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Abstract—Structural analysis of the vascular architecture of 
the retina facilitates the diagnosis of retinopathy because 

retinopathy affects the blood flow velocity. To this end, blood 
flow velocity in the major temporal arcade (MTA) vessel in 
retina may be measured to detect blood flow velocity changes. 

For this measurement, separation of the MTA vessel is a 
necessary step. We propose methods for identifying the MTA 

vessel. We use Gabor filters to detect retinal vessels and Hough 

transform to model the MTA vessel. Then, we use the MTA 
model to find a seed point for image segmentation. Next, we take 
advantage of graph theory to track temporal arcade vessels and 

separate the MTA vessel. We have evaluated our algorithm 
using 43 clinical angiography images, in which traces of MTA 
was drawn by an ophthalmologist. Experimental results show 

that the proposed methods correctly separate MTA in 93%. 
 
Keywords—Blood vessels; angiography images; Gabor filters; 

Hough transform; retinopathy; major temporal arcade. 

 

I.  INTRODUCTION 

A.   Diabetic Retinopathy 

Diabetic Retinopathy (DR) is one of an epidemic disease 
of the human visual system caused by the increase of the 
glucose level in the blood vessels. In addition, this disease is 
responsible for early blindness of patients younger than 70 
years in developed countries [1]. Statistics indicate that the risk 
of blindness in diabetic patients is 25 times more than the 
healthy subjects [2]. In the past, it was believed that structural 
changes such as hemorrhages and presence of red lesions in 
the eye are the first symptoms of DR and as a result, the 
disease was not detected before visual loss and total 
impairment of the visual acuity. Most of the methods for 
prevention and treatment of diabetic retinopathy are based on 
retinal morphological variations such as micro aneurysms and 
exudates [3], [4], [5].  Nevertheless, a recent procedure has 
spotted DR by looking at the functional variations that happen 
before structural variations. To this end, blood flow velocity 
variations that occur before any other morphological changes 
have been evaluated [6]. 

 

The blood flow velocity is higher in patients with early 
diabetes mellitus than the healthy subjects. This is due to the 
increase of the blood glucose for a long duration of time that 
impresses structure and function of blood vessels wall.  

 
B.   Major Temporal Arcade Modeling 

Detection of the major temporal arcade (MTA) is useful 
for the measurement of the blood flow velocity and 
localization of the optic nerve head and fovea [6]. The major 
temporal arcade may be identified by applying Hough 
transform [6] on the segmented vessels. 

 

Niemeijer et al. [7] used a point distribution model to 
represent the major temporal arcade, where they used a set of 
10 points to mark MTA. They used five hundred images to 
minimize a cost function and estimate the model parameters. 
The cost function included two global terms, width and 
orientation of the vessels, and one local term, anatomic 
measurements around the model points. The optimization was 
done in both of the image and parameter spaces. The 
estimated parameters were used to generate a point 
distribution model of MTA. A human observer may check how 
many of the ten points lye correctly on MTA. Niemeijer et 
al. [7] reported 93.2% complete detection of MTA, 5.6% 
partial detection, and 1.2% complete failure to detect MTA in 
500 images of the retina. Fleming et al. [8] used vessel 
enhancement and semielliptical curve fitting using the 
generalized Hough transform to model MTA. After enhancing 
the vessels and obtaining an edge map of the vessels, the 
generalized Hough Transform   was   applied   to   
skeletonized   image   of   the vasculature. The Global maxima 
in the Hough transform domain was chosen as the best match 
for the MTA model. 

 
C.   Identifying and Tracking Vessels 

Retinal vessel extraction involves segmentation of the 

vascular structure and identification of distinct vessels by 

linking the segments of the vascular structure [9]. 

Lau et al. [9] used a graph model for the segmented 
vascular structure and formulated the problem of identifying 
vessels as the problem of finding the optimal forest in the 
graph under a set of constraints. 
 

The previous methods of modeling MTA, explained in 

Section I-B, do not practically extract the MTA vessel. 

Furthermore, the coordinates of the center of the optic disc 

are used as a vertex of the temporal arcade angle. In this 

paper, we present a method to extract and separate MTA 

using Gabor filters, generalized Hough transform, and optimal 

tree. 
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II. METHODS 

 

A.   Preprocessing 
The proposed methods were tested with angiography 

images of the retina from the Feiz Hospital in Isfahan, Iran. 
These images were taken using a Heidelberg Retina 
Angiograph 2 (HRA2) system, which is a confocal laser 
scanning system for digital fluorescent and indocyanine green 
angiography. The laser, included in HRA2, diffuses a laser 
light for fluorescent angiography with 488 nm wavelength. 
Recently, a video capture device was added to the HAR2 
apparatus. Since typical enhancement methods are not 
appropriate for extracting the vessels from the retina in the 
angiography images [10], [11], we applied the Gabor 
transform followed by a Laplacian of Gaussian (LoG) filter 
[12]. Next, we extracted the retinal blood vessels using a 
statistical local thresholding (SLT) approach. 

 

Laplacian is a second isotropic derivative of the image, 

which is used to find regions with fast intensity changes (edge 

detection). Since the second derivative is very sensitive to 

noise, we reduced the noise using a Gaussian filter. Applying 

these two operators to an image is named LoG, which is: 

 
2( ; ) ( ( ; ))* ( )L p M n I nσ σ σ= ∇

 
(1) 

where 
2∇  is the Laplacian operator, ( , )M n σ is an 

isotropic zero mean Gaussian kernel, and 
2σ is the kernel's 

variance. The symbol “*” stands for the convolution operation 

and I is the grayscale format of the input image. Finally, the 

image was convolved with the LoG filter and the output was 

thresholded to obtain the largest values in the image: 

 

( ) max ( ; )L p L pσσ
σ=

 
(2) 

In order to improve the image contrast, we applied a 
Gabor wavelet filter to the image, which is defined by a 
sinusoidal component multiplied by a Gaussian kernel as:  
 

( ; , , ) ( ; ) ( ; , )B p s p M pλ α θ λ α θ=  (3) 

 
where s(.) is the sinusoidal component and M (·) is an 

anisotropic, scaled, and rotated Gaussian function. We applied 
the filter with different wavelength (λ), scale (α), and 
orientation (θ). The maximum response was obtained by 
varying (λ), (α), and (θ) as: 
 

, ,
( ) max( ( )* ( ; , , )G p L p B p

λ α θ
λ α θ=  (4) 

 
Fig. 1 shows the results of the image enhancement step. 

 

Figure 1. (a) angiography image, (b) Output of the Gabor filter followed by the 

LOG filter. 

 

Some errors occur in the vessel extraction step owing to 
the fact that the image background is not uniform. However, 
SLT provides improvement by dividing the image into non-
overlapping rectangles based on their non-uniformly 
distributed intensity. SLT is defined as: 
 

.xy xyT a m=  (5) 

 

An 11×11 window was considered for each pixel and 
the mean intensity was calculated by: 
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where mxy is the mean intensity in the selected window, 

I (x, y) is the image intensity. The constant a in (5) is used 

to adjust the accuracy of vessel extraction based on the noise 

variations and vessels accretion. 

 Next, the image is segmented as: 
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In (7), 0 is considered for background and 1 is considered 
for the vessels.  

Fig. 2 Shows the result of applying SLT to a angiography 
image. 
 

B.   Hough Transform 

Hough [13] proposed an approach to find lines in an image. 
Hough transform has been generalized to detect other 
parameterized curves like parabolas [14], [15], [16], [17]. 
Here, we define a parabola with its directrix parallel to the y-
axis and its symmetrical axis parallel to the x-axis as follows: 

2 2

0 0
( ) 4 ( )y y a x x− = −  (8) 

where 
0( )x x−  is the vertex of model and the quantity 4a  

is the latus rectum. The quantity of a defines the aperture of 

the parabola and indicates the alignment of the opening of the 
parabola; for a positive value, the parabola opens to the right. 

The parameters 
0 0

( , , )x y a  define the Hough space. Every non-

zero pixel in the image corresponds to a parabola in the Hough 
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space for each value of a . Each point in the Hough space 

expresses a parabola in the image domain. The size of 

0 0
( , )x y  planes in the Hough space is equal to the size of the 

image (768 × 868). The value of a is restricted by 

physiological limits on the arcade and the size of the image. 
For our database, the value of a  was in the range of [30, 60]. 

We assumed that only positive values of a  were defined. For 

images that the opening of temporal arcade was toward left, it 
was rotated by 180◦ so the arcade would open to the right. 

 

 
(a) 

 
(b) 

Figure 2. (a) An angiography image, (b) Output of the SLT algorithm. 

 

We applied the above, generalized Hough transform to the 
vessel map images. The point with highest value in the Hough 
space was used to model the parabola for MTA. This model 
was used to track and separate the MTA vessel.  

C.   Graph-Based Description of Vessel Map Image 
In this section, we define our graph-based description of 

the vessel map images obtained from the above preprocessing 
step. We mask the optic disc for the graph creation approach, 
because of irregular and highly tortuous blood vessels at this 
region. The mask window is a circle with radius of 2r, where r 
is the radius of optic disc. Masking the optic disc like this is 
used in a number of clinical studies [18], [19]. Each vessel 
starts from a root point that is near the circle of radius 2r. 
These root points are denoted in red in Fig. 3(b). 
 

(a) (b) 
Figure 3. (a) A skeletonized vessel map image, (b) Masked image with root 

points denoted in red. 

 
 

Next, we find the root points corresponding to the 
MTA vessel using the Hough Transform model obtained in 
Section I.B. As the parabola model is more correlative with 
MTA near the optic disc, we used the distance 2r (from the 
center of optic disk) to find the corresponding root point. The 
distance 2r is optimal because as it is neither too close to the 
optic disc, which is the origin of all vessels, nor too far, where 
the MTA vessel and parabola model diverge. We found the 
closest root point to the parabola model and kept it as the start 
seed for the graph tree creation [20]. Now, having the root 
points corresponding to MTA, we should track the true 
MTA. Our aim is to identify the MTA vessel and represent it 
in the form of a binary tree. Vessels in a retinal image 
frequently cross each other and bifurcate. That makes MTA 
tracking a challenge. 

 

(a) (b) 
Figure 4. (a) Landmark points classification, (b) Landmark points plotted on a 

part of the vessel map image. End points are denoted in blue, cross-over points 

in red, and branching points in green. 

 
We used a depth first search (DFS) approach to track all 

vessel trees, and find all branching points, cross-over points, 

and end points. The algorithm searches for three types of 

landmark point by analyzing the 3×3 neighborhood of 

foreground pixels such that the pixels with one foreground 

neighbor are defined as end points, the pixels with three 

foreground neighbors are defined as branching points, and two 

foreground pixels close to each other and each one with 

three foreground neighbors or the foreground pixel with four 

or more foreground neighbors are defined as cross-over 

points. Fig. 4 shows how landmark points are classified. 

We used a circular window centered at the candidate point 

to find the landmark points in the vessel map image. The 

diameter of this window is set according to the maximum 

vessel diameter expected in the vessel map image. In order to 

validate and classify the landmark points, we applied a zero-

cross detector along the circumference of the window. 

Landmark points are classified according to the number of 

zero-crossings. 

1) It is end point, if we have one zero-

crossing 

2) It is branching point, if we have three zero-

crossings 

3) It is cross-over, if we have more than three zero- 

crossings or if we have two branching points very close to 

each other, which can lie inside the circular window. 
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Next, we identify vessel segments between two 
branching/crossing (B/C) points or those between a B/C point 
and an end point, in the skeletonized vessel map.  A  DFS 
approach traverses skeletal vessel segments to identify vessel 
line   segments.   We   reconstruct the   corresponding vessel 
segment for each skeletal line segment to obtain the features of 
that segment. We extract three features from the two end 
regions of each reconstructed vessel segment: 1) Segment 
orientation, 2) Segment diameter, and 3) Segment intensity. 
 

These features are used to form a cost function in the 
graph description of the vessel segments. In the graph 
presentation, each vessel segment is represented by a node, 
and the cost between two neighboring vessel segments is 
represented by a cost edge. 
 

Fig. 5(a) shows skeletal vessel segments. Fig. 5(b) shows 
reconstructed vessel segments. Fig. 5(c) shows three vessel 
segments in red, green, and yellow with end region of each 
segment in blue. Fig. 5(d) shows the corresponding graph 
representation for Fig. 5(c) with edge costs between the 
nodes. Fig. 5(e) shows a vessel with root segment (segments 
connected to the root points are considered as root segments) 
denoted in red, end points in yellow, and other segments in 
blue. Fig. 5(f) shows the corresponding graph representation 
for Fig. 5(e). The segments with an end point in Fig. 5(f) are 
represented by a yellow node. 
 

Starting from root points of MTA, we just need to find the 
shortest path to the end points. We have two root points, in the 
upper half of the vessel image and in the lower half, 
corresponding to the MTA vessel. Dijkstra’s algorithm is used 
to find the shortest path. Shortest path is the path with smallest 
sum of costs over the total path. The algorithm starts from the 
root segment and propagates till it reaches the end points and 
enlists their corresponding cost path values. The path with the 
smallest cost path is chosen as the MTA vessel. The algorithm 
is repeated for the rest of MTA vessel inside the circle of 
radius 2r but here the end point is the segment of a vessel with 
the center of optic disc on it. The whole procedure is 
summarized in Fig. 6. 

 

III. EXPERIMENTAL RESULTS 

 

Fig. 7(a) shows one of the original images of our database. 

Fig. 7(b) shows the result of applying Log and Gabor 

wavelet filtering to improve the contrast of the image. Fig. 

7(c) shows the result of applying SLT, in order to create a 

binary image and segment vessels. In Fig. 7(d) after   applying   

generalized Hough transform to t h e  vessel map image, the 

parabola with the highest value is obtained for α = 56; this 

parabola model is drawn on the vessel map image in green. We 

use this parabola model to find the root points, on the circle of 

radius 2r, corresponding to the MTA vessel. The closest root 

points to the parabola model are considered as root points of 

MTA vessel, and denoted as red dots. 

 

Fig.  7(e) shows the part of MTA vessel obtained from 

applying the Dijkstra’s algorithm to the graph description of 

t h e  vessel segments. Here, the vessel segments inside the 

circle of radius 2r are masked. Dijkstra starts from the two 

root points and continues till it reaches the end of vessels. 

 

                      (a)                                 (b) 

                     (c)                      (d) 

                     (e)                      (f) 
Figure 5. Obtaining the graph description for vessels, (a) skeletal vessel 

segments, (b) reconstructed vessel segments, (c) three vessel segments in 
red, green, and yellow with end region of each segment in blue, (d) the 

corresponding graph representation for Fig. 5(c) with edge costs between 
nodes, (e) a vessel with root segment (segments 

connected to the root points are considered as root segments) denoted in red, 
end points in yellow, and other segments in blue, (f) the corresponding graph 
representation for Fig. 5(e). The segments with an end point in Fig.5(f) are 

represented by a yellow node. 

 

In Fig. 7(f), vessel segments outside the circle of radius 2r 
are masked. The Dijkstra’s algorithm starts from the same root 
points but ends in the center of the optic disc. Fig. 7(g) shows 
the MTA vessel obtained from the vessels in Fig. 6(e) and Fig. 
6(f). The result of MTA separation using the Hough transform 
and optimal tree applied to 43 angiography images of the Feiz 
Hospital database, indicated 40 correct separation, and 3 wrong 
separation. MTA vessels were drawn by an ophthalmology 
expert. We compared the hand drawn MTAs with the 
extracted MTAs using the XOR operator: 

T H E= ⊗  (12) 

where H is the binary hand drawn image of MTA, and E is 
the extracted MTA image. Next, we calculated the portion of 
number of ones in T to the number of the image pixels: 
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(13) 

 

 
 

Figure 6. Block diagram of the proposed method. 

 

where N is number of pixels in the image. Then, depending 
on the value of P, we decided to consider the extracted MTA as 
correct or as incorrect separation: 

{ 0.01

0.01

P correct separation

P incorrect separation

≤
>  

 

(14) 

 
 

 
In previous works, the authors h a v e  just calculated a 

model for MTA without practically extracting the MTA 

vessel. The MTA model is beneficial, but in some 

applications like blood flow velocity computation, we need to 

have the MTA vessel. In [10], Niemeijer et al. introduced a 

point distribution model, which fitted to the vascular arc of 

the image. In [9], Oloumi et al. used the Hough transform to 

model MTA but they did not go further to extract the MTA 

vessel itself. In [11], Fleming et al. used vessel enhancement 

and semielliptical curve fitting using the generalized Hough 

transform to model MTA.  

In our approach, we take advantages of obtained model 

and the Generalized Hough-Transform to track MTA itself.  

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

 
Figure 7. (a) One of the original images of our database. (b) Original image 

after preprocessing including LoG and Gabor wavelet filtering. (c) The 
extracted vessel using SLT. (d) Finding closest root points (denoted in red 

dots) to the parabola model (drawn in green color). (e) Shortest paths outside 
the circle of radius 2r. (f) Shortest paths inside the circle of radius 2r. (g) 

MTA vessel. 
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IV. DISCUSSION AND CONCLUSION 

 

Using the SLT approach for the thresholding of the 

Gabor wavelet response is more sensitive to find minor 

vessels than fixed thresholding. We can use fixed 

thresholding to prevent the detection of minor vessels. 

Pruned vessel maps generate a superior fitted parabola, and 

consequently it is more likely that a correct MTA is extracted. 

Beside acceptable results of this work, there are some 

limitations that need to be addressed. Finding the correct 

initial component at the beginning is very dependent on the 

fitness of the parabola model to MTA. If we could use a cost 

function to consider other features like the thickness of the 

connected components, then we could have a more accurate 

and robust MTA detection algorithm. 

In this work, we took advantage of t h e  graph theory to 

track the MTA vessel in addition to defining a model using 

the Hough transform. 

The proposed method was successful in separating the 

MTA vessel from the angiography images of the retina. The 

extracted MTA can be used in the blood flow velocity 

calculation of t h e  angiography videos; it is beneficial for 

the diagnosis and therapy of retinopathy. 
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