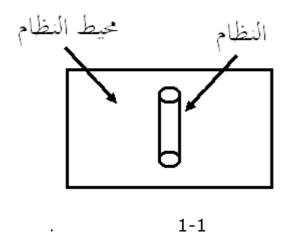
الفصل الأول

مفاهيم أساسية


Fundamental Concepts

1-1 .() (4) 3 The Zeroth Law " 1 2 (3) "

1 -

	2-1
System and Boundary	(
. II	
.()	
Surrounding	(
(1-1) universe	11
Isolated and non isolated systems	(

تعريفات

Open and closed systems

Properties - 3-1

(extensive variables)

حالة النظام

		.(intensive va	riables)		
value per)				specific	value
		$v = \frac{V}{m}$.(mass unit
		molal specific	value		
			mo	ole	
$N_A = 6.023 \times 10^{23}$			32 g		
			:	()
1-1			·	•	,
	V ℓ	P	()	
	ε Z	γ			
	S	Т			
		:	:1-1		_

					<u>:1</u>	-1
						.1
						.2
				()	.3
						<u>:</u> .1
	j	ρ	$\vec{\mathbf{E}} = \rho \vec{\mathbf{j}}$:			.1
			∴ .			
Α	V		$\ell = \frac{\mathbf{V}}{\mathbf{A}} = \frac{\mathbf{m}}{\rho \mathbf{A}} :$.2
					ℓ	
$\gamma = \frac{F_s}{\ell}$:						.3

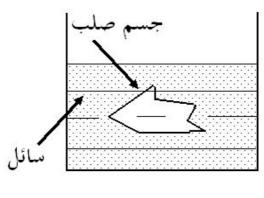
:1 g cm ⁻³	: <u>2-1</u>
MKS	.1
MKS	.2
	<u>:</u>

MKS

 $\rho = 1 \text{ g cm}^{-3} = 1 \times 10^{-3} \text{ kg} \times 10^6 \text{ m}^{-3} = 1000 \text{ kg.m}^{-3} = 1 \text{ ton m}^{-3}$ \vdots $v = \frac{1}{\rho} = 10^{-3} \text{ m}^3 \text{ kg}^{-1}$ $m \qquad .18 \text{ kg} \qquad 1 \text{ kilomole} \qquad .2$.n kilomole $v = \frac{V}{n} = \frac{m/\rho}{m/18} = \frac{18}{\rho} 18 \times 10^{-3} \text{ m}^3 \text{ kg}^{-1}$ Hydrostatic Pressure

. (2

A area element .


. dA

) (

.

.1 dyne = 10^{-5} N cm⁻² dyne cgs N m⁻²

الضغط

:2-1

1 bar = 10^5 N m⁻² = 10^6 dyne cm⁻²

(atm =atmosphere)

 $\rho = 13.5951 \text{ g cm}^{-3}$

76 cm

: $g = 980.665 \text{ cm s}^{-2}$

$$P = \frac{F}{A} = \frac{mg}{V/h} = \frac{mg}{m/\rho h} = \rho gh$$

$$\therefore 1 \text{ atm} = 13.5951 \times 980.665 \times 76$$

$$= 1.01325 \times 10^6 \text{ dyne cm}^{-2}$$

$$= 1.01325 \times 10^5 \text{ Nm}^{-2} \approx 1 \text{ bar}$$
(1-1)

.760 mm Hg 76 cm Hg

(Torricelli) 1 Torr

1 mm

 $1 \text{ Torr} = 1 \text{ atm}/760 = 133.3 \text{ N m}^{-2}$

- 5-1

Thermal Equilibrium, Temperature – The Zeroth Law

1-5-1

... :

п п

)

()

п п

.

الاتزان الحراري

2-5-1 stable equilibrium metastable equilibrium neutral equilibrium unstable equilibrium **The Zeroth Law** 3-5-1) A .() B) C .C Α Α

الحراري	الاتزان
---------	---------

СВ

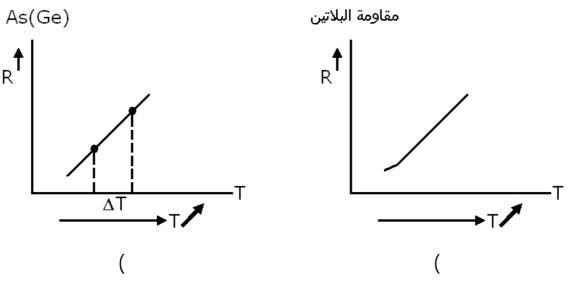
·
.

:

.Thermometers
. thermoscope " "

The adiabatic boundary 4-5-1

. : .


(diathermal boundary) 6-1 **Thermometers** 1-6-1 thermometric property " .Thermometer (Thermocouple

. - -

2-6-1

·

. -3-1

As(Ge) (: :3-1 ()

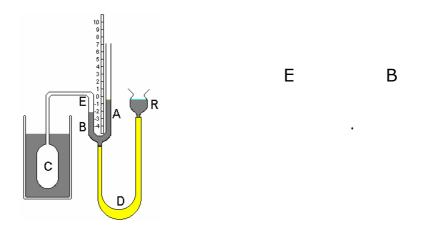
.(-3-1) As(Ge)

 $\Delta\mathsf{T}$

12 -

3-6-1 ε(..) .(4-1 A) В معدن(1) معدن(2) :4-1 standard junction (5-1 A) test junction .(G) potentiometer ε معدن (1) وصلة الاختبار △ معدن(2) نحاس (G الوصلة المعيارية

:5-1


4-6-1

C .(constant gas volume thermometer)

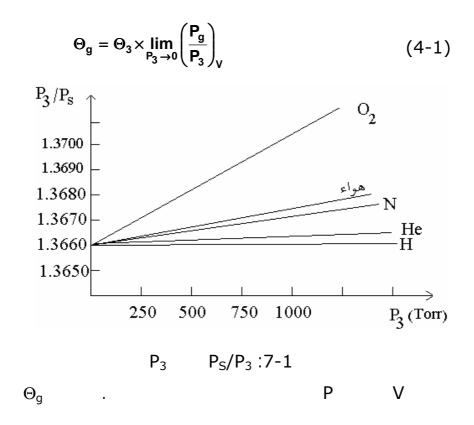
.(6-1)

B A .A B

.D

:6-1

.[-200 , 1500 °C]


Temperature scales 5-6-1

 ϵ R X. X

 Θ_2 Θ_1 .

Θ

: (X₂ X₁) X $\frac{\Theta_1}{\Theta_2} = \frac{X_1}{X_2}$ (2-1)) triple point of water .(4.58 mm Hg Χ X_3 Θ_3 Χ $\Theta = \frac{X}{X_3} \times \Theta_3$ (3-1) . X P_S/P_3 - (steam) S =1.3660: P_3 $.P_S/P_3$ ($P_3 = 0$ "extrapolation

1954 . . .

) 1atm

.(ice point

i 3 s g 4-1

:

$$\frac{\Theta_{s}}{\Theta_{i}} = \lim_{P_{i} \to 0} \left(\frac{P_{s}}{P_{i}} \right)_{V} \qquad \Theta_{S} - \Theta_{i} = 100^{\circ} \qquad (5-1)$$

$$\Theta_{i} = \frac{\mathbf{100} \, \mathbf{P_{i}}}{\mathbf{P_{s}} - \mathbf{P_{i}}} = \frac{\mathbf{100}}{\frac{\mathbf{P_{s}}}{\mathbf{P_{i}}} - \mathbf{1}}$$

$$\lim_{\mathbf{P_{3}} \to 0} \left(\frac{\mathbf{P_{s}}}{\mathbf{P_{3}}}\right)_{V}$$

$$1.3661 \quad \frac{\mathbf{P_{s}}}{\mathbf{P_{i}}}$$

$$\vdots \qquad .$$

$$\Theta_S = \Theta_i + 100^\circ = 373.15$$
 "degrees"

$$\Theta_{\rm i} = \frac{100}{0.36611} = 273.15 \, \text{"degrees"}$$

. T

. Т

 5 cm
 :3-1

 " " " Θ X
 .

 .6 cm

 .001 cm X

$$\Theta_{6} = \Theta_{5} \times \frac{X_{6}}{X_{5}} = 273.16 \times \frac{6}{5} = 327.8 \text{ degrees}$$

$$X_{S} = X_{5} \times \frac{\Theta_{S}}{\Theta_{5}} = 5 \times \frac{327.80}{273.16} = 6.84 \text{cm}$$

$$|X_{i} - X_{3}| = \left| X_{3} \times \left(\frac{\Theta_{i}}{\Theta_{3}} - 1 \right) \right| = \frac{X_{3}}{\Theta_{3}} \times \Delta\Theta$$

$$0.01 \text{ K} \qquad \Delta\Theta$$

$$\Delta X = \frac{5}{273.15} \times 0.01 = 1.834 \times 10^{-4} < 0.01$$

$$\therefore$$

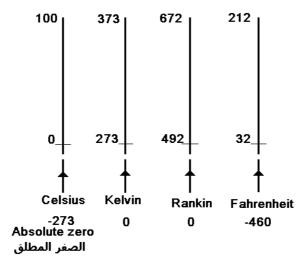
.K K°

:
$$T_3 = 273.16 \text{ K}$$
:

 $T = 273.16 \text{ K} \times \lim_{P_3 \to 0} \left(\frac{P}{P_3}\right)_V$ (8-1)

: () Celsius

$$t_C = T - T_i$$
 (9-1)


" .273.15 K T_i

"°C

$$t_i = 0 \text{ °C}$$
 100 °C

.t_S = 100 °C

19 -

:8-1

$$t^* = a \, \theta^2 + b : \qquad t$$

$$.3 \qquad \qquad \theta \qquad b \ a$$

$$. \qquad t^*_s = 100 \qquad t^*_i = 0 \qquad b \ a \qquad \qquad -$$

$$. \qquad X = 7.0 \text{ cm} \qquad \qquad t^* \qquad -$$

$$. \qquad 50^\circ \qquad t^* \qquad \qquad -$$

$$. \qquad X \quad t^* \qquad \qquad -$$

$$. \qquad X \quad t^* \qquad \qquad -$$

$$. \qquad t^{*0}_i = 0 = a (273.15)^2 + b \qquad \qquad \vdots$$

$$. \qquad t^{*100}_s = 100 = a (373.15)^2 + b$$

$$. \qquad \qquad \vdots$$

$$a = 1.547 \times 10^{-3} \, \text{K}^{-2} \quad b = -115.4 \, \text{K}$$

$$t_{i}^{*}(X) = a\left(\frac{\Theta}{X}\right)^{2} X^{2} + b$$

$$t_{i}^{*}(X=7) = a\left(\frac{\Theta_{5}}{X_{5}}\right)^{2} 7^{2} + b = 1.547 \times 10^{-3} \left(\frac{273.16}{5}\right)^{2} 7^{2} - 115.4$$

$$= +110.85K$$

$$X = \sqrt{\frac{t^{*} - b}{a}} \times \frac{X_{5}}{\Theta_{5}} \implies X(t^{*} = 50^{0}) = 5.98 \text{ cm}$$

$$X \text{ cm} \qquad t^{*}(X) \text{ K} \qquad -$$

$$0 \qquad -115.4$$

$$1 \qquad -110.8$$

$$2 \qquad -97.0$$

$$3 \qquad -73.9$$

$$4 \qquad -41.6$$

$$5 \qquad 9 \times 10^{-3}$$

Thermodynamic Equilibrium	7-1
---------------------------	-----

() elastic stress

.(

Processes 8-1

1-8-1

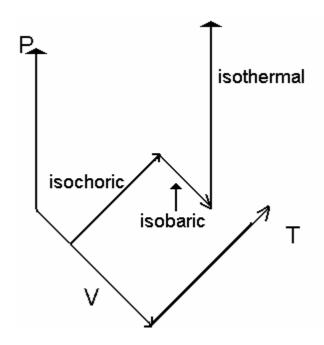
العمليات

:quasistatic process					
•	:nonelastic pro	ocess	1		
	:	.(
•					
$.T_2 > T_1$	T ₁	:			
	.T ₂				
T_1	T_1	•			
.isovolumic isoc	horic		.1		

.isobaric

.isothermal

23 -


.2

.3

©

العمليات

9-1

:1-9

Adiabatic Processes

2-8-1

3-8-1

العمليات

	п	п			rever	sible		
						:		
								-
								-
				•	11 11			-
•		•	ε	.T ₂			T_1	
	Т	$T_2 > T_1$.12				1 > T ₂
			-	Г₃ Т₄				

•