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Abstract: Activated carbon is an adsorbent that is commonly used for removing organic 
contaminants from air due to its abundant pores and large internal surface area. This thesis is 
concerned with the static adsorption capacity and adsorption kinetics for single and binary 
organic compounds on different types of activated carbon. These are important parameters 
for the design of filters and for the estimation of filter service life. Existing predictive models 
for adsorption capacity and kinetics are based on fundamental “hard” knowledge of 
adsorption mechanisms. These models have several drawbacks, especially in complex 
situations, and extensive experimental data are often needed as inputs. In this work we present 
a systematic approach that can contribute to the further development of predictive models, 
especially for complex situations. The approach is based on Multivariate Data Analysis 
(MVDA), which is ideally suited for the development of soft models without incorporating 
any assumptions about the mathematical form or fundamental physical principles involved.   
 
Adsorption capacity and adsorption kinetics depend on the properties of the carbon and the 
adsorbate as well as experimental conditions. Therefore, to make general statements regarding 
adsorption capacity and kinetics it is important for the resulting models to be representative of 
the conditions they will simulate. Accordingly, the first step in the investigations underlying 
this thesis was to select a minimum number of representative and chemically diverse organic 
compounds. The next steps were to study the dependence of the derived affinity coefficient, β, 
in the Dubinin-Radushkevich equation on properties of organic compounds and to establish a 
new, improved model. This new model demonstrates the importance of adding descriptors for 
the specific interaction with the carbon surface to the size and shape descriptors. The 
adsorption capacities of the same eight organic compounds at low relative pressures were 
correlated with compound properties. It was found that different compound properties are 
important in the various stages of adsorption, reflecting the fact that different mechanisms are 
involved. Ideal adsorbed solution theory (IAST) in combination with the Freundlich equation 
was developed to predict the adsorption capacities of binary organic compound mixtures. A 
new model was proposed for predicting the rate coefficient of the Wheeler-Jonas equation 
which is valid for breakthrough ratios up to 20%. Finally, it was shown that the Wheeler-Jonas 
equation can be adapted to describe the breakthrough curves of binary mixtures. New models 
were proposed for predicting its parameters, the adsorption rate coefficients, and the 
adsorption capacities for both components of the binary mixture. Thus, multivariate data 
analysis can not only be used to assist in the understanding of adsorption mechanisms, but 
also contribute to the development of predictive models of adsorption capacity and 
breakthrough time for single and binary organic compounds. 
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Binary mixtures, Dubinin-Rauskevich, Wheeler-Jonas                                                           
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1 INTRODUCTION 
 

Many volatile organic compounds (VOCs) are toxic, posing a high risk to human health as 
a result of their widespread use and occurrence in workplace environments. Reducing the 
amount of organic vapors in ambient air is, therefore, an important task. Activated 
carbons are the most versatile and frequently used adsorbents, and fixed beds of activated 
carbon, in the form of canisters or filters, are widely used for purifying contaminated air. 
Its large internal surface area and pore volume, its ability to adsorb most organic vapors 
and low cost make activated carbon one of the most practical adsorbents (Prakash et al. 
1994).  
 
Activated carbon beds eventually become exhausted after continuous exposure to air 
contaminated with organic vapors. The time at which an organic vapor of a defined 
concentration is able to penetrate the bed is known as the breakthrough time of the 
adsorbate. In practical situations, a key factor is the service life of the filter. This is defined 
as the time at which the concentration of the compound penetrating the filter reaches an 
unacceptable level. An accurate estimate of this service life is of great importance to both 
users and manufacturers. A predictive model for filter performance would reduce the 
need for time consuming filter tests, aid in the design of filters with optimized 
performance and provide knowledge of the service life of military filters exposed to 
conditions and chemicals encountered in civilian situations. 
 
In order to predict breakthrough times, knowledge of both the adsorption equilibrium 
capacity and the adsorption kinetics is required. A number of adsorption models have 
been developed for predicting the breakthrough times of organic vapors in filters 
containing activated carbon (Ackley, 1985). The complexity of the adsorption process, 
however, makes it necessary to use simplifying assumptions in deriving the models. 
Furthermore, these models have been derived from the performance of a limited number 
of compounds with limited structural variation. The existing models therefore suffer from 
a number of drawbacks, especially for complex situations, such as the adsorption of multi-
component mixtures.  
This thesis describes the results of applying a systematic approach to the development of 
predictive models for the adsorption of organic compounds. The approach is based on a 
statistical tool known as Multivariate Data Analysis (MVDA; Wold et al. 1984). MVDA is 
a mathematical technique for building global models of complex systems. Its strength lies 
in the simultaneous treatment of many variables and the resulting information on the 
complex interplay between different factors. To maximize the information obtained from 
a minimum number of experiments, the study also involved the use of experimental 
design for training a global model. 
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The aims of the work underlying this thesis were: 
• to increase the knowledge of fundamental aspects of adsorption 
• to determine the relationship between adsorbate properties and the 

corresponding adsorption capacity and kinetic rate constant 
• to develop a predictive model for filter performance in the presence of binary 

mixtures of organic compounds. 
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2  OVERVIEW OF THE THESIS 
 
The overall aim of this work was to explore the merits of applying a systematic approach 
to the development of predictive models for the service life of fixed activated carbon beds 
exposed to mixtures of organic compounds. 
 
This systematic approach consists of the following steps: 

1. Selection of a set of training data through: 
a) characterization of adsorbate properties using a multitude of descriptor   
variables. 
b) calculation of principal properties. 
c) factorial design in the principal properties 

2. Performance tests 
3. Structure-affinity modeling. 
4. Validation of the model. 
 

The Wheeler-Jonas equation is frequently used to evaluate the breakthrough time of 
organic compounds in activated carbon beds. To use this equation for predicting service 
lives, two parameters need to be known: the adsorption capacity We and adsorption rate 
coefficient kv. 
 
Paper I considers ways for improving accuracy in predicting We. The dependence of the 
affinity coefficient, β, on adsorbate properties is examined and a new model for deriving β 
is developed. 
In Paper II, adsorption capacities at low relative pressures are correlated with properties 
of organic compounds, thereby increasing understanding of the mechanisms involved in 
the different stages of the adsorption process.  
Paper IV is an investigation of the factors influencing the rate coefficient kv, including 
adsorbate and carbon properties, inlet concentration and flow velocities. A new model for 
determining kv is proposed. 
 
Paper III describes a procedure for predicting the adsorption capacities of binary mixtures 
using the ideal adsorbed solution theory (IAST).  
 
When binary mixtures are being adsorbed, We and kv for each compound in the mixture 
may differ from the corresponding values for the adsorption of the individual compounds. 
In Paper V these changes in We and kv are modeled on the basis of the physico-chemical 
properties of both compounds, making it possible to derive We and kv for each compound 
in the binary mixture from We and kv for the single compounds. Based on this, the service 
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lives of activated carbon beds exposed to binary mixtures of organic compounds are 
predicted. 
Schematically, the five papers are related as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.1: Overview of the papers included in the thesis.

A new model for  
determining the affinity 
coefficient β in the DR 

Modeling the influence of  
compound properties on We 

Understanding 
adsorption mechanisms 
at low relative pressures

Adsorption capacity 
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equation  

IAST in combination 
with the Freundlich   
equation 

A procedure to 
predict We for 
binary systems 

Paper I Paper II Paper III 

A new model for 
determining kv 

The W-J 
equation is 
used to 
predict  
breakthrough 
time 

Paper IV 

Breakthrough time or service life can be 
predicted for binary adsorbates 

         Paper V 

Models to predict the change in We and kv of each 
compound in binary systems 



Background 

5 

3 BACKGROUND 
 
3.1 Activated carbon 
 
Activated carbon is a solid, porous, black carbonaceous material, see Fig.3.1. It is 
distinguished from elemental carbon by the absence of both impurities and an oxidized 
surface (Mattson and Mark, 1971). It can be prepared from a large number of sources 
such as coconut, wood, peat, coal, tar, sawdust, and cellulose residues (Lambiotte, 1942). 
Any carbon source can be converted into activated carbon via a number of methods. 
Usually, the process is divided into carbonization and activation. During carbonization 
most of the non-carbon elements are removed in gaseous form by the pyrolytic 
decomposition of the source material. The porous structure is mainly developed during 
activation by means of an activation agent that reacts with the carbon. Such agents may 
include synthetic acids, bases, and other substances in a stream of activating gases such as 
steam (H2O), nitrogen (N2) or carbon dioxide (CO2). 
 

 
Fig.3.1: Activated carbon: surface and pores – scanning electron microscope image. 

Magnification increases from left to right.  (Courtesy of Roplex Engineering Ltd.).  
 
Activated carbon has an extraordinarily large surface area and pore volume, making it 
suitable for a wide range of applications. It can be used as a decolorizing agent, a taste and 
odor removing agent or as a purification agent in food processing. One major use of 
activated carbon is in water purification, including the production of potable water and 
the treatment of waste and ground waters. Water treatment accounts for approximately 
half of the total use of activated carbon in the US (Baker et al., 1992). There are also a 
number of applications related to purification processes in the clothing, textile, 
automobile, cosmetics, and pharmaceutical industries. The hundreds of other uses include 
its utilization as an adsorbent in gas mask filters and as a pollution control material in a 
range of filters (Ashford, 1994). Activated carbon is the major adsorbent used in canisters 
and filters because it adsorbs a large variety of organic compounds, it is cheap, and it can 
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be reused if the adsorbed substances are removed. This regeneration is often achieved by 
heating (Battelle, 1970).  

 
 
Activated carbon is produced in various forms, including powders, cylindrical extrudates, 
spherical beads, granules and fibers. The slit-shaped model in Fig.3.2 represents the 
microstructure of activated carbon (Stoeckli, 1990). 
 

 
 
Fig.3.2: A schematic representation of the structure of activated carbon. Adapted from Stoeckli 

(1990) (Courtesy of Elsevier). 
 
The most important property of activated carbon, the property that determines its usage, 
is the pore structure. The total number of pores, their shape and size determine the 
adsorption capacity and even the dynamic adsorption rate of the activated carbon. IUPAC 
classifies pores as follows (Rodriguez-Reinoso and Linares-Solano, 1989): 
macropores: d0 > 50nm 
mesopores:   2 ≤ d0 ≤50nm 
micropores: d0 < 2nm 
                     ultramicropores: d0 < 0.7nm 
                     supermicropores: 0.7 < d0 <2nm 
where d0 is the pore width for slit type pores or the pore diameter for cylindrical pores. 
Fig.3.3 illustrates the different types of pores.  
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Fig.3.3: Schematic representation of the different types of pores in an activated carbon particle. 
 
The macropores act as transport pathways, through which the adsorptive molecules travel 
to the mesopores, from where they finally enter the micropores. The micropores usually 
constitute the largest proportion of the internal surface of the activated carbon and 
contribute most to the total pore volume. Most of the adsorption of gaseous adsorptives 
takes place within these micropores, where the attractive forces are enhanced and the 
pores are filled at low relative pressures. Thus, the total pore volume and the pore size 
distribution determine the adsorption capacity. 
The dynamics of adsorption in a packed activated carbon bed are influenced by the shape 
and size of the activated carbon particles and their effect on the flow characteristics. The 
smaller an activated carbon particle is, the better the access to its surface area and the 
faster the rate of adsorption. For spherical beads, the diameter can be measured easily. For 
cylindrical extrudates, an equivalent spherical diameter, deqv, can be calculated from the 
radius and length of the extrudate. However, for particles of irregular shape and a wide 
size distribution, it is difficult to derive deqv. In such cases particle sizes derived from sieve 
analyses can be useful parameters for determining adsorption rate. 
 
3.2 Adsorption 
 
Adsorption is defined as the enrichment of material or increase in the density of the fluid 
in the vicinity of an interface with a solid (the adsorbent) (Sing et al., 1985). It may be 
classified as chemisorption or physisorption, depending on the nature of the interactive 
forces. In chemisorption the transfer of electrons is significant and equivalent to the 
formation of a chemical bond between the sorbate and the solid surface. In physisorption 
the interactive forces are relatively weak.  

Macropores 

Mesopores 

Micropores 
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This study is restricted to mechanisms involved in the physisorption of organic vapors 
onto activated carbon. It is likely, however, that the technique used also has some 
potential with respect to chemisorption. Physisorption occurs whenever an adsorbable 
fluid (the adsorptive) is brought into contact with the surface of the adsorbent. The 
intermolecular forces involved are of the same kind as those responsible for the 
imperfection of real gases and the condensation of vapors (Kenny et al., 1993; Kaneko, 
1997). In addition to attractive dispersion forces and short range repulsive forces, the so 
called van der Waals forces, dipole–dipole, induced dipole–induced dipole and dipole–
induced dipole interactions all occur as a result of particular geometric and electronic 
properties of the adsorbent and adsorptive. The molecules are adsorbed when their 
potential energy is at a minimum. 
Adsorption proceeds through the following steps: 

1) Mass transfer – adsorptive molecules transfer to the exterior of the activated 
carbon granules; 

2) Intragranular diffusion – molecules move into the carbon pores; 
3) Physical adsorption. 

Thus, adsorption depends on (Cheremisionoff and Morresi, 1978): 
a) the physical and chemical characteristics of the adsorbent (activated carbon); 
b) the physical and chemical characteristics of the adsorbate (organic vapors); 
c) the concentration of the adsorbate 

      d)   experimental conditions, such as temperature, air flow velocity and relative 
humidity. 

 
3.3 Adsorption capacity, adsorption rate, and existing single-component predictive  
      models 
 
3.3.1 Adsorption capacity 
 
Laboratory evaluation of the adsorption isotherm* and the adsorption capacity# is time 
consuming and may be affected by toxicity or the availability of the adsorbate. For such 
difficult cases, a model that can predict the adsorption capacity, making testing 
unnecessary, would be highly desirable. A number of such models have been proposed for 
the adsorption isotherm: the Freundlich isotherm equation (Freundlich 1926); the 
Langmuir isotherm (Langmuir 1916 and 1918); BET-theory (Brunauer, Emmett and 
Teller, 1938); the Hacskaylo and LeVan equation (Hackskaylo and LeVan 1985); the 
Dubinin-Raduskevish (DR) equation (Dubinin 1966); and a modification of the DR 
equation developed by Stoeckli (Stoeckli 1977, 1979).  
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Among the existing predictive equations, the DR equation has been the most widely used 
to predict organic vapor adsorption onto activated carbon (Wood 1992, Stoeckli 1998). It 
has several advantages: 

a) there is a good data fit over a wide concentration range 
b) temperature is included as a parameter 
c) it is built around physical parameters 
d) it is easy to apply.  

 
Dubinin postulated that the amount of vapor adsorbed (W) by an activated carbon source, 
at a relative pressure (P/Ps), is a function of the thermodynamic potential (A), with A 
expressed as  

⎟
⎠
⎞⎜

⎝
⎛= P

PRTA sln                                                             (3-1) 

where R is the universal gas constant, T is the absolute temperature, Ps is the saturated 
vapor pressure at temperature T, and P is the partial pressure of the adsorbate. 
 
By examining the adsorption of simple organic compounds, such as benzene, Dubinin 
concluded that the function was Gaussian. This led to the classical expression of Dubinin 
and Radushkevich (the D-R equation) (Dubinin, 1975):  
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0
0 exp*

E
AWW
β

                                              (3-2) 

 
where W0 is the maximum amount adsorbed, E0 is the characteristic adsorption energy for 
a reference vapor on a specific adsorbent. The parameter β is called the affinity coefficient 
or similarity coefficient, and expresses the ratio of the characteristic free energies of 
adsorption for the test and reference vapors (Urano et al., 1982; Stoeckli and Morel 1980). 
Benzene is, by convention, used as the reference compound for carbonaceous materials, 
and is, by definition, given the value β = 1. 
 
 
 
* The adsorption isotherm is a graphical representation of the adsorption capacity versus 
the equilibrium gas phase concentration. 
# The adsorption capacity is the amount of the molecule adsorbed (the adsorbate) per unit 
mass of the adsorbent at a given gas-phase concentration under equilibrium conditions. It 
corresponds to one point on the adsorption isotherm. 
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β is only related to the properties of the adsorptive, and is independent of the adsorbent 
(Dubinin, 1975). The value of β has a significant influence on adsorption capacities 
calculated using the DR equation. The influence is most pronounced at low relative 
pressures, as shown by Fig.3.4.  
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Fig.3.4: The influence of β on adsorption capacity calculated using the DR equation (benzene, 
W0: 0.5 ml/g, E0: 17.185 KJ/mol, RT: 2.4486 KJ/mol), upper plot: relative pressure up to 30%; 
lower plot: lower relative pressure. 
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It has been suggested that the affinity coefficients can be approximated by ratios of: 
 
1) molar polarizabilities (α), 

REFα
αβ =                                                                         (3-3) 

 
2) molar volumes (V) of the adsorbates in the liquid state, 

REFV
V

=β                                                                          (3-4) 

 
3) ratios of parachors (Ω ) of the adsorbate and a reference compound. 

 
 
 
                                              (3-5) 
 
 

where γ = surface tension and V = molar volume of the adsorbate.  
 
These three expressions have been compared by Wood (2001), who concluded that these 
three methods give comparatively good predictabilities, but that power functions with 
exponents less than unity provided slightly better fits for predicting experimental values. 
The author recommended the molar polarizability correlation parameter.    
 
The predictive power of different models and the criteria for selecting reference 
compound(s) are, however, still under discussion (Reucroft et al. 1971, Noll et al. 1989, 
Golovoy and Braslaw 1981). Reucroft et al. and Noll et al. concluded that the vapors 
under consideration and the reference vapors should be of similar polarity, while Golovoy 
and Wood (Wood 2001) expressed the view that a single reference compound would be 
sufficient. The Eqs.(3-3) to (3-5) correlate β with one or two parameters of the adsorbate, 
but these equations sometimes produce very different results. To resolve these problems 
it is necessary to start with a systematic examination of the inherent nature of the affinity 
coefficient. 
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3.3.2 Dynamic adsorption in activated carbon beds 
 
Initially, when a contaminated gas stream passes through a packed carbon bed (see Fig. 
3.5), most of the contaminant, the adsorbate, is adsorbed in the vicinity of the inlet to the 
bed. The gas then passes on with little further adsorption taking place. Later, when the 
inlet part of the adsorbent becomes saturated, adsorption takes place deeper inside the 
bed. As more gas passes through and adsorption proceeds, the so-called mass transfer 
zone (MTZ) moves forward until the breakthrough point is reached. If the flow of gas is 
continued, the exit concentration from the bed will rise gradually until it reaches the level 
of the inlet concentration. At this point, the bed is fully saturated. The simplest case, when 
the gas stream is challenged with one organic vapor, is illustrated in Fig.3.6. The service 
life of the filter bed is regarded as the time when the exit concentration has reached an 
unacceptable level. 
 
When packed beds of activated carbon are used for removing gases and vapors from air 
streams, it is essential to know their efficiencies and service lives to facilitate application, 
design and maintenance decisions. Predictive models of service life should incorporate 
adsorbate properties, adsorbent properties, bed geometries and the conditions of use 
(Wood, 2002). 
 
 

 
Fig.3.5: Diagram of a fixed bed of activated carbon particles. 
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Fig. 3.6: Idealized breakthrough curve of a fixed bed adsorber.   

 
Several models to predict the breakthrough curves for physisorption of organic vapors 
have been proposed: Mecklenburg’s expression (Klotz, 1946); the modified Wheeler 
equation (Wheeler and Robell, 1969; Jonas and Rehrmann, 1974); the Wheeler-Jonas 
equation (Vermulen et al., 1984; Lodewyckx and Vasant, 1999), also known as the ‘ideal’ 
reaction kinetic equation (Wood and Stampfer, 1993); and the Yoon-Nelson equation 
(Yoon and Nelson, 1984). All these equations are based on a mass balance assuming that 
the quantity of vapor entering the bed equals the mass of vapor adsorbed plus the mass of 
vapor penetrating the bed. The similarities between these models have been analyzed by 
Yoon and Nelson (1984).  
 
Among these, the Wheeler-Jonas equation is the most widely used to estimate the 
breakthrough time of organic compounds on activated carbon (NIOSH, 1977). It has a 
simple form, with some parameters readily available from the literature or from carbon 
manufacturers, and it is known to yield good predictions for breakthrough times (Wood 
and Moyer, 1989). It has recently been shown that the Wheeler-Jonas equation has a wider 
scope of application than just physisorption for a constant flow pattern (Nir et al., 2002; 
Lodewyckx et al., 2003). 
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The Wheeler-Jonas equation takes the form: 

⎥
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where 

bt = time to reach the breakthrough fraction 0CCb x=  (min) 

0C = bed inlet concentration (g/cm3) 

xC  = chosen breakthrough concentration (g/cm3) 
W = weight of the carbon bed (gcarbon) 
We = equilibrium adsorption capacity of the carbon for a given vapor (g/gcarbon) 
Q = volumetric flow rate (cm3/min) 

Bρ = bulk density of the carbon bed (gcarbon/cm3) 

vk  = overall adsorption rate coefficient (min-1) 
 
To use this equation, two parameters, We and kv, must be determined. This can be done 
either experimentally or by extrapolation from measurements using a reference adsorbate. 
The first parameter We, the adsorption capacity, is usually calculated from an adsorption 
isotherm equation (Wood and Moyer, 1991); the Dubinin-Radushkevich equation is often 
used in the case of organic vapor adsorption. It should, however, be remembered that a 
slight deviation between the calculated equilibrium adsorption capacity and the effective 
adsorption capacity required for Eq. (3-6) may introduce a significant error into the 
estimated breakthrough time. This is demonstrated in Fig. 3.7a. The figure shows the 
effect of a small error of 5% in We. The effect is almost constant over the concentration 
range and more severe for benzene than for acetonitrile. This is because benzene has a 
higher We than acetonitrile. In practical applications of Eq. (3-6) it is therefore advisable, 
as a safety precaution, to reduce the value of We calculated by the DR-equation by 10% in 
order to avoid overestimation of the breakthrough time. 
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Fig. 3.7a: The effect of a 5% error in We when calculating breakthrough time. 
 
The second term, kv, the overall adsorption rate coefficient, represents the influence of the 
adsorption dynamics on the breakthrough time. Fig. 3.7b which shows the effect of a 20% 
error in kv demonstrates that the breakthrough time is less sensitive to an error in kv than 
in We.  
 

 
Fig. 3.7b: The effect of a 20% error in kv when calculating the breakthrough time. 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0 20 40 60 80 100 120 140 160 180 200 
tb (min)

C
x/

C
o 

Benzene tb_-20% 
Benzene tb_fit 
Benzene tb_+20% 
Acetonitrile tb_-20%
Acetonitrile tb_fit 
Acetonitile tb_+20%
Heptane tb_-20% 
Heptane tb_fit 
Heptane tb_+20% 

0

0.05 

0.1 

0.15 

0.2 

0.25 

0 20 40 60 80 100 120 140 160 180 200 
tb (min)

C
x/

C
o 

Benzene tb_-5%
Benzene tb_fit
Benzene tb_+5%
Acetonitrile tb_-5%
Acetonitrile tb_fit
Acetonitile tb_+5%
Heptane tb_-5%
Heptane tb_fit
Heptane tb_+5%

 



Background 

16 

The effect on breakthrough time is, however, more pronounced in the first part of the 
breakthrough curve (Fig. 3.7b). A good predictive model for kv, would, therefore, improve 
the prediction of breakthrough time, especially in the lower range, when using the W-J 
equation.   
 
The rate coefficient kv is somewhat difficult to predict. There are, however, some models 
available (Jonas and Svirbely, 1972; Jonas and Rehrman, 1974; Wood, 1993; Lodewyckx 
and Vasant 2000). 
First, kv cannot be measured directly experimentally; it has to be calculated either from the 
breakthrough time or from breakthrough curves. Therefore, it inevitably carries 
experimental uncertainties. Second, there are different philosophies regarding how kv 
should be calculated from Eq. (3-6), as recently summarized in a review by Wood (2002). 
Even when the same approach is used to calculate kv, for instance from a plot of ln[(C0-
Cx)/Cx] vs. time tb for varying Cx/C0 ratios, the outcome will be different if there is a slight 
curvature in the line and different breakthrough ranges have been chosen. It is therefore 
highly desirable for the ways of calculating kv to be examined and a standard method for 
its derivation to be developed. Model development and model comparison should be 
based on a standardized method for calculating kv.  
 
Three different methods for deriving kv from Eq. (3-6) are available: 
 
1. Breakthrough time tb is plotted vs. varing bed weight at a fixed Cx/C0. kv is 
obtained from the slope and intercept of the regression line. 
Large errors will be introduced if the extrapolated intercept is close to zero. In addition, 
the calculated value of kv is dependent on the breakthrough fraction chosen.  
 
2. kv is calculated for one specific breakthrough fraction from the difference 
between the breakthrough time and the stoichiometric point (tsto) (Wood, 1993) or by 
using a known We value (Lodewyckx and Vasant, 2000). 
The tsto is often close to t50%. It has therefore been assumed that Eq. (3-6) is valid for 
describing the breakthrough curve up to approximately 50%. This approach, however, 
does not compensate for any random error in the observation data, because only two 
points define the line. This approach, therefore, attributes the experimental error in 
measuring breakthrough time to the variation in kv for different breakthrough fractions. 
Small errors in tsto and t0.1% are propagated into large errors in kv as the difference between 
the two becomes smaller (Wood and Lodewyckx, 2003). When Lodewyckx and Vasant 
found the repeatability of calculating kv using a two-point method (0.1% and 1% 
breakthrough fractions) to be insufficient, they changed to an alternative method: by using 
a value of We predicted from the DR equation together with t0.1% , kv0.1%  can be calculated 
from Eq. (3-6).  
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3. A plot of ln[(C0-Cx)/Cx] vs. time tb for varying Cx/C0. kv is derived from the slope 
and intercept of the regression line. 
This approach employs the least-squares method to calculate the line of best fit to 
multiple points on the breakthrough curve. The random error in the observations is taken 
into account as part of the regression calculations. However, the range of the 
breakthrough fractions is important for the derivation of the slope and intercept since the 
breakthrough curve is not perfectly symmetrical. The linear range must, therefore, be 
determined and the range of breakthrough fractions defined before modeling commences. 
This approach is the one used in this work to calculate kv for the initial part of the 
breakthrough curves (Wood and Moyer, 1989). 
 
3.3.3 Existing models for the adsorption rate coefficient 
 
Three models for predicting kv have been developed, based on values of kv derived from 
the methods described above. A model proposed by Jonas et al. (1974) uses kv derived 
according to method 1 at a 1% breakthrough fraction as follows: 

2
3

2
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6.111
−

= pLv dvk                       (3-7) 
where Lv is the superficial linear velocity in cm/sec and dp the granule diameter in cm.  
If another breakthrough fraction had been used, Eq. (3-7) would have a different form. In 
addition, this model does not account for the influence of properties of the adsorbate.  
   
An alternative model suggested by Wood is based on a large number of kv values 
calculated from experimental breakthrough curves using method 2: 
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where  Lv  = linear velocity (cm/sec) 
            Pe = molar polarization of the adsorbate (cm3/mol) 
            Cin = inlet concentration (ppm) 
            Cout = chosen exit concentration (ppm) 
 
The influence of the properties of the adsorbate on the value of kv is introduced through 
Pe in this equation. The dependence of the breakthrough fraction is accounted for in the 
model, but the influence of the adsorbent is not taken into account. 
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Another equation has been suggested by Lodewyckx and Vasant: 

z
p

y
L

x

v d
vCk β

=       (C = 48, x = 0.33, y = 0.75, z = 1.5)     (3-9) 

This model is based on a kν value calculated at the 0.1% breakthrough fraction using a 
known adsorption capacity, We. It is comparable to the two-point method used by Wood 
since We is related to the stoichiometric time. The model does not take into account the 
random experimental error introduced by using only one point on the breakthrough curve. 
The value of kν calculated by Eq. (3-9) is, therefore, strictly valid only for breakthrough 
fractions close to 0.1%. Furthermore, the constants C, x, y and z in Eq. (3-9) were 
obtained by relating kν to one specific variable (β, Lv  or dp) at a time while keeping the 
other two constant. This procedure, therefore, assumes that these factors vary 
independently of each other. 
 
Wood and Lodewyckx (2003) developed a new model of kv based on Eq. (3-8) and (3-9), 
in which the adsorption capacity was introduced as a variable to kv too. 
 
A feature missing from the majority of the models is that they are not based on a 
systematic investigation of the parameters that might influence kv, such as velocity, inlet 
concentration, carbon properties and compound properties.  
 
In this work, different approaches for calculating kv from breakthrough data are examined 
and reviewed. A procedure for calculating kv is proposed in which random experimental 
errors have less influence than in previous approaches. A new model is then developed 
using multivariate data analysis to study the relationship between kv and the properties of 
the adsorbate, adsorbent, and the air velocity. The performance of the Wheeler-Jonas 
equation for predicting breakthrough time is refined by improving the accuracy of 
predicting kv for organic compounds. 
 
3.4 Multi-component adsorption  
 
In most practical adsorption processes, there is more than one component to be adsorbed. 
Measurements of the adsorption capacities of multiple-component mixtures are much 
more complex than for a single adsorbate. The possibility of predicting multiple-
component adsorption equilibria from pure component adsorption isotherms has been 
under investigation for many years in applied adsorption research. This would be useful 
because the adsorption capacities of each component in the vapor mixture are key 
parameters when estimating the service life of activated carbon beds.  
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One approach to obtaining equilibrium capacities of mixtures is the ideal adsorbed 
solution theory (IAST), developed by Myers and Prausnitz (Myers and Prausnitz, 1965; 
Myers, 1968). Many other approaches have been proposed: vacancy solution theory 
(Suwanayuen and Danner, 1980); density functional theory has been applied to binary 
mixtures (Bhatia, 1998); statistical thermodynamics have been used (Bering et al. 1977; 
Jakubov et al., 1977; Nguyen and Do, 2001); and the Dubinin-Astakhov equation has 
been applied (Nieszporek K, 2002). However, IAST is the most widely used approach 
since it has several attractive features: 
(a) it requires no mixture data 
(b) it is an application of solution thermodynamics to the adsorption problem, and is 

thus independent of the actual model of physical adsorption (Ruthven et al. 1973; 
Ruthven, 1976; Myers, 2002).  

The free choice of the isotherm equation leads to different applications of IAST (O’Brien 
and Myers 1985; Wood, 2002). For example, the so-called Myers-Prausnitz and Dubinin 
(MPD) method developed by Lavanchy and Stoeckli (Lavanchy et al. 1996; Lavanchy and 
Stoeckli, 1997) is the combination of IAST with Dubunin’s theory of volume filling of 
micropores. Sundaram combined a modified DR isotherm with the IAST theory 
(Sundaram, 1995). The influence of the adsorption isotherm equation on predictions 
using IAST has been summarized by Richter et al. (1989).  

 
The service life of a packed carbon bed challenged with binary adsorbates is often defined 
as the breakthrough time of the first-eluting compound. It could, however, be defined as 
the breakthrough time of the second-eluting compound if this compound is more toxic. 
Accordingly, the development of a theoretical model capable of predicting the service life 
of packed beds of activated carbon in the presence of a mixture of pollutants is very 
important. A system composed of only two compounds is the simplest type. It is, 
therefore, reasonable to start with theoretical studies of the adsorption behavior of binary 
adsorbate mixtures.  
 
Compared with performance studies of packed carbon beds for a single adsorbate, only a 
limited number of investigations into the service life of binary systems have been reported 
(Jonas et al., 1983; Swearengen and Weaver, 1988; Cohen at al., 1991; Yoon et al., 1991 
and 1992). Since the theories predicting breakthrough times for a single adsorbate are well 
developed, it would be useful if the relevant equations could be applied directly to binary 
systems. Some efforts have already been made to do this (Jonas et al. 1983; Wood, 2002). 
Jonas’ approach was, however, based on only three binary mixtures, which were all 
combinations of carbon tetrachloride, chloroform and benzene, and changes in the 
adsorption rate coefficients of the compounds in the binary mixtures were not considered, 
although they deviate strongly from the values of the corresponding single compounds. 
Wood’s approach to deriving the breakthrough time is incomplete because his 
investigation considered only the change in the adsorption rate coefficient and not the 
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adsorption capacity. Other authors have proposed theoretical or mathematical methods 
for predicting the complete breakthrough curves of binary or multiple adsorbates (Yoon 
et al., 1991 and 1992; Vahadat et al., 1994; Lavanchy and Stoeckli, 1997 and 1999). These 
methods have several drawbacks which reduce their general applicability: 

1) some experimental data for the binary systems are needed (Vahadat et al., 1994); 
2)  the methods have been developed on the basis of only one or two specific binary 

organic mixtures, and may not be representative for other mixtures. 
 
Since it is impractical to test for all possible combinations of organic compounds, 
information is needed on the way in which physico-chemical properties of vapors affect 
adsorption, and thus breakthrough time. Robbins and Breysse (1996) tried to correlate the 
properties of binary mixtures with their breakthrough times, but the properties were 
limited to compound polarity and boiling point. 
When the constituent compounds have similar physical properties and form an ideal 
mixture in the liquid adsorbed phase, co-adsorption is the predominant mechanism during 
the early period of breakthrough. In this case, the eW  of both compounds in the binary 
systems could be predicted using IAST theory, as applied in the MPD approach 
developed by Lavanchy and Stoeckli (1997), provided that all input parameters are 
available. 
 
 A procedure for predicting adsorption equilibria of binary adsorbates using IAST in 
combination with the Freundlich equation was developed as part of the work underlying 
this thesis and the calculation was compiled into a computer program. 
IAST is valid for mixtures of adsorbates composed of compounds with similar properties 
and hence forming an ideal solution in the adsorbed phase. 
 
This thesis, therefore, presents a method for predicting the initial part of the breakthrough 
profile for both components of binary organic vapor mixtures based on an extension of 
the W-J equation. The method was developed using nine binary combinations of vapors, 
selected in such a way that they cover a diversity of physical properties. The present work 
focuses on binary mixtures of dissimilar compounds, where the IAST method is likely to 
fail. 
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4  MATERIALS AND METHODS  
 
4.1 Statistical experimental design 
 
Experimental designs, such as factorial design (FD) and fractional factorial design (FFD), 
provide a way to systematically and simultaneously alter a set of variables which are 
orthogonal to each other, thus ensuring that the whole experimental domain is covered 
(Box et al. 1978 and Eriksson et al. 2000). It is an efficient strategy for reducing the 
number of experiments when many factors have to be considered at the same time. When 
building a model for predicting the breakthrough time of organic compounds, physico-
chemical properties of adsorbates, properties of the adsorbent and experimental 
conditions are all factors that need to be considered. 
 
In order to study the influence that properties of organic compounds have on adsorption 
performance, a representative set of adsorbates is needed for experimental evaluation.   
Therefore, a subset of organic compounds was selected to cover a sufficient range of 
variation in properties. Experimental design based on independent variables extracted 
from compound properties ensured that the selected organic compounds were 
representative. 
  
FD and FFD are illustrated in the following figures, using a three factor, two-level design 
as an example. 
 

  
 Fig.4.1a: Factorial Design 23                           Fig.4.1b: Fractional Factorial Design 23-1 
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4.2 Selection of adsorbates 
 
The adsorption process is complex. It is affected not only by parameters related to the 
physico-chemical properties of the adsorbate and adsorbent but also by environmental 
conditions. The range and variety of volatile organic contaminants present in industrial 
and other work-place environments is large, and thus they have diverse physico-chemical 
properties. For practical reasons, it is impossible to run experiments using all relevant 
compounds to acquire information about the relationship between their properties and 
the resulting adsorption capacities and breakthrough times. The strategy proposed in this 
thesis is to select a representative subset of VOCs to use in the development of predictive 
models. The subset selected needs to cover all important dimensions of the physico-
chemical property space.  
 
4.2.1 Property descriptors of compounds 
 
In this study, 68 common organic chemicals including hydrocarbons, halogenated 
hydrocarbons, amines, carbonyl compounds, alcohols, ethers and a few other compound 
classes were considered (Appendix I). As many as 45 parameters describing the physico-
chemical properties of these compounds were either collected from handbooks (Riddick 
et al., 1986; Lide, 1995; Howard et al., 1997) or calculated from their molecular structure 
(Sjöberg). To ensure an unbiased investigation of the compound properties that influence 
the adsorption mechanism, adsorption capacity and rate, it is important to consider as 
many property descriptors as possible. After an initial screening phase during model 
development, the most important descriptors were carried forward to the final model 
development stage.   
 
Many of the macroscopic descriptors used for modeling are manifestations of the intrinsic 
properties of molecules that govern how they interact with their surroundings (Fängmark 
et al., 2002).  Descriptors such as boiling point, melting point and vapor pressure reflect 
intermolecular forces. Variables that describe size include molecular weight, molar volume 
and van der Waals volume. Polarity is reflected by variables such as dipole moment, water 
solubility and Henry’s law constant. Electronic polarizability is described by refractive 
index, dielectric constant, energies of frontier orbitals (HOMO and LUMO), and others. 
A summary of the descriptors is presented in Table 1, Paper I. 
 
4.2.2 Principal component analysis (PCA) 
 
The complete set of the 45 physico-chemical descriptors of organic compounds is too 
large to be used directly in the selection of representative compounds. Furthermore, some 
descriptors are correlated, and statistical experimental design requires independent factors. 
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An efficient way to reduce the number of descriptors into a few independent variables is 
through the use of principal component analysis (PCA) (Wold et al., 1984).  
PCA is an analytical projection method designed to extract the systematic variation 
in large data sets, to provide an overview of patterns and trends in the data. PCA 
calculates linear combinations of the original variables to produce a few 
independent dimensions or principal components (PC) that summarize the 
dominant variation in the data matrix. Imagine a swarm of points in 
multidimensional space, representing the physico-chemical properties of a number 
of relevant VOCs. By analyzing the latent structure in this data, it is possible to 
select a limited number of compounds that represent the whole set. PCA provides 
a simplification of the data matrix (X) as the product of two smaller matrices (T 
and P), comprising object scores and variable loadings, respectively, plus a residual 
matrix E.  The data matrix X consists of N rows and K columns. Each row 
represents an object or observation (the compound in this case) and the columns 
contain the properties of each compound. Fig. 4.2 provides a schematic explanation 
of PCA.  

 
Fig.4.2: Schematic explanation of PCA (courtesy of Umetrics). 
 
Before analyzing the data, the original variables were mean-centered and scaled to 
unit variance. A line passing through the origin was fitted to the point swarm by 
means of the least squares method. This vector in the K-dimensional space is called 
the first principal component (PC1) and represents the direction of the greatest 
variation in the data. The second PC (PC2) is extracted from the residual 
information so that it reflects the second greatest source of variation in the data, 
and is orthogonal to the first PC.  The size of the new matrices, T and P, depends 
on the number of PCs. When two PCs have been derived, they together define a 
plane: a window into the K-dimensional variable space, see Fig. 4.3. By projecting 
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all the objects down onto this fewer-dimensioned sub-space and plotting the results, 
it is possible to visualize the structure of the data under investigation. The co-
ordinate values of the objects on this plane are called scores (t1 and t2), and hence 
the plot of such a plane is known as a score plot. The PC score values can be 
considered as a new set of independent variables that describe most of the variation 
in the original data. The score plot depicts how the objects are related to each other. 
 

 
 
Fig.4.3: The first PC,  explaining most of the variation in a three dimensional space. The 
second PC is placed orthogonally to the first, and accounts for the second most variation in the 
point swarm. The two PCs form a plane. This plane is a window into the multidimensional 
space, which can be represented graphically (courtesy of Umetrics). 
 
The orientation of this plane with respect to the original X variable axes defines the 
loadings (P).The loadings are calculated as the cosine of the angles between each of the 
old variable axes and each of the PCs. The P vectors are plotted against each other to 
show the impact of the original variables on the PCs. This plot is called a loading plot. A 
detailed description of PCA is given by Wold et al. (1984). 
 
 
4.2.3 Selection of the training set as single adsorbates 
 
The strategy for selecting single-component adsorbates was based on principal 
component analysis (PCA) and fractional factorial design. To illustrate the application of 
this strategy, reference is made to Papers I and II, where the original data matrix X with 
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68 objects and 45 variables was reduced, using PCA, to a sub-space of five PCs. These 
five PCs account for 78.8% of the total variation in the data. The position of each 
compound within this space is defined by its score values. The score plot of the first two 
PCs is shown in Fig. 4.4. Since the derived PCs are orthogonal and consequently 
independent, they can be used as factors in a fractional factorial design to select a 
representative set of compounds. A 25-2 design was adopted to suggest eight VOCs, 
forming a training set to be used for experimental evaluation and subsequent modeling. 
The compounds selected were benzene, acetonitrile, heptane, isopropylamine, 2-chloro-2-
methylpropane, 1-chloropentane, dichloromethane and 2-butanone. In Paper IV four 
additional VOCs were considered. Their selection was based on the same principal 
components (PC) as described in Papers I and II, but using a different fractional factorial 
design (23-1). These compounds were propionaldehyde, 2-propanol, 2,2,4-trimethylpentane 
and 1,1,1-trichloroethane.  
 

 
 
Fig.4.4: The score plot of the first two PCs from the PCA of 68 compounds. The eight 

compounds selected as the training set used in Paper IV are marked with ellipses and 
the four compounds in the validation set are marked with squares.  
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4.2.4 Selection of binary adsorbate systems 
 
Randomly combining pairs of the eight compounds in Fig. 4.4 would produce 28 binary 
systems. It would be cumbersome and time consuming to study all these systems. It was 
decided, therefore, to select those compounds which had the largest differences in 
properties, since the aim was to study the influence of compound properties on 
breakthrough behavior. The selection was made by constructing a distance matrix based 
on the score values (t) of the five PCs. The elements in the distance matrix were calculated 
as follows: 

( )[ ]∑ −=
5 22

21
i

iii RttS                                                     (4-1) 

where 2
iR  is the variance percentage of each score. 

 
Pairs of compounds were selected for the binary systems that had maximal distances 
between them in the property space and do not react with each other. The distance matrix 
used in Paper V is shown in Table 1. Eight binary systems were selected: acetonitrile (1)—
2-chloro-2-methylpropane (2) (22-48), acetonitrile—heptane (22-27), acetonitrile—1-
chloropentane (22-50), acetonitrile—benzene (22-13), 2-butanone—1-chloropentane (68-
50), dichloromethane—1-chloropentane (53-50), dichloromethane—heptane (53-27) and 
isopropylamine—heptane (33-27).  
 
 
Table 1:  distance matrix 
 

Comp.(No.) 33 27 53 48 68 50 22 13 
33 -        
27 6.52 -       
53 3.78 6.38 -      
48 3.30 4.41 2.32 -     
68 2.13 6.37 3.11 2.67 -    
50 4.71 2.73 4.14 2.17 3.92 -   
22 4.17 9.18 3.70 4.92 3.44 6.72 -  
13 4.20 4.36 2.84 2.11 3.34 2.11 5.77 - 

 
In addition, three binary systems of compounds with quite similar properties were 
selected for comparison. These were: dichloromethane—2-chloro-2-methylpropane (53-
48), benzene—1-chloropentane (13-50) and 2-chloro-2-methylpropane—benzene (48-13). 
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4.3 The activated carbons used in this study 
 
Three types of activated carbon were used as adorbents in this study: peat-derived Norit 
R1 (Norit, The Netherlands) and coconut-derived AR1 and AR2 (Sutcliffe, U.K.). These 
three materials are commercially available and widely used for the adsorption of organic 
vapors (Linders 1999; Lodewyckx and Vasant 2000). The properties of the carbon sources 
used in this study are summarized in Table 2. 
 
Table 2: Properties of the activated carbons used in this study 
 
Carbon Type R1 Extra AR1 AR2 
Form extrudate granule granule 
size 1 mm 12*20 8*16 
Particle size (cm) 30% 0.108 0.147 0.186 
Particle size (cm) 50% 0.099 0.132 0.169 
Particle size (cm) 70% 0.093 0.118 0.157 
Apparent Density a (g/ml) 0.703 0.731 0.775 

0.502 0.625 0.656 Micropore Volume c (cm3) 
Mesopore Volume c(cm3) 0.067 0.021 0.031 
Packing Density b (g/ml) 0.449 0.393 0.426 
a: Measured using a Carlo Erba Macropores Unit 1120. 
b: Averaged from all the experimental runs. 
c: From the nitrogen adsorption isotherm.  
 
The activated carbons were pretreated by heating them in an oven at 120°C for 18 hours, 
in order to remove any moisture. 
As can be seen in Table 2, the three carbons are very similar with only slight variations in 
their physical properties.  
Three other types of activated carbon were used in the work described in Paper III: 
fragmented coconut-derived activated carbon GH-28; pitch-based spherical activated 
carbon (J-1); and cylindrical activated carbon ZZ-07 from coal.  
 
4.4 Experimental methods 
 
4.4.1 Adsorption equilibrium measurements 
 
The Headspace-Gas Chromatography technique was employed to determine adsorption 
isotherms. This is a relatively simple, rapid and accurate method for quantifying gas phase 
composition, and is, therefore, very useful in both research and routine work (Lavanchy et 
al, 1996; Linders et al., 1997)  
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Fig. 4.5 shows a schematic representation of the procedure. A weighed quantity of 
adsorbent was introduced into a vial of known volume. The vial was sealed with a gas-
tight Teflon-coated septum. In order to prevent the liquid adsorbate from coming into 
direct contact with the adsorbent, defined amounts of liquid organic compound were 
injected through the septum into a small vial residing inside the larger vial. After reaching 
equilibrium, the gas phase concentration of the adsorptive was analyzed by gas 
chromatography using a mass spectrometer as the detector. The amount adsorbed onto 
the activated carbon was calculated from the mass balance. By injecting varying amounts 
of the adsorptive, corresponding to different relative pressures of the compound in the 
vapor phase, adsorption isotherms were produced.  

 
Fig. 4.5: Schematic representation of the Headspace GC technique. 
 
Adsorption isotherms for eight VOCs, covering a relative pressure range from 10-6 to 0.4 
(Sing et al., 1985; Chiang et al., 2001), were measured. A more detailed description of the 
experimental procedure is presented in Paper I. 
In the studies described in Paper III the same experimental procedure was used for binary 
systems, except that the two chemicals were injected consecutively into the vial. 
 
4.4.2 Breakthrough measurements 
 
Fig. 4.6 is a schematic representation of the experimental set up for measuring the 
breakthrough curves of organic compounds on fixed-activated carbon beds. Purified and 
dried compressed air at room temperature (20±1 ºC), regulated by a mass flow controller 
(Bronkhorst, The Netherlands), was challenged with each organic vapor. The amount of 
challenge vapor was regulated by a liquid mass flow meter (Bronkhorst, The Netherlands). 
To determine the breakthrough curves of binary adsorbates, two liquid mass flow meters 
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were used to regulate the respective flow rates of the liquids. The air–VOC mixtures were 
homogenized in a static mixer and directed towards the adsorbent. The adsorbent holder 
was a steel cylinder, 3.2 cm in diameter and 3.0 cm in depth. The flow rate of the 
compressed air, the injection flow rate of the challenge compound and the temperatures 
of the vapor generation equipment and mixer were computer-controlled.  
 

 
F: Filter 
1: organic compound 1 
2: organic compound 2 
L: Liquid mass flow meter 
 
Fig. 4.6. Schematic representation of the breakthrough experimental set-up. 
 
Steady-state flow velocities were set to 11.32 cm/sec (5.46 l/min) and 16.98 cm/sec (8.19 
l/min). These volumetric flow rates, scaled up to the dimension of a common protective 
mask cartridge (10 cm in diameter), correspond to breathing rates of 53.3 l/min and 80 
l/min. These rates are representative of flows at a moderately heavy work load and a 
somewhat heavier work load, respectively (Yoon and Nelson, 1984; Vahdat et al, 1994). A 
limited number of experiments were also performed at 14.14 cm/sec, i.e. the mean flow 
rate. 
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The inlet concentration was set to 1000 ppm in all cases, since preliminary experimental 
results, and previous work (Jonas and Svibely, 1972; Wood, 1992), indicated that inlet 
concentration has a negligible influence on kv. 
The inlet and outlet concentrations of the challenge vapor were analyzed using a gas 
chromatograph (AutoSystem XL-GC, Perkin Elemer Inc., USA.) fitted with an automatic 
sampling loop (100 µl), a HP-5 capillary column and a flame ionization detector. The 
outlet concentration, sampled every 5 to 10 minutes, was recorded up to 100% 
breakthrough. At a minimum, duplicate experiments were performed for each 
combination of experimental conditions.  
 
4.5 Modeling 
 
4.5.1 Partial least squares projection to latent structures (PLS). 
 
PLS is a multivariate projection method closely related to PCA. The aim of PLS is to find 
a relationship between a factor matrix (X) and a corresponding response matrix (Y). PLS 
is a powerful tool for analyzing data with many, noisy, collinear, and even incomplete 
variables. In a manner similar to PCA it extracts the latent structure of both X and Y data 
matrices and establishes a correlation between the two. The new projected latent variables 
or vectors are calculated such that the first vector describes the highest correlation 
between X and Y, the second vector the second highest correlation and so on. The vector 
is a straight line, fitted to the observations, through the average of each point swarm. By 
projecting the points (observations) onto this vector, the so-called score values are 
obtained. The score values of all observations form the first X-score vector, t1. The same 
procedure is applied to the Y matrix, where the highest correlation is described by the first 
Y score vector, u1. Vectors t2 and u2 can then be calculated in the same way from the 
residual information. The vectors t1 and u1 are related to each other by the inner 
correlation: ui1=ti1+hi, where hi is the residual. Predictions can then be made by inserting 
the x-variables from an observation into the model and using the inner relationship 
between t and u to predict the unknown y (see Fig. 4.7).  
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Fig.4.7: Schematic explanation of the PLS method (Courtesy of Umetrics). 
 
 
The PLS coefficients, B, are solutions to the equation 

XBY =                                                                              (4-2) 
The regression coefficients can be expressed as: 

kkm xbxbxbby ++++= ...22110                                       (4-3) 
 
The X- and Y-matrices that appear in Papers I, II,IV and V are summarized below. 
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          Property descriptors: Responses: 
          Properties of selected adsorbate β (Paper I ) 
          Properties of selected adsorbate  We (Paper II ) 
          Properties of adsorbate, adsorbent, velocity kv (Paper IV) 
          Properties of selected binary adsorbates Rwe1, Rkv1, Rwe2, Rkv2  

   (Paper V)  
 
Rwe1, Rkv1, Rwe2, Rkv2 are the ratios between the values We1, kv1, We2, kv2 of the compounds in 
the binary mixture and the compounds as single adsorbates.  
 
4.5.2 Model assessment and validation 
 
The quantitative structure-affinity relationship (QSAfR) model is evaluated by 
simultaneously looking at the variance-explained R2 (goodness of fit) and the variance of 
prediction Q2 (goodness of prediction). The amount of variance described can be 
calculated for both the X and the Y matrices, resulting in the parameters R2X and R2Y. 
These two parameters are calculated according to the following formulae: 
                              SSXRSSXR −= 12  
                               SSYRSSYR −= 12  
where SSX represents the total variation in the X matrix, SSY represents the total 
variation in the Y matrix and RSS is the residual sum of squares.  
The predictive capacity of the model (Q2) is generated by cross validation (CV). In CV, the 
aim is to use only part of the data for model development, then to use the model to 
predict values for the unused data and compare them with the observed values. The 
squared differences between predicted and observed values form the predictive residue 
sum of squares (PRESS), giving the Q2 value. 
                               SSYPRESSQ −= 12  
R2 and Q2 are in the range 0 to 1. Usually, the larger the value of R2 the greater the 
variation in the data that is explained by the PCs. The closer the value of Q2 to 1, the 
better the model’s predictive power. In general, Q2 >0.5 can be regarded as good and Q2 

 
          X 
 

 
       Y 

PLS 
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>0.9, excellent. Ideally, the difference between R2 and Q2 should be small, preferably not 
more than 0.2-0.3.  
However, the only way to be absolutely sure of the predictive power of a model is to 
produce predictions for an independent external set of objects (a validation set), 
consisting of compounds not used in model development (Eriksson et al., 1993 and 1999; 
Wold, 1991). A comparison between the predictions and responses of the validation set 
will indicate the predictive power of the model. 
In Paper I the validation set for prediction of β was composed of 40 compounds which 
were not included in the training set. Data for the 40 compounds were collected from the 
literature (Urano et al. 1982; Wood 1992 and 2001; Reucroft et al. 1971).  
In Paper IV, four of the eight selected VOCs from Papers I and II were used as the 
validation set for the model of kv. 



Results and discussion 

34 

5 RESULTS AND DISCUSSION 
 
5.1 Modeling the affinity coefficient (Paper I) 
 
Affinity coefficients, β, measured for the training set were subsequently correlated with 
experimental and calculated compound properties to develop a QSAfR model using PLS. 
The model was initially based on 45 physico-chemical properties of the adsorptive. 
Removing variables that did not significantly influence the prediction of β, and some 
variables correlated to them, resulted in a practical model based on three properties of the 
compound. These were: the calculated energy of the van der Waals interaction with a 
graphite model surface (Einter:KJ/mol); the van der Waals volume (Volume:Å3); and the 
molecular weight (Mw:g/mol). The model takes the form: 
 
β = -0.0731 + 0.0182*Mw + 0.00418*Volume - 0.0132*Einter   (5-1) 
 
This model explains 98.9% of the variance in β, and the goodness of prediction, Q2, is 
0.975. The internal validation criterion, Q2, is indicative of a very good model. This is also 
demonstrated by the improvement in prediction compared to the three traditional 
approaches for calculating β, see Fig. 5.1. 
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Fig.5.1: Comparison between observed and predicted values of β  for the training set using the 

four different methods. 
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To form an external validation set, experimental affinity coefficients of 40 other organic 
compounds (see Table 6 in Paper I) were extracted from the literature, and relevant 
property parameters calculated. The predictive power of the new model proved to be 
better than that of the other three models. This was confirmed by calculations of the root 
mean square error of prediction (RMSEP) of these four models: the RMSEP of the new 
model is 0.090, while calculations based on parachor, molar polarizability and molar 
volume yield RMSEPs of 0.141, 0.141, and 0.180, respectively.  
Furthermore, the prediction using the new model of β for formic acid is better than those 
obtained using any of the other three methods.  
 
The model developed in this work has a higher predicting power for calculating the 
affinity coefficient than traditional methods based on parachor, molar polarizability and 
molar volume. The higher accuracy in prediction is valid for a large range of structurally 
diverse organic compounds. It demonstrates the importance of adding a descriptor for 
specific interactions with the carbon surface to size and shape descriptors.  
 
 
5.2 The influence of compound properties on adsorption capacity (Paper II) 
 
Paper II describes an investigation of the properties of the adsorptive that influence molar 
adsorption capacity during the early stages of adsorption. The paper describes the 
development of a quantitative structure-affinity relationship model that directly relates the 
adsorption capacities of a specific carbon to the properties of selected volatile organic 
compounds.  
The molar adsorption capacities at five relative pressures (0.001, 0.01, 0.05, 0.1 and 0.15) 
comprised the matrix of responses and 45 variables describing the physico-chemical 
properties of the VOCs formed the matrix of factors. The model could be reduced to 16 
compound properties described by two principal components and had an excellent 
correlation (R2 = 0.877) and a reasonably good predictive power, Q2 = 0.713. 
 
The PLS loading plot (Fig. 5.2), which represents the relationships between factors and 
their influence on the measured responses, shows the distribution of responses in 
property space.  
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Fig.5.2: Loading plot of the QSAfR model based on all responses and 16 property descriptors. 
 
As can be seen in the figure, at the lowest relative pressures, W0.001 and W0.01, the 
capacities are strongly influenced by the electronic properties of the adsorbate. These 
include the energy of the HOMO, ionization potential (Ip), and a parameter describing 
electronegativity (EN). The calculated energy of the van der Waals interaction with a 
graphite model surface (Einter) is also influential. 
In contrast, at the highest relative pressures, W0.1 and W0.15, the molecular size (Volume 
and Area), the hydrophilic character of the adsorbate (logP), and other polarity descriptors 
(Lewis_a, Ep(+), and Diel) have the greatest influence. In this pressure range, volatility 
parameters (Pv, LgPv and Bp) also contribute.  
The intermediate adsorption capacity, W0.05, is affected by both groups of properties. 
Our modeling shows that the HOMO energy is an important factor in the early stages of 
adsorption. This is in agreement with previous observations on the adsorption of phenolic 
compounds on activated carbon (Furuya et al, 1997; Oskouie et al., 2002) 
 
This work has demonstrated that the influence of the properties of the adsorbate varies 
according to the different stages of adsorption, reflecting the different mechanisms 
involved. 
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5.3 Adsorption equilibria of binary systems (Paper III) 
 
In this work, adsorption isotherms for pure benzene, n-hexane and n-pentane on the 
three types of activated carbon, at a temperature of 20 ºC, were determined experimentally 
and fitted to the Freundlich and DR equations. It was found that the DR equation 
produces a better fit to the experimental data. However, because of the simpler 
mathematics, it was decided to use the Freundlich equation in combination with IAST. 
Fig. 5.3 shows that the phase diagram equilibrium line for benzene—hexane is quite close 
to the diagonal, but the lines for benzene—pentane and  hexane—pentane are further 
away. This indicates that these two binary organic mixtures are easier to separate than the 
benzene—hexane mixture on the same activated carbon. This is a consequence of 
different adsorption affinities. 

 
Fig 5.3: Adsorption phase diagram for the three binary systems on J-1 AC (at 20°C) 
 
 
The experimental data were compared with the predicted values. It was found that the 
experimental results and the model predictions were in good agreement. The absolute 
mean deviation was lower than 10%, which is satisfactory. Deviations were observed at 
low values of composition and for tests using the J-1 activated carbon. There are probably 
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two explanations for these deviations: the IAST model ignores interactions between 
adsorbates, and the Freundlich equation is used in IAST to predict the mixture adsorption 
(Richter, 1989). The Freundlich equation is unable to describe the adsorption isotherm of 
the pure component accurately at higher relative pressures. Further, the Freundlich 
equation does not equate to Henry’s law at low coverage. The poor predictive power for 
the adsorbed phase composition on J-1 may also be due to the specific pore structure or 
heterogeneity of this pitch-based, spherical, activated carbon, and to the non-ideality of 
the adsorbed phase (Stoeckli et al, 2000). 
 
5.4 Modeling the adsorption rate coefficient (Paper IV) 
 
The three different approaches for deriving kv from experimental breakthrough data, 
described in 3.3.2, were compared using the data for heptane on AR1 and AR2. The 
results are summarized in Table 1. 
 
Table 1. Calculated kv of heptane on AR1 and AR2 using different derivations. 
 

kv (method 1) kv (method 2)  t1% t10% t1% t10% kv (method 3) 

AR1 12234 9665 3706 3101 4330 
AR2 3634 10881 2553 2208 2846 

 
method 1: Plot breakthrough time tb vs. bed weight WAC at fixed C/C0 (1% and 10% 

respectively). kv is obtained from the slope and intercept of the regression 
line. 

method 2: One-point method with a known We value. We obtained gravimetrically from 
breakthrough experiments. The bed height is fixed at 3 cm. 

method 3: Plot ln [(C0-C)/C] vs. time tb for varying C/C0. kv is derived from the slope and 
intercept of the regression line. The bed height is fixed at 3 cm. Breakthrough 
range 0~20%.  

 
From Table 1 it can be seen that the three methods give different results and that the 
variation between the minimum and maximum value is large, between 400 and 500%. 
However, it is not possible from this comparison to determine which method produces 
the best estimate. For the reasons discussed in chapter 3.3.2 and because it covers the 
widest breakthrough range, method 3 was chosen. 
 
A systematic investigation of the factors influencing kv, including velocity and inlet 
concentration, was conducted using a two-level full factorial experimental design, Table 2. 



Results and discussion 

39 

                         Table 2:  Experimental design  
 

Inlet concentration 
(ppm) 

Velocity 
(cm/sec.) 

1000 (-) 11.32 (-) 
2000(+) 11.32(-) 
1000(-) 16.98(+) 
2000(+) 16.98(+) 
1500(0) 14.14(0) 

 
Experimental breakthrough data were collected for twelve compounds: benzene, 
acetonitrile, heptane, isopropylamine, 2-chloro-2-methylpropane, 1-chloropentane, 
dichloromethane, 2-butanone, propionaldehyde, 2-propanol, 2,2,4-trimethylpentane and 
1,1,1-trichloroethane on Norit R1. Eight of the compounds were used as the training set 
to produce the model, and the remaining four compounds were used for validation. 
 
Experimentally derived kv values were modeled against velocity, inlet concentration and 
adsorbate properties using PLS. The modeling indicated that that inlet concentration had 
almost no influence on kv and that velocity was the dominant factor. The initial full model 
was reduced by excluding descriptors that did not provide a significant contribution. Some 
correlated descriptors were also eliminated. The resulting model contains three significant 
PLS components that explain 91% of the variance in kv. The loading plot of this model is 
shown in Fig. 5.4. 

 
Figure 5.4: Loading plot for the first two principle components. 
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Fig.5.4 shows that flow rate and carbon particle size, together with a few compound 
polarity descriptors, are key influences. A decrease in the ionization potential or an 
increase in the HOMO energy of the adsorbate seems to increase the rate constant. This 
is to be expected when molecular interactions at the carbon surface are involved in the 
rate determining step of adsorption. 
A simpler and more user-friendly model, based on only three parameters, was then 
developed. The three parameters in the model are available from experimental conditions 
(flow rate), from handbooks on organic compounds (dielectric constant) and from sieve 
analysis of the carbon particle size. The model explains 87% of the variance in kv and the 
value of Q2 is 0.856. The prediction is satisfactory for both training and validation sets. 
Comparing different models for predicting kv shows that the proposed model produces 
the best results. It should be noted, however, that the flow range investigated is limited to 
breathing rates found during the use of ordinary respirators. Further, the carbons 
investigated are designed to be used in respirator filters, making them rather similar in 
efficiency and particle size. 
 
 
5.5 Prediction of the service life of carbon beds in the presence of binary  
       adsorbates (Paper V) 
 
In Paper V the results and data from research on the adsorption of single components are 
applied to the development of a method for predicting the initial part of the breakthrough 
profiles of binary organic vapor mixtures.  
Breakthrough curves of eleven binary mixtures were measured on Norit R1 Extra. The 
curves are shown in Appendix III. It can be seen from the graphs that the first, less 
strongly adsorbed vapor, is displaced by the second vapor, giving the first vapor a higher 
maximum concentration than the input concentration. This is the so-called rollup 
phenomenon. Breakthrough times of both compounds decrease in comparison to their 
individual times. 
The W-J equation is shown to be applicable to the breakthrough curves of both 
components of binary systems up to a 20% breakthrough ratio. This can be verified by 
checking the linearity of the plot of t versus ln((C0-Cx)/Cx). eW  and vk  can be calculated 
from the slope and intercept of the linear regression lines. It should, however, be stressed 
that the parameters We and kv derived for binary mixtures cannot be interpreted in the 
same way as for single component systems. Despite this, they can be applied to predict 
the breakthrough curve up to the 20% breakthrough fraction.  
 
The ratios of We and kv for the components of the binary mixtures to the corresponding 
parameters for single component adsorption, Rwe1, Rkv1, Rkv2, Rkv2, were modeled using 
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PLS. The modeling revealed that Rwe1 and Rkv2 depend on the properties of both 
compounds, while Rkv2 and Rkv1 can be considered to be constant.    
Modeling showed that Rwe1 was mainly influenced by the properties of compound 1, such 
as molecular size descriptors (van der Waals volume and area, molar volume), heat 
capacity, ionization potential, polarizability, the energy of van der Waals interaction with a 
graphite model surface and the affinity coefficient. It was also affected, to some extent, by 
the properties of compound 2, including the molecular size and dielectric constant. 
Rkv2 is influenced by the properties of both compounds: Lewis acid strength, polarizability, 
van der Waals volume, the affinity coefficient and energy of interaction with the graphite 
surface for compound 1, and Lewis acid strength, polarizability, heat capacity and energy 
of interaction with the graphite surface for compound 2. 
Reducing the number of property descriptors, while taking into account their availability 
and importance for the performance of the model, resulted in a two-parameter model for 
Rwe1, explaining 87% of the variance (Q2 0.758) and a three-parameter model for Rkv2 
explaining 90% of the variance (Q2 0.814). 
The property descriptors used for Rwe1 are the molar volumes of the two compounds. For 
Rkv2 the heat capacities of both compounds and the polarizability of the second eluting 
compound are used. 
 
The breakthrough time of compound 1 in binary systems can be predicted by introducing 
the calculated 1eW  (binary) and 1vk  (binary) values into the W-J equation. Calculated 
breakthrough times (t1% and t10%) of compound 1 for the nine binary systems are 
compared to the experimental values in Figs. 5.5 and 5.6. Calculations of the breakthrough 
times for compound 2, using 0.85 of Rkv2 as recommended by Wood (2002), are also 
shown in the figures. 
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Fig.5.5: Prediction of breakthrough times at the 1% breakthrough fraction for both compounds 

of the nine binary mixtures. 
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Fig.5.6: Prediction of breakthrough times at the 10% breakthrough fraction for both 

compounds of the nine binary mixtures. 
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It is clear that the predicted breakthrough times for both compounds and both 
breakthrough ratios accord well with the experimental results. 
 
We have shown that by modifying the Wheeler-Jonas parameters We and kv the 
breakthrough curves of the compounds in a binary mixture can accurately predicted. 
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6 CONCLUSIONS  
 
It has been demonstrated in this thesis that MVDA is a very useful technique to study the 
physisorption of organic compounds on activated carbons. 
 
In order to draw conclusions of general validity, it is essential to select substances 
representing major regions of the physico-chemical property space. Therefore, a large set 
of structurally different compounds was reduced to a representative sub-set using PCA 
and experimental design. This sub-set was used in the experimental evaluation.  
 
It was shown that adsorption parameters can be correlated to adsorbate properties, 
carbon properties and environmental conditions using PLS. The loading plot of the PLS 
analysis is an important tool for interpreting different aspects of adsorption. 
 
PLS was also used in the development of predictive models for filter performance. The 
initial models containing a large number of variable descriptors could be simplified to 
user-friendly models with a few important and readily available parameters.  
 
Traditional methods for calculating the affinity coefficient are based on parachor, molar 
polarizability and molar volume, all of which are mainly related to molecular size. This 
work demonstrates the importance of adding a descriptor related to specific interactions 
with the carbon surface. 
It was found that HOMO energy is important for the adsorption capacity in the early 
stages of adsorption. This is consistent with findings related to liquid adsorption on 
activated carbon. During the later stages of adsorption, as super-micropores are filled, the 
adsorption capacity is governed mainly by molecular size. 
 
It has been shown that breakthrough data for a wide range of compounds can be fitted to 
the Wheeler-Jonas equation up to at least a 20% breakthrough fraction with a correlation 
coefficient above 0.99. The merits of introducing a correction for skewness, as proposed 
by Wood and Lodewyckx are therefore debatable. The rate coefficient calculated using 
multiple points over a wide range of the breakthrough curve improves stability and 
accuracy. 
 
PLS modelling of kv showed that flow rate and carbon particle size, together with a few 
compound polarity descriptors, are important. Based on these findings a simple, user-
friendly, three-parameter model was derived and validated. Comparing different models 
for prediction of kv shows that the proposed model gives the best results. The model is 
limited to breathing rates valid for ordinary respirators and to common respirator filter 
carbons. 
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It was demonstrated that the W-J equation can be applied to the breakthrough curves of 
both components of binary systems for breakthrough ratios up to 20%. 
The parameters characterizing the adsorption of each component in a binary system can 
be calculated from the corresponding single-component system data. Simple statistics 
showed that We of the second eluting compound and kv of the first eluting compound can 
be considered to be constant.  
Assisted by PLS modeling, a simple model for predicting We for the first eluting 
compound, based on the molar volumes of both components in the binary mixture, was 
developed. In a similar manner a model for kv of the second eluting component was 
formulated. This model includes the heat capacities of both components and the 
polarizability of the second eluting compound. 
 
The models proposed in this thesis have improved and simplified the prediction of filter 
performance for adsorption of single vapors and binary vapor mixtures. Thus, they should 
help improve the accuracy of estimations of filter service life. 
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7 FUTURE WORK 
 
Although the strategy used in this work has given very promising results, there are a 
number of areas that need further investigation. These include: 
 

• To extend the models for binary mixtures by including more compounds close to 
each other in property space. 

• To check the validity of the proposed models at other challenge concentrations of 
the components of binary mixtures. 

• To extend the flow velocity range to verify the limits of application of kv  
• To investigate the influence of other carbon types and particle sizes. 
• To include the effects of humidity. 
• To investigate the possibility of modeling chemisorption. 
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APPENDIX I: A list of 68 organic compounds 
 
Id# Compound Id# Compound Id# Compound 
1 1,4-Dioxane 29 Butane 59 Chloroform 
2 Fluorobenzene 31 Chloropicrin 60 1,1,1-Trichloroethane 
3 Formic acid 32 Diethylether 61 Trichloroethylene 
4 Neopentane 33 Isopropylamine 62 1,1,2-Trichloroethane 
6 Nitromethane 34 Propylamine 64 Carbon tetrachloride 
10 Propionaldehyde 35 Diethylamine 68 2-Butanone 
13 Benzene 36 Butylamine 69 2-Pentanone 
14 Toluene 37 Triethylamine 70 4-Methyl-2-pentanone 
15 Methanol 38 Dipropylamine 76 Methylamine 
16 Ethanol 39 Diisopropylamine 77 Dimethylamine 
17 2-Propanol 40 Cyclohexylamine 78 Ethylamine 
18 1-Butanol 44 Chloroethane 79 Carbon disulfide 
19 Acetaldehyde 45 2-Chloropropane 80 Acetone 
20 Methyl acetate 46 3-Chloropropene 81 1,2-Dichloroethane 
21 Ethyl acetate 47 1-Chloropropane 83 Allylamine 

22 Acetonitrile 48 
2-Chloro-2-
methylpropane 85 Diallylamine 

23 Pentane 49 1-Chlorobutane 87 3-Pentanone 
24 Hexane 50 1-Chloropentane 88 2,2-Difluorpropane 

25 Cyclohexane 53 Dichloromethane 89 
N,N-
Dimethylethylamine 

26 
2,2,4-
Trimethylpentane 54 

trans-1,2-
Dichloroethylene 91 Acrolein 

27 Heptane 55 1,1-Dichloroethane 92 1-Bromopropane 

28 Pyridine 56 
cis-1,2-
Dichloroethylene 93 2-Bromopropane 

    57 
1,2-
Dichloropropane 95 Bromomethane 
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APPENDIX II: Breakthrough curves of single compounds on Norit R1, AR1 
and AR2. 
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Fig.1. Breakthrough curves of benzene on Norit R1. 
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Fig.2. Breakthrough curves of acetonitrile on Norit R1. 



Appendix II 

58 

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180 210

t (min)

C
/C

0

 
Fig.3. Breakthrough curves of heptane on Norit R1.  
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Fig.4. Breakthrough curves of isopropylamine on Norit R1. 
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Fig.5. Breakthrough curves of 2-chloro-2-methyl-propane on Norit R1.  
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Fig.6. Breakthrough curves of chloropentane on Norit R1.  
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Fig.7. Breakthrough curves of dichlorometahne on Norit R1. 
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Fig.8. Breakthrough curves of 2-butanone on Norit R1. 
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Fig.9. Breakthrough curves of propionaldehyde on AR1 (C0 = 1000 ppm). 
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Fig.10. Breakthrough curves of benzene on AR1 (C0 = 1000 ppm). 
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Fig.11. Breakthrough curves of 2-propanol on AR1 (C0 = 1000 ppm). 
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Fig.12. Breakthrough curves of acetonitrile on AR1 (C0 = 1000 ppm). 
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Fig.13. Breakthrough curves of 2,2,4-trimetheylpentane on AR1 (C0 = 1000 ppm,).  
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Fig.14. Breakthrough curves of heptane on AR1 (C0 = 1000 ppm).   
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Fig.15. Breakthrough curves of isopropylamine on AR1 (C0 = 1000 ppm).   
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Fig.16. Breakthrough curves of 1,1,1-trichloroethane on AR1 (C0 = 1000 ppm,).  
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Fig.17. Breakthrough curves of propionaldehyde on AR2 (C0 = 1000 ppm). 
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Fig.18. Breakthrough curves of benzene on AR2 (C0 = 1000 ppm). 
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Fig.19. Breakthrough curves of 2-propanol on AR2 (C0 = 1000 ppm). 
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Fig.20. Breakthrough curves of acetonitrile on AR2 (C0 = 1000 ppm). 
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Fig.21. Breakthrough curves of 2,2,4-trimetheylpentane on AR2 (C0 = 1000 ppm,). 
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Fig.22. Breakthrough curves of heptane on AR2 (C0 = 1000 ppm,). 
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Fig.23. Breakthrough curves of isopropylamine on AR2 (C0 = 1000 ppm,). 
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Fig.24. Breakthrough curves of 1,1,1-trichloroethane on AR2 (C0 = 1000 ppm,). 
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APPENDIX III: Breakthrough curves of binary mixtures on Norit R1. 
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Fig.1. Breakthrough curves of 22-48 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.2. Breakthrough curves of 22-27 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.3. Breakthrough curves of 22-50 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.4. Breakthrough curves of 22-13 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.5. Breakthrough curves of 68-50 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.6. Breakthrough curves of 53-50 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.7. Breakthrough curves of 53-48 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.8. Breakthrough curves of 53-27 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.9. Breakthrough curves of 33-27 (C0 = 1000 ppm, Q = 5.46 l/min). 
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Fig.10. Breakthrough curves of 48-13 (C0 = 1000 ppm, Q = 5.46 l/min) 
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Fig.11. Breakthrough curves of 13-50 (C0 = 1000 ppm, Q = 5.46 l/min). 
 


