

CTRLD
Implementation Guide

CTRLD Implementation Guide version 2019.1.0

2 Oct 2019

www.rtbrick.com

http://www.rtbrick.com/

 ii

Headquarters

N-17L, 1st Floor, 18th Cross Rd

Sector 3, HSR Layout

Bengaluru, Karnataka

India 560102

Support

Sales

+91 80 4850 5445 +TBC

+91 80 4850 5445

www.rtbrick.com support@rtbirck.com sales@rtbrick.com

©Copyright 2019 RtBrick, Inc. All rights reserved. The information contained herein is

subject to change without notice. The trademarks, logos and service marks ("Marks")

displayed in this documentation are the property of RtBrick in the United States and other

countries. Use of the Marks are subject to RtBrick’s Term of Use Policy, available at

https://www.rtbrick.com/privacy. Use of marks belonging to other parties is for

informational purposes only

http://www.rtbrick.com/
mailto:support@rtbirck.com
mailto:sales@rtbrick.com
https://www.rtbrick.com/privacy

 iii

 iv

Table of Contents

 Overview .. 5

1.1 The CTRLD Binary ... 5

 The Configuration File .. 6

 The CTRLD Logs .. 8

 The CTRLD API ... 8

 CTRLD and Management ...10

 Container Management ... 10

 Image Management .. 12

2.2.1 Image Folder .. 12

2.2.2 Image Download .. 13

 Container and Element Management ... 13

 Jobs and Callbacks ... 14

 Pub Sub .. 15

 5

 Overview
This document gives an inside to the Container management of CRTLD and the interaction

between the different systems and CTRLD.

The CTRLD (control daemon) is the single point of entry to an RtBrick router running the RBFS

software. CTRLD primarily uses REST to control the router. CTRLD is also responsible for

gathering data from the router and forwarding this information to other systems.

This role for CTRLD is shown in Figure 1.

Figure 1: Overview of CTRLD.

The CTRLD plays these different roles because CTRLD is the entry point for all of the different

components interacting within or outside of a box. So, CTRLD can be thought of in the following

way:

 CTRLD is the controller of a router box running RBFS

 CTRLD is the controller of an element within the box, such as LXC containers

 CTRLD is the gateway to an RBFS image and package

You can run multiple instances of the CTRLD on a given box.

1.1 The CTRLD Binary

 6

In a production environment, the ctrld binary starts with default parameters. This service is

called rtbrick-ctrld. The ctrld -h command shows these default parameters, highlighted

in red in the listing below.

$ ctrld -h
Usage of ctrld:
 -addr string
 HTTP network address (default ":19091")
 -config string
 Configuration for the ctrld (default "/etc/rtbrick/ctrld/config.json")
 -lxccache string
 lxc Image Cache folder (default "/var/cache/rtbrick")
 -servefromfs
 Serves from filesystem, is only used for development
 -version
 Returns the software version

The command ctrld -version displays the installed version of the daemoin. The version

should be tagged correctly in the repository.

The CTRLD configuration is in the JSON file at /etc/rtbrick/ctrld/config.json. You can

cat the file to display the contents, as shown below:

$ cat /etc/rtbrick/ctrld/config.json
{
 "rbms_enable": true,
 "rbms_host": "http://192.168.200.45",
 "rbms_authorization_header": "Basic YWRtaW46YWRtaW4=",
 "rbms_heart_beat_interval": 600
}

 The Configuration File

The CTRLD configuration file is a flat JSON file. The properties are described in Table 1.

Property Description Default Value

rbms_enable To enable all RBMS

outgoing messages

false

rbms_host RBMS base url e.g.:

http://192.168.202.44:9009

 7

rbms_authorization_header RBMS Authorization

Header is set to all calls

which are outgoing to

RBMS

nil

rbms_heart_beat_interval RBMS heartbeat Interval in

seconds. Nil leads in no

heartbeat.

nil

The calls to rbms are made via a retry handler. After an unsuccessful attempt there will

be done a retry call, the time between the attempt is exponential and based on the

attempt number and limited by the provided minimum and maximum durations.

rbms_retry_wait_min Min wait time in seconds 2

rbms_retry_wait_max Max wait time in seconds 300

rbms_retry_max Max retries 10

The calls to the callbacks are made via a retry handler. After an unsuccessful attempt

there will be done a retry call, the time between the attempt is exponential and based

on the attempt number and limited by the provided minimum and maximum

durations.

callback_retry_wait_min Min wait time in seconds 2

callback_retry_wait_max Max wait time in seconds 300

callback_retry_max Max retries 10

Graylog Configuration

graylog_enable To enable all Graylog

outgoing messages

false

graylog_url Graylog url e.g.

http://127.0.0.1:12201/gelf

graylog_heart_beat_interval Graylog heartbeat Interval

in seconds. Nil leads in no

heartbeat.

nil

Table 1. CTRLD Configuration File Properties.

 8

 The CTRLD Logs

The log files for CTRLD are stored at /var/log/rtbrick-ctrld.log, and are rotated with

logrotate. The log rotation configuration can be found at /etc/logrotate.d/rtbrick-

ctrld.

 The CTRLD API

CTRLD is built with the Domain Driven Design (DDD) Principles in mind. The model is split into

modules which, in DDD, are called Bounded Contexts. Also, the CTRLD API is divided in such

modules.

The CTRLD API is a rest API that leverages the Richardson Maturity Model level 2.

You can find an aways actual API overview within each running CTRLD instance at:

http://<hostname>:<port>/public/openapi/

The CTRLD API has been redesigned when we ported it to the golang programming language.

However, to provide some extended backward compatibility, there is a module called

“AntiCorruptionLayer” to address this problem.

NOTE: These older APIs might be deleted soon, so use them with caution.

Table 1 describes the API tags used to group the APIs by their modules.

API Tag Description

anti_corruption_layer These APIs are all deprecated. They exist only for older

systems and backward compatibility.

client These are not the APIs that CTRLD provides, but the APIs that

a client has to provide to use the callback function of CTRLD.

ctrld/config Configure CTRLD

ctrld/containers Handle LXC containers (start, stop, delete, list)

ctrld/elements Handle elements (start, stop, delete, upgrade, config)

ctrld/rbfs Handle calls which came from the RBFS

https://martinfowler.com/articles/richardsonMaturityModel.html
https://golang.org/

 9

ctrld/images Handle all requests regarding RBFS images. (download,

delete, list)

ctrld/jobs Get information about asynchronous tasks.

ctrld/info General info about CTRLD, like version, image and so on.

ctrld/events For the publish/subscribe sub model, register for an event,

and stay informed about events.

ctrld/system Communication with the underlying host system.

rbfs Communication with an RBFS element such as Proxy, File

Handling, and so on.

Table 1. REST API Tag Descriptions.

 10

 CTRLD and Management
This section describes CTRLD container and image management.

 Container Management

The CTRLD is responsible for container management. But the RBMS is not aware of the

containers. Therefore, a proper mapping to containers is needed. This section describes the

correlation between the RBMS, CTRLD and LXC.

The RBMS has various elements, each identified by name. Each element describes a running

RBFS instance. It is possible to upgrade and downgrade elements.

Each element in RBMS has services. That is a bit confusing, because the services not only

describe the services of an element itself, but also describe the services running the element.

The root aggregate of the model is the element container, whether there is one element on an

ONL or not. The general structure of daemons and containers in the RBFS service model is

shown in Figure 2.

 11

Figure 2. Service Model for RBFS.

In case that an element is up- or downgraded the old container is saved as an outdated

container. Therefore, it is possible to recover an outdated container, if an upgrade fails or the

upgrade has errors.

It is important to understand the difference between an element and a container. In an RDFS

context, a container is always an lxc-container. The containers in a whitebox are simply called

“rtbrick”. In order to make them useful for the RBMS, they need a proper name.

You configure the element-name and the pod-name of a container in the lxc-container

root directory (/var/lib/lxc/rtbrick/element.confg).

This method provides many advantages:

● Container updates

○ Prepare an update of the container (for example, rtbrick-v2)

○ Stop container version 1 and start container version 2

○ This allows fast updates of containers: if the update is corrupt, stop the second

container and restart the first container.

● Renaming of elements

ONL

<<os>>

CtrlD

<<DEAMON>>

Element
<<CONTAINER>>

AccessD

<<DEAMON>>

LogD

<<DEAMON>>

out dated

<<CONTAINER>>

 12

If there is no element.config available, then the element name is the name of the

container.

 Image Management

The images are saved on the ONL under /var/cache/lxc/rtbrick

There is only one subfolder for each image: /var/cache/lxc/rtbrick/<image-folder>

The image is identified by a series of fields, described in Table 2.

Field Description

organization Organization that issued the image as

reverse domain name (e.g. net.rtbrick).

category Category which can be used to describe

the purpose of the image. (e.g. customer-

production)

platform Describes the Hardware Platform.

vendor_name Vendor of the platform

model_name Model of the platform

image_type Image type (for example, LXC)

image_name Image name (for example, rbfs)

element_role Element role the image was built for (for

example, LEAF).

image_version Image revision to be activated

{major}.{minor}.{patch}-{prerelease}

Table 2. Image Identification Fields and Descriptions

2.2.1 Image Folder

The image folder contains the following files:

● A metadata.YAML which identifies the image. There can also be additional attributes in

the file, but the attributes to identify an image have to be in the file. An example of the

RtBrick properties are shown below.

 13

rtbrick_properties:
 organization: net.rtbrick
 category: ewetel-production
 platform:
 vendor_name: virtual/tofino
 model_name: virtual
 image_type: LXC
 role: LEAF
 image_name: rtbrick-rbfs
 image_version: 19.13.4-master

● A subfolder named rootfs

● The config.tpl file. This file is used to create the configuration file with the respective

data in the template. You can use the following syntax to add a property from the

dictionary provided by ctrld. Therefore,

lxc.rootfs.path = dir:{{index . "rootfs”}}

results in lxc.rootfs.path = dir:/var/lib/lxc/mega/rootfs

2.2.2 Image Download

CTRLD provides functionality to download images from a repository, therefore the url to the

image is provided by the caller.

Optionally also the checksum algorithm and the value can be provided, after downloading the

image, the checksum will be verified.

 Container and Element Management

LXC Containers are identified as elements if they have a metadata.YAML with the fields

described above. These LXC containers can also be revised containers, which are created when

an upgrade of a container takes place. The revised element is named using the element name

and a timestamp: revised-{element-name}-{timestamp}.

NOTE: It is not yet possible to rename an element. See https://www.cyberciti.biz/faq/how-to-

rename-lxd-lxc-linux-container/ for more details

https://www.cyberciti.biz/faq/how-to-rename-lxd-lxc-linux-container/
https://www.cyberciti.biz/faq/how-to-rename-lxd-lxc-linux-container/

 14

A template engine to update the LXC configuration template is used for the container. Each

container has the files in the /var/lib/lxc/{container-name} folder, as shown in Table

3.

File Description

config.tpl Template for lxc configuration

This file comes directly out of the image,

and is stored in this folder for renaming

the container. Because a rename recreates

the config file.

config.data Data which was used to fill the templates

(config, hostconfig).

This file is saved by ctrld, it is used by

rename the container, because a rename

recreates the configfile.

metadata.yaml Information about the image the

container was built from. And a lot more

information.

Table 3. Files in the Container Folder.

The status of an image can be CACHED or ACTIVE, as described in Table 4.

Status Description

CACHED This image is on the ONL

ACTIVE This image is on the ONL and is the image

used for the actual container instance.

Table 4. Image Status States and Meaning.

 Jobs and Callbacks

The Jobs API is needed for asynchronous API calls. Asynchronous API calls can be used with a

callback, so that the caller is informed when the job is finished, or can be used with a polling

mechanism. The Job API polling asks if the job is finished. This is sometimes easier to implement,

especially for scripts like robot.

 15

The callback mechanism uses a retry handler. The retry handler performs automatic retries under

the following conditions:

 If an error is returned by the client (such as a connection error), then the retry is invoked

after a waiting period

 If a 500-range response code is received (except for 501 “not implemented”), then the

retry is invoked after a waiting period.

 For a 501 response code and all other possibilities, the response is returned and it is up to

the caller to interpret the reply.

 Pub Sub

CTRLD uses a publisher and subscriber model. This model is needed for features not

implemented directly in CTRLD, such as ZTP.

So, for example, the ZTP daemon (ZTPD) can subscribe to events, and ZTPD is informed if the

event occurs in CTRLD.

