
By Max the Magnificent

Max’s Hot Beans

68  Practical Electronics  |  April  |  2019

Fig.1. SPST (single pole, single throw) switch.

Fig.2. Simple SPST debouncer circuit.

Most non-engineers and 
many junior engineers are 
under the impression that 

when they flip a toggle switch or press 
a push button, it transitions between 
the OFF and ON states in a smooth and 
seamless way. Take a light switch on 
the wall, for example. When we activate 
the switch, the light appears to turn 
on cleanly. It’s as simple as that... or 
is it? In reality, the switch can bounce 
on and off like a ping-pong ball being 
dropped on a wooden table. The only 
reason we don’t notice this is that it 
happens too quickly for the human eye 
to detect. Things are different when 
we are talking about microcontrollers 
(MCUs) with system clocks running 
at millions, tens of millions, or hun-
dreds of millions of cycles per second. 
If we don’t do something to mitigate 
the switch-bounce effect, our micro-
controller might see a single flick of a 
switch as representing a large number 
of transitions.

Switch bouncing around
For the purpose of these discussions, let’s 
consider an SPST (single-pole, single-
throw) switch, where the number of poles 
refers to the number of separate circuits 
the switch can control, and the number 
of throws refers to the number of contacts 
(wiring paths other than ‘open’) to which 
each pole can connect. Furthermore, let’s 
consider this in a typical configuration, 
with its ‘main’ (pole) terminal connected 
to GND and its ‘secondary’ (throw) termi-
nal connected to the positive VDD supply 
via a pull-up resistor (Fig.1).

When the switch is in its inactive/off 
position, the NO (‘normally open’) termi-
nal is pulled up to a logic 1 value. When 
we close the switch (we use the term 
‘make’ as in ‘make the connection’), the 
‘spring-loaded’ mechanical contact may 
bounce back and forth between 0 and 1 
values a number of times before finally 
settling into a 0 state. Similarly, when we 
subsequently reopen the switch (we use 

the term ‘break’ as in ‘break the connec-
tion’), the contact can once again bounce 
back and forth between 1 and 0 values 
before eventually settling on a 1.

Have you ever pressed a button on 
something like a TV controller and been 
annoyed when the system jumped over a 
number of channels? What caused this? 
The answer is almost certainly switch 
bounce or – more accurately – the fact that 
the designer of this device didn’t take ap-
propriate precautions to mitigate against 
switch bounce effects. The bottom line is 
that, if you are in the business of creating 
electronic projects or products, you are 
going to have to deal with switch bounce 
by one means or another.

Debouncing an SPST switch
If you search the Internet, you will dis-
cover myriad suggestions for debounc-
ing your switches. Unfortunately, many 
of these are based on anecdotal evidence 
(‘I heard from a friend of a friend that he 
heard from an old engineer the tale of a 
switch that ...’). For example, I’ve often 
heard that no switch bounces for more 
than 1ms (one thousandth of a second), 
so if we double this to 2ms we should be 
safe, right? Hold your horses...

One authoritative source is embedded 
engineering legend Jack Ganssle, who 
performed (and documented) a suite of 
tests on a collection of switches (https://
bit.ly/2D9KueF). Jack reported that the av-
erage switch bounce duration was 1.6ms, 
with a maximum of 6.2ms. (He also found 
one switch that bounced for a whopping 
157ms, although he considered this switch 
to be a faulty outlier.) Meanwhile, one of 
my chums who was a technician in the 
US air force tells me that they specified 
20ms, just to make sure.

When it comes to debouncing our SPST, 
we can opt for hardware or software solu-
tions. You might question why we don’t 
always do things in software, but it may 
be that our MCU has enough to do and 
we want to offload as many tasks as pos-
sible. A simple SPST debouncer circuit 
is shown in Fig.2.

The idea here is that charging and dis-
charging the RC (resistor-capacitor) combo 
smooths (filters) out any bounces from 
the switch opening and closing. (Choos-
ing the appropriate values for the resis-
tors and capacitors is an exercise in its 
own right, but we don’t need to go into 
that here because – in a little while – I’m 

going to make you very, very happy.) The 
buffer gate is used to ‘sharpen’ the edge 
on VOUT. Furthermore, as we see from 
the symbol, this is a Schmitt buffer with 
hysteresis, which will stop any small 
ripples on the input from being seen as 
switching events.

If we decide to debounce our switch 
in software, then one approach is to use 
a counter to time how long the switch has 
been in its new state. Let’s assume that the 
VOUT signal in Fig.1 is connected to one of 
the inputs on our MCU. Let’s also assume 
that we start off with our switch in its open 
state, which means VOUT = 1. In this case, 
we could wait until we see VOUT go to 0, 
indicating the switch has been closed, at 
which point we could reset our counter 
to 0 and start sampling this signal peri-
odically (every millisecond, for example). 
Every time we sample, we increment the 
counter if VOUT is still 0, or we reset the 
counter to 0 if VOUT is 1. It’s only when 
the counter says the signal has remained 0 
for a specified amount of time – say 20ms 
– that we consider the switch to be truly 
closed, at which point we could initiate 
whatever task(s) we wish to perform. We 
could perform a similar sequence of ac-
tions to determine when the switch has 
been well and truly opened again. 

One problem with both of the tech-
niques – hardware and software – pre-
sented above is that they add an element 
of delay into the proceedings. This delay 
is probably not significant if the switch 
is activated by hand, but it may be more 
of a problem in the case of an automati-
cally triggered limit switch on a piece of 
industrial equipment. With regard to the 
software approach, there is a way around 
this delay, but – once again – we don’t 
need to go there, because I’m about to 
make you very, very happy.

Introducing LogiSwitch ICs
One of my friends, Mike Pelkey, is cred-
ited with being one of the grandfathers 
of base jumping (parachuting or wing-

NO

VDD

VOUT

VOUT

Make Break
1

0

NO
R1

R2

C1

VDD

VOUT



Practical Electronics  |  April  |  2019 69

Fig.3. Single channel of a LogiSwitch IC.

Fig.4. A rainbow of colours.

Hot bean Max Maxfield (Hawaiian shirt, on the right) is editor-
in-chief at EEWeb.com – the go-to site for users of electronic 
design tools and askers of electronic questions.

Comments or questions? Email Max at: max@CliveMaxfield.com

suit flying from a fixed structure like a 
building, bridge, antenna, or cliff). Mike 
is also an engineer of renown; whose 
experience goes all the way back to the 
dawn of the microprocessor.

Like almost every engineer I know, Mike 
wrestled with switch bounce throughout 
his career, which encompassed more than 
40 years of designing digital systems. 
Having employed almost every version of 
traditional hardware and software switch 
bounce mitigation techniques, Mike de-
cided there had to be a better way. The 
result of Mike’s cogitations and rumina-
tions was the LogiSwitch concept (https://
bit.ly/2GnufxA). Boasting adaptive bounce 
detection algorithms and a unique 1-wire 
handshaking protocol, LogiSwitch ICs re-
flect the state-of-the-art in switch bounce 
mitigation technology.

Low-cost LogiSwitch ICs (they start at 
$3.40; volume pricing is available) are 
presented in 3-, 6-, and 9-channel vari-
ants, where each channel can accommo-
date a single SPST switch. All variants are 
available in both surface-mount technol-
ogy (SMT) and lead through-hole (LTH) 
packages, the latter making them perfect 
for hobbyists. The best way to illustrate 
how these devices work is to consider 
a single channel, as illustrated in Fig.3.

The LogiSwitch IC is powered via a 
pair of VDD and GND pins. Each channel 
on the LogiSwitch IC has a single input 
pin (equipped with an internal pull-up 
resistor), which is connected to the raw 
switch input signal, and a single NL/HS 
(normally low with handshake capability) 
output, which is connected to the MCU.

First consider the NL/HS signal without 
the handshake protocol being employed. 
In this case, the MCU pin to which it is 
connected always acts like an input. The 
main thing to note here is that the NL/HS 
signal responds almost instantaneously 
to the initial make or break transition on 
the incoming signal, so the MCU sees the 
switch event as soon as it occurs without 
any artificial delays.

Now let’s consider an example scenar-
io in which we have a program loop that 
waits for the switch to be activated and then 
performs some action like incrementing a 
counter; something like: if (pinNLHS == 
1) counter++;  The problem is that the 
switch could be active for quite some time, 
so – if we aren’t careful – we will end up 
incrementing our counter multiple times.

There are two ways in which we typi-
cally handle something like this. The first 
is to keep track of the switch’s state (‘open’ 
or ‘closed’), and to only increment the 
counter when the switch is first closed. 
The second is to wait for the switch to be 
closed, then increment the counter, and 
then wait for the switch to be opened again 
before restarting the sequence.

LogiSwitch ICs offer another possibil-
ity. As soon as the MCU sees that the NL/
HS input has transitioned to 1, in addi-
tion to performing any tasks like incre-
menting the counter, we can change the 
mode of the pin to OUTPUT, pull the 
NL/HS signal to 0 for 50µS (that’s 50 mi-
croseconds), then return the mode of the 
pin to INPUT.

When the LogiSwitch IC sees that the 
MCU is pulling its NL/HS signal low (this 
pin is driven by an open-collector output 
with internal pull-up), it will itself start to 
drive it to 0. This means that the next time 
the MCU reads this pin, it will see a 0. In 
turn, this means that the MCU no longer 
has to keep track of the switch’s state.

I have to say that when I first saw this, 
I thought, ‘Wow! That’s clever! Why did 

I not think of this myself?’ Suffice it to 
say that I’m now using LogiSwitch ICs in 
all of my projects (for example, I have a 
3-channel device in my Audio-Reactive 
Artifact and three 6-channel devices in 
my Inamorata Prognostication Engine).

There’s so much more to say about the 
switch bounce topic, but no time to say it 
here. Maybe in a future column…

Somewhere over the rainbow
I’ve been receiving a lot of interest from 
last month’s column regarding my Au-
dio-Reactive Artifact project, so I thought 
I’d provide a brief update. Once I’d fin-
ished wiring the LEDs and making sure 
they all lit up as planned, I decided to 
run a quick rainbow test pattern to see 
how the defunct vacuum tubes looked 
when illuminated from below with dif-
ferent colours. The way I did this was 
to divide the tubes into thirteen vertical 
groups (columns) in software, and then 
cycle a rainbow of colours across these 
groups. I must admit that I was a little 
worried that the structures in the tubes 
would block too much of the light, so I 
was very pleasantly surprised with the 
result (Fig.4.)

You can see a short video of this on You-
Tube (https://bit.ly/2RAmC9g), but I have 
to apologise for the quality; this was the 
best I could obtain with an iPhone and it 
really doesn’t do the artifact justice. You 
can also peruse and ponder my Arduino 
code for this effect if you wish (https://
bit.ly/2BkmKEe).

Raw switch
input

Make Break
1

0

NL/HS output
without handshake 

NL/HS output
with handshake 

1

0

1

0

NO
NL/HS

LogiSwitch IC
(1 channel)


