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Abstract— Advanced medical imaging techniques require high 

performance segmentation algorithms. Extracting the structures 

of interest accurately is one of the main challenges in medical 

imaging segmentation. In this paper a methodological approach 

based on active contour is proposed for fully automated 

segmentation of radius bone. As soft tissues like tendons, muscles 

and fat around the bone have close intensities to internal parts of 

the bone, accurate segmentation is difficult. Here the designed 

framework takes an MR image including radius bone as input 

and produces the segmented radius bone in 3D voxel set. The 

multi-step approach for segmentation is as following. Since our 

data set was much noisier, at first we denoised and enhanced 

contrast of the data using wavelet transform. Then an initial 

segmentation was produced focusing on edge map. Next, 

according to anatomical knowledge about the radius bone shape 

and size in intermediate slices, radius bone was extracted in this 

slice and used as the mask slice for adjacent slices. This masking 

procedure was applied to all slices with a 3D approach. After that 

we derived a convex hull region around the radius bone. This 

step was done for whole slices as regions of interest. Finally the 

estimated convex region is used as an initial mask for active 

contour. This framework was tested on more than 600 coronal 

MR slices of 23 subjects. In comparison to manual segmentation 

our method showed an average Dice similarity coefficient DSC 

and kappa statistics of 94.82% and 92.46% respectively. In the 

future works we utilize the proposed approach as part of a 

computer-aided diagnosis system for bone age estimation. 

 Keywords-coronal slice; wavelet transform; edge map; initial 

mask. 

I.  INTRODUCTION  

Advanced medical imaging techniques require high 
performance segmentation algorithms. The main challenge in 
medical image segmentation tasks is to extract accurately the 
structures of interest. In the case of medical imaging the 
segmentation process can be taken place in 2D or in the 3D 
space. 2D algorithms can be extended to 3D medical volumes 
by being applied successively on the compounding 2D slices. 
The last approach is in some cases more practical as it is easier 
to implement, it requires less memory, and has lower 
computation complexity. 

Active contour methods have been widely applied in 
medical image segmentation tasks [1] [2] [3]. Their ability to 

adjust contours to the structures with irregular shapes made 
them suitable for brain segmentation tasks or tumor region 
detection. They were also used for segmenting 3D volumetric 
MRI datasets for image guided surgery tasks [4]. Jiang [5] 
combined the active contours approach with morphological 
operations for the X-ray bone segmentation in CT datasets. 

A. Segmentation of bone structures in MRI 

 In general, a bone can be divided in two parts: the 
cancellous bone, the interior part, generally consisting of fat, 
which is represented by bright areas in MR images and the 
cortical bone, the exterior calcified section of the bone which 
can be identified as dark regions in the MR datasets (because of 
the lack of fat or water protons). Therefore the algorithm 
focuses on the segmentation of the boundary between high 
intensity signal inside the cancellous bone and the cortical 
bone. Around the bones there are other soft tissues, such as 
tendons, muscles, and fat, with similar intensities to those of 
the internal parts of the bone, which make the segmentation 
process very difficult. 

This is the reason for which in some cases it is delicate to 
accurately decide on the boundary of the bone. The 
aforementioned elements in the human hand are sometimes 
difficult to clearly identify, because their appearance depends 
on the MRI characteristics (the parameters of the scanning 
process). 

So, a segmentation algorithm is needed to be developed for 
the accurate segmentation of bone structures in 3D MRI dataset 
so that it would be able to overcome the shortcomings of the 
other present imaging techniques. Some of the challenges in 
this field are noise, intensity inhomogeneity, and partial 
volume effects. 

B. Noise in MR Imaging 

In magnetic resonance imaging (MRI) there is a trade-off 
between signal-to-noise ratio (SNR), acquisition time and 
spatial resolution. Another important source of noise in MR 
imaging is thermal noise of the human body. Common MR 
imaging involves sampling in the frequency domain (also 
called "k-space"), and the MRI image is computed using the 
Inverse Discrete Fourier Transform (IDFT). Signal 
measurements have components in both real and imaginary 
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channels and each channel is affected by additive white 
Gaussian noise. Thus, the complex reconstructed signal 
includes a complex white additive Gaussian noise. 

C. Partial volume effect 

The partial volume effect (PVE) is the consequence of the 
limited resolution of the scanning hardware and the 
discretization procedures. It occurs in non-homogeneous areas, 
where several anatomical entities contribute to the gray-level 
intensity of a single pixel/voxel. It results in blurred intensities 
across edges, making difficult the task of accurately deciding 
on the borders of two connected objects. 

Another similar artifact is called fat/water cancelling and 
emerges in regions containing mutually fat and water. Due to 
their opposing magnetization fields, the corresponding regions 
will appear dark. 

D. Inhomogenity shortcomin 

Another difficulty which has to be handled by segmentation 
techniques using MR images is the intensity inhomogeneity 
shortcoming. The intensity inhomogeneity's can be caused by 
the imperfections in the RF coil that produces the magnetic 
field, or by various harms in the signal acquisition procedures. 
Also, the magnetic field can have a non-uniform distribution 
due to the local magnetic properties of the studied biological 
structure or because of a movement of the patient during the 
acquisition process. This effect can be identified as shading 
artifacts in the image data and can have a major consequence 
on the performances of the intensity based segmentation 
algorithms, considering that a certain tissue has a constant 
intensity distribution in the dataset [6]. 

II. METHODS 

A framework was designed that requires a set of 2-D 
coronal MR images including the wrist hand information as 
input and provides segmentation of the radius bone in the form 
of3-D voxel points as output. The individual components of 
our framework are outlined as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

In this method, MR images of 27 coronal slices of hand 
wrist as the input of the algorithm and the radius bone in the 
form of 3D voxels as the output. All steps are fully automatic 
and there is no need to a human or initial point. 

Dataset consists of 27 T1-weighted images of hand wrist in 
coronal view which we are provided by Peyambaran hospital 
(Abazar street, Tehran, IRAN). It’s usual to acquire this kind of 
images in 9 slices. But this dataset uses 27 slices which results 
a reduction in depth in 3:1 ratio. Case studies are 23 players of 
Iran’s national youth team whose age is under 17.  

A. Preprocessing 

This section is composed of two parts: noise reduction and 
image enhancement. 

.All digital images contain some degree of noise due to the 
corruption in its acquisition and transmission by various 
effects. Particularly, medical image are likely disturbed by a 
complex type of addition noise depending on the devices which 
are used to capture or store them. No medical imaging devices 
are noise free. The most commonly used medical images are 
received from MRI equipment's. Usually, the addition noise 
into medical image reduces the visual quality that complicates 
diagnosis and treatment.  

The way the magnitude MRI image is reconstructed results 
in a Rician distribution of the noise. The main remark is that 
the Rician noise is signal-dependent, separating the signal from 
noise being a very difficult task. In high intensity areas of the 
magnitude image, Rician distribution can be approximated to a 
Gaussian distribution, and in low intensity regions it can be 
estimated as a Rayleigh distribution. A practical effect is a 
reduced contrast of the MRI image, as the noise increases the 
mean intensity values of the pixels in low intensity regions. As 
explained, it is a fact that Rician noise degrades the MRI 
images in both qualitative and quantitative senses, making 
image processing, interpretation and segmentation more 
difficult. Consequently, it is important to develop an algorithm 
to filter this type of noise [7]. 

Because the wavelet transform has an ability to capture the 
energy of a signal in few energy. The wavelet denoising 
techniques offers high quality and flexibility for the noise 
problem of signals and image. 

Also, the sharpening filter was applied to the denoised 
image in order to enhance the image, make better the 
separability of   bone tissue, and detect the edge. 

B. Initialization and Masking 

 In MR images unlike to CT images, because of partial 
volume effect and additive noise which explained previously, 
seperability of bone region from other tissues would be done 
difficultly. So, dynamic threshold method cannot be useful and 
may lead to misidentification of radius bone in 3D approach of 
slice masking. Thus, the proposed method was based on edge 
map focusing. 
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Figure 1. Block diagram of the proposed method 
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As (2) implies the edge map focusing is composed of two 

phases. First, in (1) merge
iE is edge map including integration 

of Canny operator with a variance as 2, 2σ
iE   and the resulted 

edge from operator morphology erosion, morphernal
iE _int  

where i is i-th slice. The epiphyseal plate which passes through 
the radius bone causes disconnectivity in radius bone region. 

Therefore, we used the map edge morphclose
iE _,3σ  which 

consists of Canny edge detector with a variance as 3 and the 
morphology operator closing with a vertical structure element 
containing 6 pixels. At last, we accomplish the first phase by 
using morphology operator filling. In (2), F is the filling 
morphological operator. Second, the denoised image resulted 
from dynamic threshold method, is subtracted from the output 
image of the first phase. Thus, we obtain an approximate image 
of radius bone that fully separated from other regions and is 
very important for masking stage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 2 (a) an original data is shown. The result of edge 
map focusing method is demonstrated in (b). We show the first 
and second phases’ outcomes in (c) and (d) respectively. The 
magnified regions which we showed in (a), (b), are brought in 
(e), (f) respectively. 

 

C. ROI extraction 

 We use the present information of the data set images o 
identify the initial slice. Since the radius bone has the largest 
region in median slices, the initial slice can be identified by 
searching for a slice which has the most number of pixels 1. By 
using morphology operator closing, we remove small area 
regions and consider the region with largest structure as initial 
mask. At the next step, we use a 3D approach, starting from the 
initial slice and the resulted mask, to derive the radius region 
for the previous and the next slices. This procedure repeats for 
all slices, as is brought in (3). The proposed method extracts 
the radius bone automatically and does not need to interaction 
with the user or use of seed point. 

 

 

 

 

In (3), 
iRB is the approximated segmented radius bone in 

i-th slice and 
iS is the binary image of output of (2) which 

multiplied by 
iMask   .  

As we said, the extraction of radius by edge map focusing 
method is a non-exact estimation of radius bone. But, it can be 
used as an initial value or ROI in dynamic segmentation 
algorithms. So, the convex hull is applied to (3) and the 
outcome is considered as ROI. In the next section we elaborate 
the exact segmentation algorithm by using active contour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Segmentation based on active contour 

 For a good segmentation of the bone structures in the MRI 
3D datasets, an appropriate initialization is required. It does not 
have to be very accurate, but it has to provide starting contours 
(or volumes for the 3D case) for each bone to be segmented 
(see Fig. 4). 

Figure 2. Approximate image of radius bone. (a) original image (b) edge 

map focusing example (c) the first phase outcome (d) the second phase 
outcome (e), (f) the magnified regions shown in (a), (b) respectively 

Figure 3. An example of region of interest extraction: (a) original 

image (b) approximate image of radius bone (c) convex hull of the 
approximate image as ROI (d) the output segmented by active contour. 
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Active contour methods can intuitively be understood as 
digitally-generated curves operating within images with the 
aim of identifying object boundaries. Initially named snakes 
[8], they are energy minimizing splines, moulding a closed 
contour to image object boundaries by means of deformation 
under the influence of image forces, internal forces and 
external constraint forces [8]. Considering that the snake 
(contour) position at time t can be parametrically represented 

by )],(),([),( tsytsxts =υ , the evolution of the deformable 

model can be represented as shown in (4), where )(sµ  and 

)(sγ  control the mass and the damping density of the contour. 

The model is moving under the influence (magnitude and 
direction) of the internal and external forces. 

extFF
t

ts
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t

ts
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The most commonly used formulation for the internal 

energies is shown in (5), where )(sα and )(sβ manage the 

tension and the exibility of the contour. The external potentials 
are defined based on the gradients or other features in the 
image [8]. 
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Some of the disadvantages of this approach are the 
sensitivity of the snake evolution to the initialization and poor 
convergence in concave regions [9]. 

The proposed segmentation algorithm based on active 
contour in comparison to other methods such as level set, is 
easy and has less computational complexity. It also, because of 
using a proper initial value, is less time consuming.  

Unlike to other segmentation algorithms, such as region 
growing, which need to manual initial value or seed points, the 
proposed algorithm is fully automatic and does not have the 
problem of convergence. 

 
 

     

(a) (c) (d) (b) 

Figure 4. Final active contour segmentation from coronal slices for a subject with closed Epiphyseal plate (top) and another subject with open 

Epiphyseal plate (bottom): (a), (b), (c), (d): 6, 12, 18, 24-th slices respectively. 
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III. RESULTS 

 
The proposed method is applied to 23 subjects’ images, for 

each subject 27 slices, data set. We observe an error in 
segmentation outcomes in 8 slices among more than 600 slices. 
So, the accuracy of the algorithm is % 98.67. We compared the 
outcomes of the automatic segmentation with the manual 
segmentation under specialized physician’s supervision. (see 
Fig. 5)  

 The main goal of the segmentation algorithms is to capture 
as accurate as possible the structures of interest. For the 
assessment of their performances, the segmentation results are 
compared with manually segmented ground truth using several 
quality measures. 

The true positive rate, also called sensitivity, measures the 
rate of the accurately recognized positives (6). On the other 
hand, specificity quantifies the capability of correctly detecting 
negatives (8). 

Accuracy is related to the rate of correct results with respect 
to the whole domain (7) and precision is the percentage of the 
accurately identified positives with respect to all positive 
results (9). As well, in the case of these measures, higher 
percentages refer to higher performances of the assessed 
segmentation algorithm.  

The similarity between the ground truth and the 
segmentation results can be also computed using the Dice 
coefficient and is defined as shown in (10). A low value for the 
Dice coefficient would suggest that there is low similarity 
between the ground truth and the outcome of the segmentation 
algorithm, while a unity coefficient would denote a perfect 
segmentation. 
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We also compared the proposed fully automatic algorithm 
with the manual algorithm in terms of kappa criteria. For kappa 
statistic, each voxel is observed by both target and source 
volume. Each volume gives a label to each voxel [10]. 

According to Table 1, the results show that the proposed 
method outperforms the manual segmentation method in term 
of quality measures which we brought in the table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Quality measures for the 3D bone segmentation 

 

IV. CONCLUSION 

 In this paper we proposed a fully automatic algorithm 

for segmentation of radius bone based on active contour 

method. The implemented segmentation algorithm 

comprises several stages for the successful accomplishment 

of the task. The first step takes into account the pre-

processing of the images to be analysed for reducing the 

noise and enhancing the features of interest for the 

subsequent segmentation algorithms. the next section 

discusses initialization techniques. Finally, active contour 

methods are introduced, as they are one of the most used 

techniques in medical image segmentation. We applied the 

algorithm to the MR images of 23 subjects’ hand wrists. 

Our method does not need to a human intervention or seed 

points. The bone segmented image can be used in finding 

the epiphyseal plate in order to define the subject’s bone 

age. 
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Quality 

measures 
Sensitivity Accuracy  Specificity  Precision Dice   

Kappa 

Statistics  

active contour 

segmentation 
0.9008  0.9987  0.9992  0.9653  0.9482  0.9246  

edge map 

focusing 

segmentation 

0.8213  0.9927 0.9813 0.8631 0.8542 0.8084  

 

(a) (b) (c) 

Figure 5. Comparison of the proposed method output vs. the manual 

segmentation. White pixels are TP, pink pixels are FP, green pixels are FN, 
and the rest pixels are TN. (a), (b), (c): three different subjects. 
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