19 – 21 NOVEMBER 2017 HILTON KUWAIT RESORT , AL DORRA BALLROOM

KUWAIT 3rd FLOW MEASUREMENT TECHNOLOGY CONFERENCE

OFFICIAL SPONSOR

إحـدى شركـات مؤسسـة البتـرول الكويتيـة A Subsidiary of Kuwait Petroleum Corporation

THE IMPORTANCE OF DYNAMIC TESTING

MORTEN MARSTEIN

Metering Specialist TechnipFMC Measurement Solutions

MO

WWW.KUWAIT-MEASUREMENT.COM

، الرسم

DISCUSSION TOPICS

- Dynamic testing theory
- Liquid ultrasonic meter fundamentals
- Reynolds number and velocity profile
- Dynamic testing process
- Multi-path USM test results
- Summary and conclusions

DYNAMIC TESTING

Dynamic testing

is a simulation over the **Reynolds Number range** as the meter will encounter in the field application. It provides a test range for ultrasonic and helical turbine meters based on the concept of dynamic similitude.

The method

- Performance at a given Reynolds Number is similar with various combinations of flow rate and viscosity.
- Flow meter performance on a test system can be validated on a higher or lower viscosity and/or flow rate than the field operating conditions.

LIQUID ULTRASONIC METERS

Theory:

MOI

0 1

FMC Technologies

• Inferred volume throughput = Fluid velocity x Area

WWW.KUWAIT-MEASUREMENT.COM

ن الرسم ي

2017

REYNOLDS NUMBER

$$\mathrm{Re} = rac{
ho v D_\mathrm{H}}{\mu} = rac{v D_\mathrm{H}}{
u} = rac{Q D_\mathrm{H}}{
u A}$$

- A dimensionless parameter that defines the measurement or dynamic operating range. This is used as a means of comparing flow meter applications between field and test conditions.
- Quantitatively it is the **ratio of the inertia forces** (diameter x velocity x density) **to the viscous forces** (a fluids resistance to flow).
- In terms of flow rate, meters size (inches) and viscosity (cSt) it can be expressed as:

Re No = (CF x flow rate) / (meter size x cSt)

Where Conversion Factor:

- CF = 2214 for flow rate in bph and,
- CF = 13927 for flow rate in m3/h

- Laminar flow High viscosity and / or low flow rate, under 2,000 Reynolds number
- **Turbulent flow** Low viscosity and / or higher flow rates, which is typically developed at Reynolds Numbers greater than 6,000 to 8,000

Transitional flow – Fluctuates between flow regimes and can be difficult to measure

BOUNDARY LAYER

2017

REYNOLDS NUMBER AND FLOW PROFILE

FLOW

201

DYNAMIC FACTORY TESTING

Measurement range for a specific meter size is quantitatively expressed as:

Re No Range = (CF x Flow Range) / (Meter Size x Viscosity Range)

الراعــي الرسمــي OFFICIAL SPONSOR

DYNAMIC TEST EXAMPLE

Meter (Inches)	Flow Range			Viscosity (cSt)	Reynolds Number Range		
6	bph	1,500	4,500	800	600	2,080	
0	m³/h	240	720	800	090		
12	bph	6,330	19,000	1 000	1 170	2 5 1 0	
	m³/h	1,010	3,020	1,000	1,170	3,510	
20	bph	14,000	42,000	1 000	1 550	4 650	
	m³/h	2,230	6,680	1,000	1,550	4,000	

Field Conditions with actual flow rates and fluid viscosities ranging from 800 to 1,000 cSt produce a certain Reynolds Numbers Range

Meter (Inches)	Flow Range			Viscosity (cSt)	Reynolds Number Range		
6	bph	560	1,690	300	600	2,080	
0	m³/h	90	270	300	090		
12	bph	1,900	5,710	200	1 170	3,510	
	m³/h	300	910	300	1,170		
20	bph	4,200	12,600	200	1 550	4 650	
	m³/h	670	2,000	300	1,550	4,050	

MOI

Dynamic testing at the factory simulates the same Reynolds Numbers Range the meters will see in the field by varying flow rates in combination with the available test fluid (300 cSt in the example)

MULTI-VISCOSITY (MV) TEST SYSTEM

- 1. Test Run
- 2. Pumps/Drives
- 3. Tanks
- 4. Chiller
- 5. Master PD Meter Provers
- 6. Master Prover

Flow Range: 200 to 8000 bph (30 to 1270 m³/h) Viscosity: 2 - 250 cSt

DYNAMIC TEST EXAMPLE

Multiple Test Systems

Field Operating Conditions

Flow Range Actual: 636 to 1,113 m³/h (4,000 to 7,000 bph)

Viscosity Range 5 to 350 cSt

FLOW M

0 1

Reynolds Number Range 2,153 to 263,796

Re Number

Size	Test Systems		Flow (m ³ /h)		Viscosity (cSt)	Reynolds Number	
(Inches)			min	max	Nominal	min	max
10	Test 2	MV	238	1,272	150	1,884	10,049
12	Test 1	HF	79	3,020	12	7,851	298,340
Total Range		1,900	19,000		1,884	298,340	

Calibration Test Data

12-INCH MULTI-PATH USM DYNAMIC TEST

FLOW

0 1

	الى	مط	25	
			1	6
		4		
	6	1	7	
E	4		000	2
	⁴ Oi	I Co	un	

	Application Data	Dynamic Test Range	
Meter Size	12	12	
Meter Type	Multi-Path Ultrasonic	Multi-Path Ultrasonic	
Flange Class	ASME Class 600	ASME Class 600	
Meter Schedule (ID)	SCH XS (ID 11.750 inches)	SCH XS ID (11.750 inches)	
Minimum Flow Rate	636 m ³ /h [4,000 bph]	79 m ³ /h [500 bph]	
Maximum Flow Rate	1,113 m³/h [7,000 bph]	3,021 m ³ /h [19,000 bph]	
Viscosity Range	5 –350 cSt	12 – 150 cSt	
Reynolds Number Range	2,153 to 263,796	1,884 to 298,340	

DYNAMIC SIMILITUDE TEST 1

الراعــي الرسمــي OFFICIAL SPONSOR

Test 1							
Test System	High Flow (HF) Test Stand						
PD Meter Master Prove	9.7 m ³ [61 bbl] Prove Volume						
Test Fluid	Medium Fluid						
Temperature	~32.2°C [90°F]						
Viscosity	12 cSt						
Nominal Flow Rates (BPH)	500 4,200 7,900 11,600 15,300 19,000						
Nominal Flow Rates (M ³ /HR)	79	668	1,256	1,844	2,433	3,020	
Reynolds Number Test Range	7,851	65,949	124,047	182,145	240,243	298,340	
Percentage of Max	2.6%	22%	42%	61%	80%	100%	

DYNAMIC SIMILITUDE TEST 2

الراعــي الرسمــي OFFICIAL SPONSOR

Test 2							
Test System	Multi-Visco	Multi-Viscosity (MV) Test Stand					
PD Meter Master Prove	9.7 m ³ [61 bbl] Prove Volume						
Test Fluid	Extra Heavy Fluid						
Temperature	~35°C [95°F]						
Viscosity	150 cSt						
Nominal Flow Rates (BPH)	1,500 4,750 8,000						
Nominal Flow Rates (M ³ /HR)	238 755 1,272		1,272				
Reynolds Number Test Range	1,884 5,967 10,049						
Percentage of Max	0.63% 2% 3.3%						

TEST RESULTS

FLOW

201

Testing Over an Application Range (Re# Range 1,884 to 298,340)

TEST RESULTS

Testing Over an Application Range

(Re# Range 1,884 to 298,340)

FLOW

0 1

WWW.KUWAIT-MEASUREMENT.COM

الراعــي الرسمــي OFFICIAL SPONSOR

SUMMARY AND CONCLUSION

- Dynamic factory testing is a important step in the application of high accuracy ultrasonic meters
- The primary focus of a Dynamic factory test is to validate the application operating range vs. the linear measurement range of the meter
- Dynamic Similitude using Reynolds number is a sound method of testing when application conditions cannot be achieved
- Multiple test systems can be used and simplified by maintaining a common calibration reference. ISO 17025 accreditation assures quality testing methods and traceability.
- Correction algorithms are critical for linearity, particularly at low Reynolds Numbers (<10,000). Test plans and validation are essential.

Thanks for Attention