

# Apport et intérêt de l'élastrographie dans l'étude des cardiopathies congénitales Interest of elastography in CHD

#### **Olivier Villemain**

Necker-Enfants Malades, Paris, France

Congrès FCPC, Lille, 2018





# Apport et intérêt de l'élastrographie dans l'étude des cardiopathies congénitales Interest of elastography in CHD

#### **Olivier Villemain**

Necker-Enfants Malades, Paris, France

Congrès FCPC, Lille, 2018





## élastographie



# Apport et intérêt de l'élastrographie dans l'étude des cardiopathies congénitales Interest of elastography in CHD

#### **Olivier Villemain**

Necker-Enfants Malades, Paris, France

Congrès FCPC, Lille, 2018





#### Use of ultrasound in medicine

1938: First ultrasound medical exploration (Dr Dussik, psychiatrist)

1952: Using the Doppler effect (Howry, Wild et Reid; USA)

1967: First medical images performed by an ultrasound system

1970-80: Mechanical sweeping with motorized movement of a ultrasound probe → first imagery of a moving tissue

1980-90: Improved digital memory→ real-time multilocalization

1990-2000: Hardware optimization, miniaturization, appearance of matrix array probes...

1999: 1st GPU accessible to the public (Nvidia GeForce FX)

1971: 1st

microprocessor

2000-2010: Technological opportunity (GPU) to process more information in a short time. Appearance of the very high frame rate in real time









1980

1990

1995

2010



#### Use of ultrasound in medicine

1938: First ultrasound medical exploration (Dr Dussik, psychiatrist)

1952: Using the Doppler effect (Howry, Wild et Reid; USA)

1967: First medical images performed by an ultrasound system

1970-80: Mechanical sweeping with motorized movement of a ultrasound probe → first imagery of a moving tissue

1980-90: Improved digital memory→ real-time multilocalization

1990-2000: Hardware optimization, miniaturization, appearance of matrix array probes...

1999: 1<sup>st</sup> GPU accessible to the public (Nvidia GeForce FX)

1971: 1st

microprocessor

2000-2010: Technological opportunity (GPU) to process more information in a short time. Appearance of the very high frame rate in real time









1980 1990

1995

2010



#### **Ultrafast Imaging**

#### **Conventional Imaging**



128 to 512 transmits for a full image (typically 10 to 50 ms)

























### **Elastography**

**Elastography**: medical imaging technique (ultrasound or MRI) to measure the elasticity of biological tissue in an organ











# Some µm displacements

« Shear wave imaging »

- Operator free
  - Real time
    - Freehand
      - Quantitative





# **Elastography Applications**

#### **Breast**



#### **Prostate**



#### Liver



- Evans et Al., Radiology, 2012
- Wong et al, Hepatology, 2009
- Correas et al., Diagnostic and Interventional Imaging, 2013





## **Elastography & Cardiology**







## **Elastography & Cardiology**

Is there a link between liver stiffness & right heart preload (= central venous pressure)?

→ only few, recent (but very interesting) papers...

Millonig et al.1

Taniguchi et al.<sup>2</sup>

Jalal et al.3







<sup>&</sup>lt;sup>1</sup> Journ of Hepatology. 2010

<sup>&</sup>lt;sup>2</sup> Am Journ Cardiology. 2014

<sup>&</sup>lt;sup>3</sup> Heart. 2015



### Institut Langevin Clinical study – Liver stiffness

**OBJECTIVE:** Evaluation of the variation impact of central venous pressure (CVP) on liver stiffness (LS) in real time by shear wave elastography (SWE) in a cohort of children with heart disease.





# Liver stiffness & CVP Results



Correlation between liver stiffness and central venous pressure (CVP), pre- and post-volume loading, with an example of evaluation of liver stiffness by shear wave elastography (kPa).





# Liver stiffness & CVP Results



Liver Stiffness > classical clinical parameters



# Institut Langevin ONDES ET IMAGES

# Liver stiffness & CVP

#### Next?





Figure 1. Noncardiac complications in adults with congenital heart disease (CHD).



Table 1. Types of Heart Disease That May Be Associated With Liver Disease

| Right-sided heart disease                                                |
|--------------------------------------------------------------------------|
| Fontan physiology                                                        |
| TOF with residual pulmonary regurgitation                                |
| Complete transposition of the great arteries after atrial switch surgery |
| Pulmonary valve disease                                                  |
| Ebstein anomaly and other tricuspid valve disease                        |
| Eisenmenger syndrome                                                     |
| Pulmonary hypertension                                                   |
| Pericardial disease                                                      |
| Left-sided heart disease                                                 |
| Left ventricular outflow obstruction                                     |
| Mitral valve disease                                                     |
| Ischemic and nonischemic cardiomyopathy                                  |
| Cor triatriatum                                                          |

TOF indicates tetralogy of Fallot.

Di Paola et al. *Eur Radiol.* 2017 Kutty et al. *JTCVS*. 2016 Burchill et al. *Circ Res*. 2017 Lui et al. *Circulation*. 2017 Mebus et al. *Int J Cardiol*. 2017



# Institut Langevin ONDES ET IMAGES

# **Liver stiffness & CVP**

#### Next?





Figure 1. Noncardiac complications in adults with congenital heart disease (CHD).



Table 1. Types of Heart Disease That May Be Associated With Liver Disease

| Right-sided heart disease                                                |
|--------------------------------------------------------------------------|
| Fontan physiology                                                        |
| TOF with residual pulmonary regurgitation                                |
| Complete transposition of the great arteries after atrial switch surgery |
| Pulmonary valve disease                                                  |
| Ebstein anomaly and other tricuspid valve disease                        |
| Eisenmenger syndrome                                                     |
| Pulmonary hypertension                                                   |
| Pericardial disease                                                      |
| Left-sided heart disease                                                 |
| Left ventricular outflow obstruction                                     |
| Mitral valve disease                                                     |
| Ischemic and nonischemic cardiomyopathy                                  |
| Cor triatriatum                                                          |

TOF indicates tetralogy of Fallot.

Di Paola et al. *Eur Radiol.* 2017 Kutty et al. *JTCVS*. 2016 Burchill et al. *Circ Res*. 2017 Lui et al. *Circulation*. 2017 Mebus et al. *Int J Cardiol*. 2017





## **Myocardial Elastography**

**Step 1: Shear wave remote generation** 

Step 2: Ultrafast imaging (10,000 images/s)









### **Human studies objective**

The goal of our human studies was to investigate the potential of Myocardial Elastography, to quantify noninvasively the passive diastolic myocardial stiffness in healthy populations (children and adults) and its variation vs. hypertrophic cardiomyopathy with heart failure with preserved ejection fraction (HCM-HFpEF) population.

What is normal?

Could we make a difference between a normal and a pathologic case?





### **Pediatric Study**



ClinicalTrial.gov: NCT02619825 (Non-Invasive Evaluation of Myocardial Stiffness by Elastography in Pediatric Cardiology)





#### Institut Langevin

ONDES ET IMAGES













### Results







## **SWI & Echocardiography**



No unique echocardiographic parameter used to estimate the diastolic function of the left ventricle could predict MS up to 4 kPa with high specificity and sensitivity.

# Characteristics of patients with MS > Cl95% (>10.5 kPa)

7/28 HCM patients had MS >10.5 kPa.

Among the seven HCM patients who had MS > CI95% (>10.5 kPa), six had an echocardiographic **restrictive profile** assessed by LAVI >48 ml/m², E/A >2, E-wave DT <150 ms, and e' medial <6 cm/s.









## Interpretation of Left Ventricular Diastolic Dysfunction in Children With Cardiomyopathy by Echocardiography: Problems and Limitations Andreea Dragulescu, Luc Mertens and Mark K. Friedberg

Circ Cardiovasc Imaging. 2013;6:254-261; originally published online January 23, 2013;







Conclusions—Assessment of DD in childhood CM seems inadequate using current guidelines. The large range of normal pediatric reference values allows diagnosis of DD in only a small proportion of patients. Key echo parameters to assess DF are not sufficiently discriminatory in this population, and discrepancies between criteria within individuals prevent further classification and result in poor interobserver agreement. (Circ Cardiovasc Imaging. 2013;6:254-261.)









Interpretation of Left Ventricular Diastolic Dyefo, distribution With Cardiomyopathy by Echocardiograph Problems and Limitations

Andreea Dragulescu, Luc Mertens and Mana M. Ericiloris

Circ Cardiovasc Imaging. 2013;6:254-261; originally published online January 23, 2013;







Conclusions—Assessment of DD in childhood CM seems inadequate using current guidelines. The large range of normal pediatric reference values allows diagnosis of DD in only a small proportion of patients. Key echo parameters to assess DF are not sufficiently discriminatory in this population, and discrepancies between criteria within individuals prevent further classification and result in poor interobserver agreement. (Circ Cardiovasc Imaging. 2013;6:254-261.)





### **Adult study**



ClinicalTrial.gov Identifer: NCT02537041 (Non-Invasive Evaluation of Myocardial Stiffness by Elastography)





#### Results



Aging, with linear increase of myocardial stiffness depending on the age

Significant difference between each age group

For the HCM-HFpEFgroup (mean MS=12.68±2.91 kPa), the MS was significantly higher than in the healthy volunteer (p<10<sup>-4</sup>), with a cutoff identified at 8 kPa (AUC=0.993, Se=95%, Sp=100%).





## Valve & Elastography









### **Conclusion**



### Liver



# Myocardium



## **Valve**





# Thank you for your attention



