal axes is therefore zero.
The moments of incrtia about the principal axes may be obtained by substi-
tuting the value of ¢ oblamed from Eq. (A.29) into Eq. (A.25):

_ _
=ttt fp +(ﬁz (A33)
2 * 2
I, I.—I\?
and =t r:,+(*—2—-z) (A34

where [, represents the maximum value of I,, and I, represents the minimum
vaiue of 1. These values are moments of inertia about perpendicular axes de-
fined by Eq. (A.29).

A5 PRODUCT OF INERTIA

The product of incrtia of an area is evaluated by methods similar to those used in
evaluating the moment of inertia. Products of inertia for various elements of the
area usually are cvaluated separately and then added to find the product of
inertia for the entire arca. When both x and y are positive or negative, the
product of inertia is positive; but when ene coordinate is positive and the other
pegative, the product of incrtia is negative. In the case of an area which is
symmetrical with respect to the x axis, as shown in Fig. A.13, each element of
area d4 in the first quadrant will have a corresponding area in the fourth quad-
rant with the same x coordinate but with the y coordinate changed in sign. The
sum of the products of incrtia for the two elements will be zero, and the integral
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Figure ;\.13

of these terms for the entire area will be zerg:
I,= J‘x_v dd =0

The same relation is true if the area is symmetrical with respect to the y axis.
Therefore, when either axis is an axis of symmetry, the product of inertia is zero
and the axes are principal axes.

When the product of inertia of an area about one set of coordinate axes is
known, the product of inertia about a set of parallel axes can be found. For the
arca shown in Fig. A.14, the product of inertia about the x and y axes is defined as

'1,,; = ny dA

By substituting the values
x=h+u
y= k4 v

the transfer theorem is obtained:

Iy= J(h + u)(k + 1) dA

=th.dA+hj‘u dA+kJu(IA+J.uu dA

I, =hkA + h3A + kid + I, {A.35)

where @ and # are the coordinates of the centroid of the area and [, is Lhe

Figure A.14
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product of inertia of the area with respect to the u and v axes. If the « and v axes
are through the centroid of the area, Eq. (A.35) becomes

Iy =hkA 4 1, i (A36)
With 1 and v axes also principal axes of the arca, [, = 0 and Eq. (A.36) becomes
{., = hkd (A.37)

Feor an area corhposccl of scveral symmetrical elements,lthe product of inertia
may be obtained as the sum of the values found by using Eq. (A.37) for each
element. )

Example A4 Find the product of inertia for the area shown in Fig. A.15.

~Sorurion The total arca is divided into the three reclangular clements 4, 3,
and C. Rectangle A is symmetrical abou! both the x and y axes; hence the _
product of inertia is zero. Rectangle B is symmetrical about axes through its
centroid; therefore the product of inertia may be found from Eg. (A.37):

Iy =lkd=—-3x5%x8=—120in*
For rectangle C,
' I,=hkA=3x —5x8=—120in*
For the total arca,
I, =0—120-- 120 = —240 in*
Example A.5-Find the product of incrtia about horizontal and ;fertical axes
through the centroid of the area shown in Fig, A.16.

SoLumion The total arca is divided into the two rectangular clements 4 and
B as shown. The x and y reference axes are chosen through the centroids of

l*—‘”ll—‘ Yin fe—
v

B

.

[

N

1,.
A

o

f——e o, |
n

|
1
§

Gin | c l )
I_li: B : ! X
Ny [+ tinfe— f

[«——5in

Figure A.IS Figure A.16
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these rectangles. Since rectangle A is symmetrical about the y axis and rec-
tangle B is symmetrical about the x axis, I,, = 0. The centroid of the area is
obtained as foilows: :

. 4x25 '
= 0 - 1.0
_ 6x25

..y— o - L5

The product of inertia about the centroidal axes may now be derived from
Eq. (A36):

I.:y = ij_h‘i + Ixcyg
0=10x1L5x 10+,
or I = —15in*

Fe¥e

Example A6 Find the preduct of inertia about horizontal and vertical axes
through the centroid of the arca shown in Fig. A.11. The areas and coordi-
nates of the elements are given in Table A.3 and are repeated in columnas 2, 3,
and 4 of Table A4.

SoLution The product of inertia about the x and z axes is obtained as the
summalion of the terms Axz, in column 5 of Table A.4. The centroidal axes
were found in Example A.3 to have coordinates & = —11.36, Z = 0.66. From
Eq. (A.30),

[,=%IA+1, .,

—68.2 = —11.56 % 0.66 x 7135+ I .,

or I .=-—133

Table A4 ~
Element A x z Axz
£ 2 (3) G I )]
L (0.358 —34.5 +8.6 - 1062
2 0.204 —28.1 +9.6 --550
3 0.395 —19.9 +10.0 —78.5
4 0.204 - 10.1 +9.6 —19.8
5 1.615 +0.5 +8.38 7.1
6 1931 +0.5 —-57 —55
1 0.752 — 10 —52 395
3 0,784 —224 —4.3 759
9 0892 —347 _—24 74.3
Total 7.135 —68.2
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A.6 MOIIR’S CIRCLE FOR MOMENTS OF INERTIA

The equations for the moments and products of inertia about inclined axes are
difficuit to remember. [t is often convenient to use a semigraphic solution, which
is easier to remember and which is an aid in visualizing the rclationship between
the moments of incrtia ahout various axes. If the values of I, from Eq. (A.32) are
plotted against values of 1, obtained from Eq. (A.25) [or corresponding values of
&, the poinis all fall on the circle shown in Fig. A.17. The maximum and mini-
mum values of the moments of inertia are represented by points P and Q.

In order to prove that the circle shown in Fig. A.17 represents the values
given by Eqs. {A.25) and (A.32), the values of ], and [, are expressed in terms of
the moments of inertia about the principal axes I, and I, and the angle 0 from
‘the x axis o the principal axis. If the x and y axes are principal axes, a substitu-
tion of the values I, = 0,1, =11, =1, and ¢ = & into Eqgs. (A.25) and (A.32)
yields

[o,=1,cos® 8+, sin® @ (A.38)
I,—1
L= “‘Lz—_“ sin 20 {A.39)

The following trigonometric relations for double angles are used:
' sin? 8 =1 —4cos 20
cos® 0 =4+ Lcos 28
Substituting these values in Eq. (A.38) ylelds

1, = 5’%5 + IJ’;—IE cos 28 (A.40)

Equations (A.39) and {A.40) correspond to the coordinates I, and I, which are
computed from the geomeiry of the circle shown in Fig. A.17. The angle of
inclination of the x’ axis from the principal axis is one-half the angle 2¢ measured
between the corresponding points on the circle. If I, is measured as positive

!
0~ 4y
X = J*HT"J sin 2

rl!""

Figure A7
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. upward on the circle, a counterclockwise rotation of the x' axis corresponds to a
counterciockwise rotation around the circle. Points at opposite ends of the diam-
eter of the circle correspond to perpendicular inertia axes. The products of inertia
about perpendicular axes are always equal numericaily but opposite in sign, since
rotation of the axes through 90° interchanges the numerical values of the coordi-
nates x' and y* for any element of area and changes the sign of one coordinate.

Exam;?le A7 Find the moments of inertia about principal axes through the
f:cntr_md of the area shown in Fig. A.18. Find the moments and product of
inertiz about axes x, and y, and axes x; and y,.

SorLuTion The moments of inertia about the x and y axes are

Cax128 _fax2’
= 2y s 4
I, B -I-Z( 2 +8x5)-—693.3m

12 x 23 2 x4
I = 2 3 in%
v 12 +2( 2 +8x3) 1733 in

From Example A4,
I, = —240 in*

Mohr's circle for the moments and products of inertia about all inclined axes
may now be plotted from these three values. The products of inertia I, are
plotted against the moments of inertia J%, as shown in Fig. A.19. Point x in
Fig. A.19 has coordinates 693.3 and —240.0, as shown. If the x’ axis is
rotated through 90°, it will coincide with the y axis, and (he coordinates of
point Y will be I, = 173.3, I, = 240. The positive sign for I,,, results from
the Fact that after the x’ axis is rotated through 90° from the x axis, the
coordinate x' is positive up and the coordinate y' is positive to the left. The

Q N ¥ |
l

\
TI—v—zx\m\—ﬂ 2iu|
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vahue of I, is numerically equal but opposite in sign to the value of [,.
Points X and Y are at opposite ends of a diameter of the circle, since &
rotation of the axes of 90° corresponds to an angle of 180° on the circle.

The center of the circle is a distance £(693.3 4 173.3), or 433.3, from the
origin. Point X is a distance 260 horizontally and 240 vertically from the

cenler of the circle; therelore

Radius = +/240% + 260% = 353.8

20 = arctan 343 = 42.7°
or g =2135°

The principal axes are represented by points P and Q on the circle. The

moments of inertia have maximum and minimum values, and the product of -

inertia is zero for these axes. The principal moments of inertia are equal to
the distance from the origin to the center of the circle plus or minus the
radius of the circle:

J,=4333+3538= 787.1 in*
1,=4333—3538="79.5n*

The P axis is counterclockwise from the x axis, at an angle § = 21.35°
Similarly, since poinl @ on the circle is counterclockwise from point Y, the @

axis is counterclockwise [rom the p axis.
The moments and product of inertia about the x, and y; axes are ob-

tained from the coordinates of points on the circle. Since the x, and y, axes’

are 15° clockwise from the x and y axes, the points X, and Y, on the circle
will be 30° clockwise from points X and Y. The coordinates of points X, and
Y, may be obtained from the geometry of the circle as follows: :

I, =4333+35)8cos 727" = 538 in*
1,, =433.3 — 3538 cos 72.7° =328 in®

I = .-3538 sin 72.7° = —338 in*

xiyt

Figure A.19
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: x
\\__r 7
P
Figure A.20

-

The moments and product of inertia about the x, and y, axes are also
derived from the geometry of the circle:

I, =4333—3538 cos 77.3° = 355 in*
1,, = 4333 + 3538 cos 77.3° = 511 in*
I = —353.8sin 77.3° = —345 in*

*TX¥1
Example A8 Find the principal axes through the centroid and the moments
of inertia about these axes for the area shown in Fig. A.20. The x and z axcs
are through the centroid, and the momernts and product of inertia have the
values f, = 320,1, = 1160, and [, = — 120,

Sorution The coordinates of point X on the circle of Fig. A.21 are 32¢ and
—120. The coordinates of point Z are 1160 and + 120. These points are at
opposite ends of the diameter and thus determine the circle. It is important
to show [,. with the correct sign at point X so that the direction of the
principal axes may be obtained correctly. The distance of the center of the
circle from the origin of coordinates is$(320 + 1160) = 740. From the geom-
etry of the circle,

Radius = /4207 + 120% = 437
tan 20 = 122 20 = 15.94°
or g =797

;" The principal moments of inertia are represented by points P and @ on the
circle, at which the moments of inerlia have maximum and minimum values

Fen

303 7{:.!60
¥ laf—a0— 120
o X
320 \MA 1177
-120 f \_/431 My

Figure A.21
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and the product of inertia is zero:

1, =740 + 437 = 1177 in*
I, = 740 — 437 = 303 dn*

Since point P is 15.94" clockwise from point Z on the circle, the P axis will be
half this angle, or 7.97° clockwise from the z axis, as shown in Fig. A.20.

A7 MOIIR’S CIRCLE FOR COMBINED STRESSES

The relationship beiween normal stresses and shearing stresses on planes at
various angles of inclination is similar to the relationship between moments aad
products of inertia about inclined axes. Most structural members are subjected
simultaneously to normal and shearing stresses, and it is necessary to consider
the combined effect of the stresses in order fo design the members. The landing-
gear strut shown in Fig. A.22, for cxample, is subjected to bending stresses which
produce tension in the direction of the strut, internal oil pressure which produces
a circumfzrential teusion, and torsion which produces shearing stresses on the
horizontal and vertical planes. The maximum tensile stress does not occur on
either the horizontal or the vertical plane, but on a plane inclined at some angle
to them. It can be shown that there are always two perpendicular planes on
which the shearing stresses are-zero. These planes are called principal planes, and
the stresses on these plancs are called principal stresses.,

Any condition of two-dimensional stresses can be represented as shown in
Fig. A.23, in which the principal stresses ¢, and o, act on the perpendicular
principal planes. The orientation of these planes depends on the condition of
stress and will befound from known stress conditions. The normal and shearing
stresses ¢, and © can be found on a planc at an angle § to the principal planes,
from the equations of statics. The stresses are in pounds per square inch and must
always be multiplied by the area in square inches in order to obtain the force. In
Fig. A.24, 2 small triangular element is shown, with principal planes forming twe
sides of the element and the inclined plane a third side. If the inclined plane has

Figare A22
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A sind

Figure A24

Figure A23

an area A4, the sections of the principal planes have arcas 4 cos § and 4 sin 0, as
sl}own. From a summation of forces along the n and s axes, which are perpen-
dicular and parallel to the inclined plane, the [oliowing equations are obtained:

Y =0,A—0c,Acos’ 8 —g,Asin* §=0 (A.41)
Y=tA—g,Acos8sinf+qg,Asinfcos =0 (A42)
Using the trigonometric relalions for functions of double angles yiclds
cos® 0=31+3%cos 20
sin? 0 =1 ~4cos28
sin 8 cos 0 = § sin 20

Dividing Egs. (A.41) and (A.42) by A gives

oy == ﬁ?ﬂ + fﬂ;—‘-’-‘i cos 26 (A.43)
T= 5%‘5* sin 26 (Ad4)

If values of T and o, are plotted lor different values of the angle 6, as shown
in Fig. A.25, all the points will lie on the circle. This construction, first used by
Mohr, is similar to that used for finding moments of inertia about inclined axes.-

Normal stresses are considered positive when fensive and negative when
compressive. Compressive stresses are therefore shown to the left of the origin on
Mohr's circle. Tn the following examples, shearing stresses are cansidered positive
when they tend to rotate the eifement clockwise and negative when they tend to
rotalc the element counterclockwise. Thus, on any two perpendicular planes, the
shcaring stress on one plane would tend to rotate the element clockwise and
would be measured upward on the circle, and the shearing stress on the other
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-4—114

v, 10,
>

y - Figure A.25

plane would be equal numerically but opposite in sign and would be measured
downward. If this sign convention for shearing stresses is followed, a clockwise
rotation of the planes of stress corresponds to a clockwise rotation on the circle.
n some books, the opposite sign convention for shearing stresses is used, and a
clockwise rotation of the planes corresponds to a counterclockwise rotation on
the circle. .

Example A.9 The smaf! clement shown in Fig. A.26 represcnts the conditions
of two-dimensional stress at a peint in a structere, Find the normat and
shearing stresses on planes inclined at an angle § with the vertical piane for

 values of @ at 30° intervals. Find the principal planes and principal stresses.
Find the plancs of maximum shear and (he siresses on these plancs.

SoLyution The values of the normai stress 4, and the shearing stress T on the
horizontal and vertical planes are plotled as shown in Fig. A.27. The vertical
plane has a normal stress of 10,000 and a shearing stress of 45001b/in®, and
these coordinates are shown for point 4 on Mohr's circle. The stresses on the
horizontal plane arc represenied by point B on the circle, with coordinates of
— 2000 and -+4500. The circle is now drawn with line 4B as a diameter. The

2000 1hiin?

l l 1“7 4500 Ibfin?

—— ‘l G ‘—‘—
10,000 1bfin? ~— AN — 10,000 /i

— f—

Figure A26
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7-2.000} s
+4,500 -

4.000 23.14°
i
e 2 7 oo 1 r "
20°
36,867
F 602 60° rd
53.14° 1 10,060
- 4,500
s Figure A.27

distance OC is $(—2000 4 10,000} = 4000. Points A and B havc a horizontal
distance of 6000 and a vertical distance of 4500 from the ceater of the circle -

Radius = /60002 + 45002 = 7500

4560
t 2 _——— = A
an 28 6000 0.75
or 20 = 36.86° and 0 =1843°

The principal stresses are represented on the circle by points P and Q.
The coordinates of these points are obtained by adding and subtracting the
radiusg from distance OC: :

¢, = 4000 -+ 7500 = 11,500 lbfin®
o, = 4000 — 7500 = —3500 1b/in?

The point P on the circle is at an angle 20 counterclockwise around the
circle from point 4. The principal plane P is therefore at the angle § = 18.43°
counterclockwise from the vertical plane A, as shown in Fig. A.284. Similarly,
point ¢ is counterclockwise from the horizontal plane B, or perpendicular to
plane P. ’

The planes of maximum shearing stress are always at 45° to the principal
planes, regardless of the stress conditions. Points R and § at extremities of
the vertical diameter of Mohrs circle represent the maximum shearing
stresses. On the circle, these points are always 90° from the points at the
extremities of the horizontal diameter, which represent the princip, stresses.
The normal stresses on the two planes of maximum shear are always equal,
since they are both equal to the distance OC on the circle diagram. The
maximum shearing stresses are shown on an element in Fig. A.285. Plane S is
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{c] ()

Figure A28

26.57° clockwise from the vertical, since point § is twice this angle clockwise
from point A on the circle. Plane S is also 45° clockwise from plane P, and
plane R is 45° counterclockwise from plane P. The shearing stress on plane R
is positive, tending to rotate the element clockwise. The shearing stress on
plane § is negative, tending to rotate the clement counterclockwise.

Planes E and F are 30° counterclockwisc from planes A and B. Points E
and F on the circle-must be £0° counterclockwise from points 4 and B,
respectively. The stresses on plane E are obtained by calculating the coordi-
nates of point E on the circle:

T = 7500 sin 23.14" = 2950 lb/in®
a, = 4000 + 7500 cos 23.14° = 10,900 ibfin?

The stresses on plancs £ and F arc shown in Fig, A.28c in the correct

directions. )
The stresses on piane GG, which is 60° counterclockwise {rom the vertical

planc 4, arc

T = 7500 sin 83.14" = 7450 [bfin®
¢, = 4000 + 7500 cos 83.14° = 4500 1b/in?

The stresses on plunes H, which zre perpendicular to plane G, are

= —7500 sin 83.14° = —7450 Ibfin®
o, = 4000 — 7500 cos 83.14" = 3100 1p/in*

These stresses are shown in Fig. A284.
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APPENDIX

B

MATRIX ALGEBRA

B.1 MATRIX DEFINITIONS

A marrix is defined as a rectangular array of elements (symbolic or numerical)
arranged in rows and columns as follows:

kyyo kyp oo ku
[K1=| kay kaz - ky; i=123../j=1,23.) (B.1)

ki iz kij

where an clement k;; has the subscripts i and j to indicate the element location in
the ith row and jth column, respectively. For instance, element &, is located in
row 2 and column 1.

For i not equal to j, as in Eg. (B.1), the matrix is called a rectangular matrix
of order i x j. For i = j = n, the matrix is defined as a square matrix of order
nxn

ku klz - kl..
[(Kl1={ ks, k_zz ka, (B.2)
|J< ko e kg

ni

Elements k;y, K32, ... , Ko, form the main diagonal of a square malrix. Elements
k;; (i # ) are referred to as the off-diagonal elements.

Fori=1andj > 1, the mairix is said to be a row matrix of order 1 x jandis
written as

[Kl=[kyy kiz-kyl U=L3%3...) (B.3)

For i > 1 and j = 1, the matrix is defincd as a column matrix of order i x 1
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" and is written as

(K} =} ks (=1,23..) ' (84 -

Diagonal, 1dentity and Null Matrices

A diegonal matrix [K] is one whose ofl-diagonal clements k; =0 (i # ) and
main-diagonal elements k; -# 0 (i =)
ki © .. 0
[K}=]0 k» .. O (B.5)

An idenrity, or unit, matrix [K] is a dingonal matrix whose main-diagonal el-
ements kj; =1 (i = f):

11 -0
[K]=[N= {0 1 0 (B.6)
o ..... ; . ;
A null matrix [K] is one whosc every element ki = 0:
00 0 :
[Kj=10 o© 0 ®7
0 0 0

Symmetric and Transposed Matrices
A square matrix [K7 is said to be symmetric if the lollowing holds true:
kij=ky (i#h 7 (B.8)

A numerical exampic of a 3 x 3 symmetric malrix is

5. -2 7
[K]1={-2 ™9 2
7 21716

Notice that Lhe main diagonal (dashed linc) is the line of symmetry. )
The transpose matrix [K17 of a matrix [K] is obtained by interchanging rows
and corresponding columns. For example, if a matrix [K] is given by

ki kizooee kg
[Ki= {B.9)
Ka; kzz (R kzj

AP PR bR T " Ty =
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then its transpose [K]” can be easily written as

” kiy kyy ‘ .
[(K}"={ ki ky, (B.10)
Rip ko

Determinants

Determinants are defined for square matrices only. Thus, the determinant [Kjofa
square matrix [K7] is defined as the quantity which results upon performing the
{ollewing arithmetic operation on [K}:

. .

£
K= kicy (/ = any integer between 1 and m) {B.11)
i=1

or [Kf= ke (i = any integer between | and m) (B.12)

s

il
-

4

Elements k;; in Eqs. (B.11) and {B.12) appear in the jth column and the ith row,
respectively, of matrix [K]. Likewise, ¢y are the eqgfoctors which correspond
Lo the jih column of matrix [K7 in Eq. (B.11} or to the ith row of matrix [K]in
Eq. (B.12).

The cofactors ¢;; of a matrix [K] are delermined by

Cj’j == (— ]J’+jﬂ4l-‘, (B.I3)

where M ; are the minars of matrix [K] and are defined as the delerminant of the
matrix which results afler deleting the ith row and jth column of matrix TK1.

Let us illustrate the calculation of g determinant by considering the following
3 x 3 matrix:

21 6
[Kl=}3 5 4 (@)
2 21

Using Eq. (B.11) and choosing j = 3 arbilrarily, we get

L
IKl=3 kizcn =kisenathysers + kaseas

i=1
where, from Eq. {a),

kia=6, kay =4, I\'aa =1
Forj =3, Eq. {B.13) becomes

Ca=(—1"*M,  i=1,23
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ITence
i3 =My, €33 = —Mj; €33 = M3,
As defined previously, the minor M|, of the given matrix in Eq. (1) is t‘he
determinant of the matrix resulting from deleting the first row and the third
column, corresponding to subseripts 1 and 3 on M, 5. Or,

M“=2 §=3x2—5x2=-—4
Simiarly,
2 1
oy = =2x2-1x2=2
Ma=|y ,|=2x* -
21
= =2X5—-1X3=7
Mu=ly 5
Therelore,
ci3=—4 €= —2 c3=7

and the determinant is —
IK| = 6(—4} + A+ 1(T)=—-25

Properties of Determinants
1. Interchanging any two rows or columns of a determinant changes the sign of
the determinant:

2 51 110y 5 2
1 16, {2 s 10 1
2, H two rows or two columns of a determinant are identical, then the value of

the determinant is zero. _
3. Tl a determinant has dependent rows or columns, the value of the determinant

ixls

will be zero:
2 4 6
4 1 5 =0
16 4 10 |

Column 3 is dependent on columns | and 2:
Column 3 = column 1 + column 2 ,
4. If rows and corresponding columns of a dctc‘.rminanl_ are interchanged, the
valtc of the determinant is not changed:
!5 lol 3 [ 51

=20
Po6| |10 6'
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5, Mu-ltipiying the determinant by a scalar quantity g, is equivalent to multi-
plying the elements of one row or one column by that quantity: ‘

kiy kya aky, eaky,
ka1 kza ks, ks

6. If a row or a column of a determinant is changed by adding to or subtracting
from its clements the corresponding elements (or corresponding elements
multiplied by a common factor) of any other row or column, then the value of
the determinant is not changed:

akyy ks
akyy  kyy

21—67—31—~22—448
4 6| |4 6| |10 6 |4 8| |4 6|
row 2 column 2 half of half of
added added to column 1 row 2
to row 1 column 1 added to added to
column 2 row 1
Singular Matrices
The matrix [K] is 5aid to be s.r'ngular if the value of its determinant is zero.
: 4 2
If —
=[]
; 4 2
Tle - Kl= = 15— 16=
en | K] |:8 4:] & 6=0

Hence, matrix [K] is singular.

B.2 MATRIX ALGEBRA

Matrix Addition

Two matrices [B] and [C] of order m x n can be added by adding each clement

" by; of matrix [B] to the corresponding element ¢;; of matrix [C]:

[bu b1:}+|:('11 C12:|=[bu + ¢ b12+¢12:|
bay bas €31 Caz by +cay baztea;

[A]m!ﬂ = [B]mzﬂ + [C]mxﬁ (B-14.)
where a;; = by + 0y i=1,2,..,mj=12..mn) (B.15)

or, in general,

Matrix Subtraction

Matrix sublraction is similar to matrix addition except elements by; and ¢;; are
subtracted instcad of being added:

[s1m*" = [B]™"" — [C]™™" {B.16)

B A R VR IIRA

et
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where s =hy— 0y i=12..,mj=1,2..n) (B.17)
Matrix Mu'tiplication

The rmaultiplication of two matrices [BI"*"and [C]"*" is perfo_rmed by mx)lti-
plying cach elcinent of a row i of matrix {B] by the corresponding clement in a
column j of matrix [C] and sumining the products:

[P}mxr = [H]m ﬂn[cjﬂ xr A (Blg)

where pi= 3 beey  =L2Z..,mj= 1,2,...,0 (B.19)
s=1

In expanded form, [g. (B.19) becomes
pip=bucy;+ baCaj+ 0 F By (B.26)
The two matrices [B] and [C] can be multiptied only if the number of columas in

[B] is cqual to the number of rows in {Cl
Let us consider the following example:

1B)=[2 1 4'°3

21 3x2
[l =[4 2]
3 5

(P11 = LBJ' 7)™

2 1
=[2 | 4] E ﬂ=[20 24]

3
or M= Z
k=1

bycyy = bcrj+ bz eyt bisca;
Fori=landj=1,"
Psl=b|t¢'n+btzcn+hl3f"31
=2x24+1x4+4x3=20
Fori=landj=2,
f113=[’11f12+blzf-'zz+b13~'-'32

=2x1+ix2+4x5=24

Properties of Matsix Multiplication

1. Distributive law:

(A7 x (8] + [C) = [ANB] + [A(C]
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2. Commutative law: !
, (A1[B] # [BI[4]
3. Associative law:

(A1 x ([B] x [C]) = ([4] x (8] x [C]

4. If a matrix is multiplied or divided by a scalar guantity,
muliiplying or dividing each element of the matrix by the s

= b[a“ au]:[lm“ bﬂu:[
31 i35 bﬂ;” bazz

a,; 4
1|a a b b
or BRI 2] _
blay Az Qo 22
b b

Matrix Inversion

this is equivalent to
calar quantity:

The inverse of a squarc nonsingular matrix [K], denoted by [K]™1, can be
defined as an operation in matrix algebra analogous to division in ordinary
algebra. Among the many techniques used for inverting a matrix, only two are

presented here.

To invert a matrix {K] which must be square and nonsingular, do the

following:

l. Form a matrix of cofactors fC] whose elements are found by utilizing Eq.

(B.13):

cp=(—1F" M,  (i=1, 2,..,mj=12..,n (B13)

The new matrix of cofactors [Clis referred (o as the adjoint of {K3:

Adj[K] =[C]
2. Transposc the adjoint matrix:

. _Transposc [C] = [C]F
3. Find the determinant of { K] by using Eq. (B.11) or (B.12):

K| = Z kijcij (j=12,...,0orm)
=1

or . IKF =jz kl’jrij (f = I, 2, .., OF "i.'}
=1 .

4. Divide Adj [K]7, or {C]7, by | K| to obtain the inverse:

AG[K]" [cT

-1 _ —
B == =%

(B.11)

(B.12)

(B.21)
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To illustrate, consider Lhe following 2 x 2 matrix:

5 2
[‘q:[z J

First, find [C], the adjoint of [K]:

o=t I}H"ﬂ-:‘,f
or =My, 2= — M, €= —Mj; €2z = Mj,
where My, =1  Af, = My =2 My, =
i -2
Therefore, [C] =[_2 5]

Second, transpose [(7]:

e [ 1 -2
[CJ7—[_2 5]

Third, find the determinant of [R]:
KI=5x1-2x2=1
Fourth, divide [C]7 by |K]:

or

Check the resulis:

[KIK] " =[]

o N I N

In matrix inversion by the Choleski method, any square nonsingular matrix
can be expressed as the product of an upper triangular matrix [{/] and a lower
triangular matrix [L]. Then the inversion of the original matrix is reduced lo
Inverting two triangular matrices {17 and [L], which is quite simple. The de-
tailed development of this method can be found in Refs. 10 and 24. Restricting
ourselves to symunetrical malrices only, we have

(K1=[L][U] (B.22)
but - FUl=[L]" . . {B.23)
Therefore Eq. (B.22) becomes —

[KI=[LIfL]" (B.24)

R
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The inverse can be wrillen as )

| (K}~* = [LTI-'[L] " 29
or [K3~ 1= [S1 TfS_I {B.26)
where 51=fL1t {3.27)

The clements of [L] and [S] are from Rcf, 10

- i-1 1/2
(k,—; -Y I,-z,,,) i=j
m=1 ’

Il'_f = -
kl‘j - Z{n =11 IIl'wx "m.l' i>j (B‘ZS}
!J'.f
0 i<j
1 i
’l'i
s5= z Sim lrnJ
m=J P>] (B.29)
I.i.f'
0 i<j

I the inverse of K] is denoted by [777:
[H]=[K]"* = [8]7[S] = [S1I5]
then the clements of [H] can be determined as lollows:
hfj = Z Eimﬁmi
m=1
S5im=0 {i>m) } (B.30)

5u=0 (i <m)

LLet us consider the following 2 x 2 symmetric malrix:

-2 ]

o = )2 =2

From Eq. (B.28),

z2-1 12
Iy = (kzz - Z ’%m) C o=k~ lii)uz
m=1 .

i
(5 —2 - —
6] 'E) \/5

From Eq. (B.29),

_t_L
S —111 “ﬁ
3222"5;':\/5

_ S2mlwt
T L

_ _salu_ =/20VD)
a Iik \/5

° Sl

[ 1
Or ﬁ 0
[s]=
-3
% J2
:._‘_ -3
NN
[s17=[8]1=
o V2

From Eq. (B.30),

2
By = 2 St =550+ 525y
m=1

e
5 _
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2

hy;= Z 5l Sz

= 551512 + 813522

=1
I -3
=—=0+—./2 =-3=h,
7 ﬁf n
2
Iy = Eglmsml =521 512+ 52152
wo-

- =00 + /2 (V2 =2

(K17 = [17] =[_5 7

Hence

3 2

Properties of the Inverse of a Matrix

1. The inversc of the product of two square matrices [R] and [K] is equal to the
inverse of [K] multipiied by the inverse of [R]:

([RILKT) ' =[KI7'[R]™! {B.3y

2. The inverse of a symmetric matrix is also symmetric,

Matrix Partitioning

A matrix K can be partilioned (divided} into smaller submairices by drawing
vertical and corresponding horizontal dotted lines as indicated:

®

F"k“ kya | kiy ki ikls_
kai kay l ka3 ka4 i"\'zs

[K]=

kg ksy |oksy  ksy | kss
[Ki] [Rd [R.)
(K] [Ral [Ras]
[K:H] [K_S.Z} [Esﬂ

where [K,,]

It

1
o
AN
it
E S
R
LY I. ]
[ |

[‘\712] == ’ }
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Propertics of Partitioned Matrices

1. Two matrices can be added or subtracted in terms of their partitioned sub-
matrices if the partitioning is done on both matrices in the same manner.

2. Two matrices can be mulliplicd in terms of their partitioned submatrices if the
rule of matcix multiplication applies.

3. The inverse of a matrix can be found in terms of its partilioned submatrices.

B3 SIMULTANECUS LINEAR ALGEBRAIC EQUATIONS

The most important application of matrix algebra is in the solution of a large set
of lincar algebraic equations. For instance, the following is a set of n simul-
tancous linear aigcbraic equations with unknowns g; (i = 1, 2, ..., n) expressed in
terms of known quantities O; (i =1, 2, ..., n) and the coeflicients K;; (f, j = 1,
2, ..., 0

kgt kg + o+ k=0,

B PTUTIRNL 2R IR SRR o Py My ¢ Pt

kulql + knth +---+ kann = Qn
or, in matrix algebra notalion,
By kyp oo Ry, I7‘h of

kli k22 T kln q.Z — Q.Z (B.32}
knl knl e krm [Qu Qn
In shorthand matrix nolation, Eq. (B.32) can be written as
[K1{q} = (€} - (B33)

Upon inverting [K], the unknown column vector {g} can be found:

{g} =[K17*{g}

To illustrate, consider the following simultaneous equations:

2, + 3g, = 14
{a)

3q, + 59, =22

G Je]-[3] v
N 1 N

In matrix form, (1) becomes
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The inverse of the matrix is

or

H I B

i [;’;]=E-§ HEEH

¥
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Aeradynamic bands, 31 -133
Airy stress function. 126— 127
Fourier series solution, 129130
polynomial solution, 127129
Algebraic equations, simultaneous linear,
445 —446
Applied loads, 27
Argyris, J. H., 145
Associalive law [or matrix mul:up!ucallon. 440
Axial loads, 3
Axial rods, 1

Batdorf, §..371

Beam-delliction equations, 328 ~330

Beam elements, global stifTness matrices for,
214-226

- Beam shear in mumceil boxes, 272-275

Beams:
curved. bending stresses in. 307 -310
normal stresses in, 99.~ 101
shear stresses in. 101 =104
alternate solutions for, 104 - 107
tapered, shear flow in. 118—121
unrestrained, thermal siresses in, 289—25%1
with variable stringer areas, 122—126
Bending madulus of rupture, 301 =302
Bending moments, 3
Bending stresses:
constant, 302 - 304
in cerved beams, 307 ~-310
trapezoidal distribution of, 304 — 307
Body loads, 2
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Bolied joints, 390—395
Bolts, eccentrically foaded, 401 —404
Bourndary conditions, 70
in thermal stress problems, 284
Box beams:
closed-section: shear flow in. 113~ 18
torsion of, 112—1i3
. multicell: beam <hear in. 272~ 275
torsion of, 270272
redundancy of, 269 -270
torsion of, 261 — 263
warping of, 266 — 269
Buckling design, 328 387
for crippling failure of columns, 358 —-362
for curved rectangubar plates, elastic
buckling. 370373
for curved sheets, 364 ~ 368
[or eccentricaliy loaded columns, 33F-332
for fixed end columns, 334—339
for fiat plates, elastic shear buckling,
368 -370
for isotropic flat plates in compression,
344349
for isatropic flat sheets, 349 —353
for long columns, 330-331
nondimension:, buckling curves, 357 -358
plastic buckling af flal sheet, 353 —357
of pure tension field beams. 373 -377
for short cofumns, 332334, 3139-341

Built-up structures, thermal stresses in,

291293

Bulkheads, 238

(See also Fusclage bulkheads)

Castigliane’s first theorem, 144
Castigliano's second theorem. 146
use in Joflection analysis of structures.
i5(t—156
Centroids, 409 —411
Choleski method. 441
Circular shafls, torsivn of, 310311
{losed-section box boims:
shenr ftow in, [13 - 118
torsion of, 112113
Colomn end fixity. 334—339
Columa failures, local crippling, 358 362
Columne maltices. 435
Columm yicid stress, 339
Columns (see Eccentrically Joaded columuns,
buckling of: Long colunins, buckling of;
Short columas)
Combined stresses. 320—325
Mohr's circle for, 429 —433
Commutative law for matrix multiplication.
440
Comparison of similar materials, dimensionfess
column curves for, 342 =344
Compatibility equations for thermaul stresses.
283, 184285
Complesicntary strain enerpics and stris, 140
Complementary work and work, 140
Campression:
ol curved sheets. 1&4— 368 -
of isotrepic Mat plakes, buckling. 344 - 349
Compression tests, Bl
Compressive strength of isotropic Mt sheet,
349353
Concentrated loads. 2
Conslant bending stresses, 3102 -304
Conversion factors. Sl/metric, inside froni
cover
Coordinate system. 192, 194
Corten. H. J., 86
Cozzune. F. P.. 304, 305, 343, 357
Crippling stregses:
of columns, 358 -362
Gerard method for calculuting. 362 — 363
Needham method for calculating, 362 — 363
Curved beams, bending stresses in. 307310
Curved reclangular plates. elastic buckling of,
IM-373
Curved sheels:
buckling of, 364 —368
compression of, 364 — 3568
Cutouls in semimenocogue structures.
251260

Deflection analysis of siructurid sysiems.
139~186
Design loads, 27
Determinunis. 436 —437
propertics of, 437 - 438
Iagonal matrices, 435
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Dingonal web tension, angle of, 377380

Dimensionless column curves for comparison
of materials, 342—344

Dispiacement boundary conditions, 70

Displacements, sign convention for, 194

Dislributed ads, 2

Dislrihutive l:nw for matrix multipiication. 439

Bolan, J.

Drag, 31, 32

Dunun, L. G., 365

Dynramic loads. 2

Eccentrically loaded columas. buckling of,
33t-332

Eccentrically loaded connections, 401 —404

Elastic axes of wings, 263 —266

Elastic buckiing of curved rectangular plates,
370373

Elastic fimit, tursivnaf stresses above,
3{7-320

Elastic modulus of elasticity, 148

Elasstic nonlinear behavior, 71, 72

Elastic shear buckling of fat plates, 368 370

Elasticily of structures, 6277

Illement discretizatian, 191

Element formulations. transformations of, to
system formulation, 211 =214

Eiement shape [unctions, 207 —-209

poiynomial methods, 207 -209
Element stiTness mutrices, 209211
Element structural relationships:
formulation procedures, 202—203
dircet method, 203—205
energy methods, 205—207

End restraint of torsion members, 316317

Fngesser equation, 333 -334

Equilibrizm conditions for thermal siresses,
281, 284—283

Equivalent load solution for thermal stress
problcms, 256 —289

Euler, L., 333

Euler column, 363

Euler curve, 339. 340

Liuter equation. 331, 339342, 345, 353

Euler load, 331, 332

Factor of sufety, 27

Failure theores in structural design,
315327

Patigue. 84—89

Fatigue failure, 84

Futigue-life prediction, 84—87

Fuligue tests, $-N curves, 85,8789

Finile difference method, 158 —165

Fipite element matrix methods, applications of,
i92

Finite element stiffness method, 190226

First central diffcrence approximation, 139
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Fittings, 3189
strength of, accuracy of 'm'llysm of, 395
Fixed supports. §
Flat plates:
elaslic shear buckling of 368-370
isotropic, buckling of, 344-. 349
Flat sheets, buckling of, 34%— 357
Flight loading conditions, 27 —31
Flight-vehicle aerodynamic loads, 31 33
light-vehicle imposed loads, 26 — 58
Flight-vehicle inertia loads, 34— 17
Force-stress relationships. 97 — 98
Forces. sign convention for, 194_
Free contraction of solids. 279
Free expansicn of solids. 279
Full monocoque stiuctures, 233
Fuselupe bulkheads, loads on, 238—243

Gassner, E., 86

Cinussinn coordinate systems., $7

Gerard method, 362 -363

Giubal stiffness matrices for special beam
elements, 214—226

Gordon. 8. A.. 384

Gust load factors, 43 —46

Hinge-roller supports, 5
Hinge supports, 4—~5
Honeycomb cores, 92
Hooke's law, 148

[dentity matrices, 435

[nclined axes. moments of inertia about,
419 —420

Incompletely developed diagonal len*:ton field
beams, 380381

Ineiastic nonlinear behavior, 71,72

Inertia loads, 3437

Isotropic bodies, 72

+ Joints, 389393

Kanemitse. 5., 366
Kelsey, 8., 145

Kowalewski, J., 85
Kuhn, P.. 381, 383

Lahde, R., 381

Langhaar, H. L., 380

Levy. 8., 381, 384

Lift. 31,32

Limit-load factor, 27

Limit loads, 27

Linear clastic behavior, 71, 72

Linear elustic structural systems, 147 — 130

Loud factors:
gust, 41 — 46 ’ ;
for translational acceleration. 37— 41
IV-n diagrams, 41 —43

Loads:
applied. 27
classification of, 2 —
design. 27
disteibulion o this webs, 233-237
on fuselage bulkheuds, 238 - 243
impesed on flight vehicles, 26—58
limit, 27
ultimate, 27

Long columns, buckling of, 330—331

Main dizgonal of a square matrix, 434
hlaterials:
behavior and evaluation of, 78 -95
strenglh-weight comparisons of, 89— 92
testing of, 79—82
typieal design data for, 94 —95
Mathematical models of structures, 121
Matrices, 6. 435436
Muatrix addilion, 438
Matrix alpebra, 438 —-443
Matrix definitions, 434 438
Matrix inversion. 440 —444
Matrix multipfication. 439
properties of, 439 440
Malrix partitioning, 444
propertics of, 445
Matrix sublraction. 438
Melcon, M. A_, 343, 357
Membrancs, |
Method of joints, 10--12
Method of sections, 12 -
Melric conversion factors, endpaper
Minfmum guaranteed values, 94—-95
Minimum weight, 89
Modulus of elasticity, 80
Mohr's circle. 320, 322, 374
for combined stresses, 429—433
for moments of inertia, 425429
Moments ol inertia, 411 —418 .
about inclined axes, 4§19 .-420 -
iiohr's circle for, 425429
Maonoceaue structures, 233
Muiticell box beams:
beam shear in, 272—275
torsion of, 270272
Multiphase materials, 79

A

Necdham method, 362363

Negative high angle of attack (NHAA],
29-30

Negative low angle of attack (NLAA), 30

MNujiea, H.. 366

Moencircular shaft, torsion of, 311316,
Nondimensiopal buckling curves, 357 —358
MNormal strains, 67 —68

Nuil matrices, 433

Off-diagonal elements of o square matrix. 434
Orthotropic bodies, 72
Crigoud, W. R., 83, 342

Palingren-Miner theory, 85

Partivd-tenzion feld beams. 380-341

Partitioned matrices. 444

propertics of, 445

Peterson, . P., 381

Pilching moment, 32

Plane motion, 3%

Plane-strain problems, campatibility equations
for. 69—70

Planc-stress probloms. compatibilily cqutions
for. 69-70¢

Plastic bending, 300 —~342

Viustic buckling of flat shecls. 353 =357

Plastic range of members, 300

Plate elements, | ‘

Poisson’s ratio, 73, t48, 344 =346, 168, 371

Polic muoinent of incrtia, 412

Positive high angle of attuck (PHAA) 2729

Positive low angle of altack (MLAA}, 29

Principal axes, 420—4231

Principat planes, 439

Principatl stresses, 429

Product of inertia. 419, 421 - 474

Proportional limit, 84

Pure tension field beams, buckling of,
373.-377

Rudius of gyration, 414
Rayleigh-Ritz method. 143, 156158
Reactions, 4—~3
Reetangular matrices. 434
Reduced modulus eguation. 334
Redundancy of box beams, 269270
Redundant structures, 6§ -7
multiple redundancy. 173~ 181
single redundancy, (67§73
and the unit-load mclhod. 165 —166
Riveted joints, 390395
Rivets. cccenirically loaded, 401 —404
Ralling. 35
Romberg, W, B3
Romberg-Osgood equation, 342
Row mairices. 434
Ryder, E, 1., 321, 325

Sangdwich construction, §2-94
Schilderout, M. 371
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Semimanocogue structures:
analysis of members of, 233273
cutouls in, 251—260
shearisg deformations of. 260--261
Semitensien fleld beams, 380387
Shalfts:
circular, torsion of, 310--311
noncircular, torsion of.ﬁJI 316
Shanfey, E. R., 321, 325
Shear centers, 19 -112
ul wings, 263 - 266
Shear Now, 108
in closed-section hox beams, 113—=118
in taperad beams, 118—121
inti odwebs, 246-251
in thin webs, 107-109
Shear lug, 181186
Shear lgads, 3
Shear modulus, 73
Shear modulus of elasticity, 82
Sheur puneis, 2
Shear stresses in heams, 101 —104
alternate sciutions for. 104—[07
Shear tests, B1 —82
Sheuring defonmations in semimonocoque
structures. 260 —-261
Sheuring strains. 67
Shells, 2
Short columns:
buckling of. 332 —-334
empirical formuias for buckling design of.
339341
Sign convention lor forees and displacements,
194
Simuitancuus linear zlgebraic equations,
445 --446
Single-phase materials, 79
Singular mairives, 6
S-N curves, 85, §7 -89 .
Spanwise taper effect, 118 —-121
Syuare matrices, 434, 436
Stable static equilibrium, 5
Static annlysis of structures, 121
Static equilibrium, equidions of, -6
Static loads, 2
Statically delerminute structures, 67
Statically indeterminate structures, 6—7
Stein, M., 371
Stilfness metkod concept, 197 —202
Strain and complemeniary sirain energies.
140
Btrain-displacement relationships, 63 —69, 282
Strains, 66—67
{See also Siresses and strains,
transformaticn of)
Strength-weight comparisons of materials,
8942
Siress analysis, $7— 130
Stress equilibrium equations, nonuniform
stress field. 65— 66
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Stress function solutson for lhcrmal sthss
problems. 186

Stress ratios, 321325 .

Siress—straln curvc xdeahzauon equat:onq for
82—

Srrcw-slr-lm rcl‘luonshlps. 71=-73

Stresses, 62—64 .

normal, in beams, 99- 101 -

Stresses and strains, transformation of, 73 =75

Stringer areas in beams, 122126

Structural systems, defined, !

Structures. static analysxs of, 1=21

Supports, 3—3 -

Sucface loads, 2

Symmetric matrices; 435-—436

System formulations, trénsformed froin
element formulations, 211 —2{4

E

T'mgent modulus curves, dxmens:onlcss form
of, 342344 -
Tangenl modulus of c]ast;cny 333 \
Tangentl modulus equation, 333 =334
Tapered webs, shear flow in, 246251
Taylor series, [43, 146
Tensile tests, 79—81
Tension members, 29%—300
Thermal coeflicient of expansion, 280
Thermal equilibrium, 284 —285
equations for, 28 L.. :
Thermal loads, 2 '
. Thermaul stresees, 279293
boundary conditions, 284
in built-up struclures, 281 —295
formulation of equations for analysis of,
281-284 .
+ solution methods for problems in,
284.-289
in unrestrained beams. 289 —291,
“Thermoelastic problems, solution methoeds for,
284289
Thermoelaslic strain-stress reiationships. -
2B2-283 *~
Thin webs:
load distribution to, 233 =237 .
shear flow in, 107—109
Torques, 3 .
Torsiona! stresses: ta
uf box beams, 261 —263
of circular shafts, 310311 .

. Torcmnal strcsse‘; iC‘mzf i

of tlosed-section box bca}ns‘ £2 —i 13
above Lhe elastic limit, 3i7-320
end restraint of members, 316317
of multicell box beams, 270—-272
vl moncirendar shalts, 311 —316
Translational acceleration, [nad factors for.
37-41 . - =N
Transpose matrices, 436
Trapezoida! distribulion of beading stresses.
304-307
Trusses., |
Tsien, H, §.. 368
Two-force members, |

Ultimate compressive strength of isclropic Nat
sheei, 349.-353

Ultimate-load factor, 27

Ultimate loads, 27

Ultimate strength, 8t

Unit-load method. 145

and redundant strisctures, 165— 166
Unit matrices, 435

Velocity-Toad-factor (V-n) disgrams, 41 —43
Virtual displacements, principle of, 140— 144
Virtual forces. 144 — 143

Yirtual work, 140

Yonr Kéarmin, T. L., 365

Wagner, H., 350, 381
Warping ol beam cross sections, 266 —269
Webs, diagonul tension in, angie of. 377-380
(See also Tapered webs, shear low in: Thin
webs)
Welded joints, 404 . 408
Wing ribs, analysis of, 243 — 246
Wings:
efastic axes of. 263 — 266
shear centers of, 263 266
Work and complementary work, iU

Yawing, 35

Yield point, 80
Yield stress, 80
Young's modulus, 73
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