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Preface

This text is a brief introduction to fundamental concepts of transport phe-
nomena within a fluid, namely momentum, heat and mass transfer. The em-
phasis of the text is placed upon a basic, systematic approach from the fluid
mechanics point of view, in conjunction with a unified treatment of transport
phenomena.

In order to make the book useful for students, there are numerous ex-
amples. Each chapter presents a collection of proposed problems, whose solu-
tions can be found in the Problem Solutions Appendix. Also the Self Evalu-
ation chapter gathers exercises from exams, so readers and students can test
their understanding of the subject.

Most of the content can be taught in a course of 45 hours and has been
employed in the course Transport Phenomena in Chemical Engineering at
the Centro Politécnico Superior of the University of Zaragoza. The text is
aimed at beginners in the subject of transport phenomena and fluid mechanics,
emphasizing the foundations of the subject.

The text is divided into four parts: Fundamentals, Conservation Principles,
Dimensional Analysis;Theory and Applications, and Transport Phenomena at
Interfaces.

In the first part, Fundamentals, basic notions on the subject are intro-
duced: definition of a fluid, preliminary hypothesis for its mathematical treat-
ment, elementary kinematics, fluid forces, especially the concept of pressure,
and fluid statics.

In the Conservation Principles part, the conservation equations that gov-
ern transport phenomena are presented and explained, both in integral and
differential form. Emphasis is placed on practical applications of integral equa-
tions. Also, constitutive equations for transport by diffusion are contained in
this part.

In the third part, Dimensional Analysis;Theory and Applications, the im-
portant tool of dimensional analysis and the laws of similitude are explained.
Also the dimensionless numbers that govern transport phenomena are derived.



VIII Preface

The last part, Transport Phenomena at Interfaces, explains how most
transport processes originate at interfaces. Some aspects of the concept of
boundary layer are presented and the usage of transport coefficients to solve
practical problems is introduced. Finally the analogies between transport coef-
ficients are explained.

There are a great number of people whose help in writing this book I would
like to acknowledge. First my parents, for providing an intellectually challen-
ging environment and awakening my early interest in engineering and fluid
mechanics. Professor C. Dopazo, for his inspiring passion for fluid mechanics.
My family, wife and children, for their love and support. C. Pérez-Caseiras for
providing ideas to strengthen the text. Many colleagues and friends, who have
accompanied me during these years, especially professors T.J.R. Hughes and
E. Oñate, and friends Jorge, Antonio, Connie and Ed. Finally, I would like
to acknowledge the encouragement of Nathalie Jacobs. Without them, this
project would not have been possible.

Zaragoza, Guillermo Hauke
May 2008



Contents

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I Fundamentals

1 Basic Concepts in Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 The Concept of a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 The Macroscopic Point of View . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 The Microscopic Point of View . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Fluid as a Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Local Thermodynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 10

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Elementary Fluid Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Description of a Fluid Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Lagrangian Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Eulerian Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Arbitrary Lagrangian-Eulerian Description (ALE) . . . . . 15

2.2 The Substantial or Material Derivative . . . . . . . . . . . . . . . . . . . . . 15
2.3 Mechanisms of Transport Phenomena . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Streamlines, Trajectories and Streaklines . . . . . . . . . . . . . . . . . . . 20

2.4.1 Calculation of Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Calculation of Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 Calculation of Streaklines . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The Concept of Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



X Contents

3 Fluid Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Body Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Surface Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 The Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 The Concept of Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 The Fundamental Equation of Fluid Statics . . . . . . . . . . . . . . . . . 47
4.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Hydrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Fluid Statics of an Isothermal Perfect Gas . . . . . . . . . . . . 51
4.2.4 Forces over Submerged Surfaces . . . . . . . . . . . . . . . . . . . . . 52
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Part II Conservation Principles

5 Transport Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Fluid Volume and Control Volume . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Transport Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 First Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.2 Second Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Third Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Integral Conservation Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Decomposition of the Stress Tensor . . . . . . . . . . . . . . . . . . 79
6.3 Angular Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Total Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Body Force Stemming from a Potential . . . . . . . . . . . . . . 87
6.5 Other Energy Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5.1 Mechanical Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5.2 Internal Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5.3 Energy Transfer Between Mechanical and Internal

Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.6 Conservation of Chemical Species Equation . . . . . . . . . . . . . . . . . 96

6.6.1 Introductory Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.6.2 Derivation of the Conservation Equations . . . . . . . . . . . . . 98
6.6.3 Chemical Species Equations for Molar Concentrations . . 102



Contents XI

6.6.4 Equations with Respect to the Molar Average Velocity . 103
6.7 Equation of Volume Conservation for Liquids . . . . . . . . . . . . . . . 103
6.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.9 Initial and Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.9.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.9.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Momentum Transport by Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Heat Transport by Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 Mass Transport by Binary Diffusion . . . . . . . . . . . . . . . . . . . . . . . 132
7.5 Transport Phenomena by Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 136
7.6 Molecular Interpretation of Diffusion Transport . . . . . . . . . . . . . 137

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Differential Conservation Principles . . . . . . . . . . . . . . . . . . . . . . . . 141
8.1 Derivation of the Differential Conservation Equations . . . . . . . . 141
8.2 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Particular case: incompressible fluid . . . . . . . . . . . . . . . . . 143
8.3 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.3.1 Particular case: Newtonian liquid with constant viscosity143
8.4 Energy Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.4.1 Total Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4.2 Mechanical Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . 145
8.4.3 Internal Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.4.4 Enthalpy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.5 Entropy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.6 Conservation of Chemical Species . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.6.1 Particular case: constant density and constant
molecular diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Part III Dimensional Analysis. Theory and Applications

9 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.2 Dimensional Homogeneity Principle . . . . . . . . . . . . . . . . . . . . . . . . 158
9.3 Buckingham’s Π Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3.1 Application Process of the Π Theorem . . . . . . . . . . . . . . . 160
9.4 Applications of Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . 163

9.4.1 Simplification of Physical Equations . . . . . . . . . . . . . . . . . 163



XII Contents

9.4.2 Experimental Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.4.3 Experimentation with Scaled Models. Similarity . . . . . . . 165
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10 Dimensionless Equations and Numbers . . . . . . . . . . . . . . . . . . . . 173
10.1 Nondimensionalization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.1.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.1.2 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.1.3 Temperature Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.1.4 Conservation of Chemical Species Equation . . . . . . . . . . . 177

10.2 Other Important Dimensionless Numbers . . . . . . . . . . . . . . . . . . . 178
10.3 Physical Interpretation of the Dimensionless Numbers . . . . . . . . 178

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Part IV Transport Phenomena at Interfaces

11 Introduction to the Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . 187
11.1 Concept of Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.2 Laminar versus Turbulent Boundary Layer . . . . . . . . . . . . . . . . . 188
11.3 The Prandtl Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.3.1 Estimation of the Boundary Layer Thicknesses for
Laminar Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

11.3.2 Relative Boundary Layer Thicknesses . . . . . . . . . . . . . . . . 192
11.4 Incompressible Boundary Layer Equations . . . . . . . . . . . . . . . . . . 193

11.4.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.4.2 x-Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.4.3 y-Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11.4.4 Temperature and Concentration Equations . . . . . . . . . . . 195
11.4.5 Boundary Layer Equations: Summary . . . . . . . . . . . . . . . . 196

11.5 Measures of the Boundary Layer Thickness . . . . . . . . . . . . . . . . . 197
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

12 Momentum, Heat and Mass Transport . . . . . . . . . . . . . . . . . . . . . 199
12.1 The Concept of Transport Coefficient . . . . . . . . . . . . . . . . . . . . . . 199
12.2 Momentum Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.2.1 Basic Momentum Transport Coefficients . . . . . . . . . . . . . . 207
12.3 Heat Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.3.1 Heat Transfer by Forced Convection . . . . . . . . . . . . . . . . . 209
12.3.2 Heat Transfer by Natural Convection . . . . . . . . . . . . . . . . 212
12.3.3 Basic Heat Transport Coefficients . . . . . . . . . . . . . . . . . . . 215

12.4 Mass Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
12.4.1 Mass Transport by Forced Convection . . . . . . . . . . . . . . . 218
12.4.2 Mass Transport by Natural Convection . . . . . . . . . . . . . . . 219
12.4.3 Mass Transfer across Fluid/Fluid Interfaces . . . . . . . . . . . 220



Contents XIII

12.4.4 Basic Mass Transport Coefficients . . . . . . . . . . . . . . . . . . . 223
12.5 Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

12.5.1 Reynolds Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.5.2 Chilton-Colburn Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Part V Self Evaluation

13 Self Evaluation Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Part VI Appendices

A Collection of Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
A.1 Integral Equations for a Control Volume . . . . . . . . . . . . . . . . . . . . 243

A.1.1 Mass Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . 243
A.1.2 Chemical Species Conservation Equation . . . . . . . . . . . . . 243
A.1.3 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
A.1.4 Angular Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . 243
A.1.5 Mechanical Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . 244
A.1.6 Total Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A.1.7 Internal Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A.2 Relevant Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A.3 Transport Coefficient Analogies . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

A.3.1 Analogy of Reynolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.3.2 Analogy of Chilton-Colburn . . . . . . . . . . . . . . . . . . . . . . . . 246

B Classification of Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
B.1 Stationary (steady) / non-stationary (transient, periodic) . . . . . 247
B.2 Compressible / incompressible . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
B.3 One-dimensional / Two-dimensional / Three-dimensional . . . . . 248
B.4 Viscous / Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.5 Isothermal / Adiabatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.6 Rotational / Irrotational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
B.7 Laminar / Turbulent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

C Substance Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
C.1 Properties of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
C.2 Properties of dry air at atmospheric pressure . . . . . . . . . . . . . . . . 251



XIV Contents

D A Brief Introduction to Vectors, Tensors and Differential
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
D.1 Indicial Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
D.2 Elementary Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
D.3 Basic Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

E Useful Tools of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
E.1 Taylor Expansion Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
E.2 Gauss or Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

F Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
F.1 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
F.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
F.3 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

G Reference Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
G.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
G.2 Velocity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
G.3 Conservation Equations for Non-Inertial Systems of Reference . 269

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

H Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
H.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
H.2 Simple Compressible Substance . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
H.3 Mixtures of Independent Substances . . . . . . . . . . . . . . . . . . . . . . . 274

I Multicomponent Reacting Systems . . . . . . . . . . . . . . . . . . . . . . . . 277
I.1 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
I.2 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
I.3 Total Energy Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

I.3.1 Mechanical Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . 279
I.3.2 Internal Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 279

I.4 Conservation of Chemical Species . . . . . . . . . . . . . . . . . . . . . . . . . . 280
I.5 Generalized Fourier’s and Fick’s laws . . . . . . . . . . . . . . . . . . . . . . 280

I.5.1 Heat Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
I.5.2 Mass Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

I.6 Chemical Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Problem Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



Nomenclature

Roman Symbols Units Dimensions

A area m2 L2

c mixture molar concentration mol/m3 NL−3

cA molar concentration of species A mol/m3 NL−3

cv specific heat at constant volume J/(kg K) L2T−2Θ−1

cp specific heat at constant pressure J/(kg K) L2T−2Θ−1

CD drag coefficient − −

Cf friction coefficient − −

D length, diameter m L

DAB, DA molecular mass diffusivity m2/s L2T−1

Dv power dissipated by viscous dissipa-
tion

W ML2T−3

DaI Damköhler number − −

e specific internal energy J/kg L2T−2

etot specific total energy J/kg L2T−2

Ec Eckert number − −

Eu Euler number − −

fm body force per unit mass N/kg LT−2

fs stress at surface Pa ML−1T−2

fv body force per unit volume N/m3 ML−2T−2



XVI Nomenclature

F, F force N MLT−2

F s surface force N MLT−2

F v body force N MLT−2

Fr Froude number − −

g gravity acceleration m/s2 LT−2

Gr Grashof number − −

h length, depth m L

heat transport coefficient W/(m2 K) MT−3Θ

hm mass transport coefficient m/s LT−1

H length m L

H angular momentum N m ML2T−2

I surface moment of inertia m4 L4

moment of inertia kg m2 ML2

I identity tensor / matrix − −

jA mass flux of species A kg/(m2 s) ML−2T−2

j′
A molar flux of species A mol/(m2 s) NL−2T−1

jm
A mass flux of species A w.r.t the

molar mean velocity
kg/(m2 s) ML−2T

jm
A

′ molar flux of species A w.r.t the
molar mean velocity

mol/(m2 s) NL−2T−1

JA mass flux of species A kg/s MT−1

Kn Knudsen number − −

L length, depth m L

Le Lewis number − −

m mass kg M

ṁ mass flux kg/s M/T

M, M moment N m ML2/T2

M molar mass of mixture kg/kmol MN−1

MA molar mass of species A kg/kmol MN−1

Ma Mach number − −



Nomenclature XVII

nesp number of chemical species in the
mixture

− −

n normal vector − −

Nu Nusselt number − −

p pressure Pa ML−1T−2

P momentum N MLT−1

Pe Péclet number − −

PeII Péclet II number − −

Pr Prandtl number − −

q heat flux vector W/m2 MT−3

Q volumetric flux m3/s L3T−1

Q̇ heat per unit time W ML2T−3

r, R radius m L

r position vector m L

Ra Rayleigh number − −

Re Reynolds number − −

S surface m2 L2

S Strouhal number − −

Sc(t) control volume surface m2 L2

Sf (t) fluid volume surface m2 L2

S deformation rate s−1 T−1

Sc Schmidt number − −

Sh Sherwood number − −

St Stanton number − −

t time s T

T temperature ◦C or K Θ

u velocity field m/s LT−1

U potential energy J/kg L2/T2

v mass average velocity m/s LT−1

vA velocity of species A m/s LT−1



XVIII Nomenclature

vc control volume velocity m/s LT−1

vm molar average velocity m/s LT−1

V volume m3 L3

velocity m/s LT−1

Vc(t) control volume m3 L3

Vf (t) fluid volume m3 L3

x Cartesian coordinates m L

position vector m L

XA molar fraction of species A − −

YA mass fraction of species A − −

Ẇ power W ML2T−3

We Weber number − −

Greek Symbols

α thermal diffusivity m2/s L2T−1

δ viscous boundary layer thickness m L

δT thermal boundary layer thickness m L

δc concentration boundary layer thick-
ness

m L

ηa apparent viscosity Pa s or
kg/(m s)

ML−1T−1

θ angle rad −

κ thermal conductivity W/(m K) MLT−3Θ−1

λ second viscosity coefficient Pa s ML−1T−1

friction factor for pipes − −

mean-free path m L

µ dynamic viscosity Pa s or
kg/(m s)

ML−1T−1

ν kinematic viscosity m2/s L2T−1

ρ fluid density kg/m3 ML−3

ρA mass concentration of species A kg/m3 ML−3



Nomenclature XIX

σ surface tension N/m MT−2

normal stress Pa ML−1T−2

τ , τ stress tensor, stress component Pa ML−1T−2

τ ′ shear stress Pa ML−1T−2

τ ′ viscous stress tensor Pa ML−1T−2

φv viscous dissipation function W/m3 ML−1T−3

ω angular velocity rad/s T−1

ω̇A chemical generation of species A kg/(m3 s) ML−3T−1

ω̇′
A molar chemical generation of species

A
mol/(m3 s) NL−3T−1



Introduction

Most chemical processes, and the chemical and physical operations involved,
imply a transport of momentum, heat and mass.

For example, let us consider a chemical reactor. The chemical compounds
need to be transported into the reactor. Once in the reactor, the chemical con-
centrations will evolve according to the mass transport laws. In order to speed
up mixing, agitation may be used to add velocity, vorticity, and turbulence to
the fluid. Therefore, we are acting upon the velocity of the fluid, transferring
momentum. Finally, by adding heat to the reactor, the temperature gradients
generate energy transport from the heat source to the fluid particles, a process
that is called heat transfer. As a consequence, in most chemical processes we
can encounter mass, momentum and heat transport phenomena.

In general, the exchange of momentum, mass and energy are interrelated
and appear together. For instance, mass and heat transfer are faster in the
presence of agitation.

Furthermore, the laws and models that describe the transport of prop-
erties within a fluid are very similar. This is demonstrated by the existence
of analogies between the three kinds of transport phenomena. Therefore, a
unified study of all transport processes facilitates the learning process and
deepens a relational understanding.

Finally, the chemical operations between solids, liquids and gases typically
take place inside fluids (mainly liquids).

In brief, given that fluids are present in most chemical processes, it is
vital for the chemical engineer to thoroughly understand fluid mechanics and
transport phenomena.
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Basic Concepts in Fluid Mechanics

This chapter will define a fluid and introduce important concepts, like the
continuum hypothesis and local thermodynamic equilibrium, which enable a
mathematical treatment of fluid flow.

1.1 The Concept of a Fluid

In order to describe what a fluid is, two points of view are introduced: the
macroscopic and the microscopic.

The macroscopic point of view consists of observing matter from the sen-
sorial point of view: matter consists of what we touch and what we see. It is
basically the engineering perspective.

In contrast, the microscopic point of view consists of describing matter
through its molecular structure.

1.1.1 The Macroscopic Point of View

Experience tells us that, whereas in the solid state matter is more or less
rigid, fluids are that state of matter characterized by its endless motion and
deformation.

However, although the above observation is very common, a more rigorous
definition is necessary. In order to formulate such a definition, let us introduce
the concept of normal and shear stress.

Normal and Shear Stress

Given a surface of a body on which a force is acting, there are two types of
stresses acting on that surface: normal stress and shear (or tangential) stress.

Definition 1.1 (Normal stress). Normal stress σ is the force per unit area
exerted perpendicularly to the surface over which it acts.
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σ

τ

F/A

A

Fig. 1.1. Normal σ and shear τ stresses due to the force F acting on the surface A.

Definition 1.2 (Shear stress). Shear (or tangential) stress τ is the force
per unit area exerted tangentially to the surface over which it acts.

Remark 1.1. The SI unit of stress is the pascal Pa = N/m2. Since the pascal is
a very small unit, in engineering applications the megapascal, 1 MPa = 106 Pa,
is more frequently used.

Example 1.1 (Normal and shear stress). Typical examples of normal and shear
stress are, respectively, pressure and friction.

Example 1.2 (Calculation of stress components). In a horizontal plane, aligned
with the x axis, there is a stress of fs = (1, 3) MPa. Calculate the normal
and tangential stress.
Solution. The normal stress is the component of the stress perpendicular to
the plane. In this case, the unit normal vector to the plane is n = (0, 1), so
the normal stress is

σ = fs · n = 3 (1.1)

The tangential unit vector is t = (1, 0), so the tangential projection of the
stress can be calculated as

τ = fs · t = 1 (1.2)

y 

 

f = s   

σ=3

τ=1

x 
1
3 {  } 

Fig. 1.2. Example 1.2. Shear and normal stresses.
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Definition of a Fluid

With the concept of shear stress at hand, we can formally define a fluid. Next,
two equivalent definitions of a fluid are presented.

Definition 1.3 (Fluid). A fluid is a substance that continually deforms un-
der the action of shear stress.

Definition 1.4 (Fluid). A fluid is a substance that at rest cannot withstand
shear stresses.

solid

fluid

τ

ττ

τ

τ

t = 0 t = t 1

τ
t = t 2

Fig. 1.3. Behavior of a small rectangular piece of solid and fluid under the action
of shear stress.

Differences between Solids, Liquids and Gases

In order to further clarify what a fluid is, it is helpful to compare a fluid to
a solid. In Fig. 1.3 one can observe that (below the elastic limit of deforma-
tion) a solid subject to a shear stress deforms until it reaches the equilibrium
deformation, maintaining its shape thereafter. Once the force is removed, the
solid recovers its original shape.

Oppositely, when subjected to a shear stress, a fluid deforms continuously
until the force is relieved. A fluid does not recover its original shape when the
shear stress is removed. Examples of common fluids are water, oil and air.

However, the division between solids and fluids is not always clear. There
exist substances that behave like solids when the stress acts during a short
period of time, but turn into fluids when the stress prolongs in time. Two
examples of such substances are asphalt and the earth’s crust. There are
other solids that behave like fluids when the stress acting upon them reaches
a threshold, like toothpaste, play-dough and melted cheese.

Definition 1.5 (Generalized fluid). In general, a substance that for any
condition obeys the definition of a fluid is called a (generalized) fluid.
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1.1.2 The Microscopic Point of View

The origin of the substances’ behavior is based on their microscopic struc-
ture. Matter is formed by moving molecules, subject to various types of inter-
molecular forces. These forces maintain the bonding of molecules, and it is
the strength of these forces that distinguishes the solid and fluid (liquid or
gas) states of matter.

In a solid the inter-molecular forces are strong, allowing the molecules to
stay at an approximately fixed position in space. For liquids, these cohesive
forces are intermediate, weak enough to allow relative movements between
molecules, but strong enough to keep the relative distance constant. Liquids,
when within an open container in a gravitational field, take the shape of the
container and form a surface of separation with the air, called free surface.
Finally, in gases the inter-molecular forces are so weak as to allow a variable
inter-molecular distance. Gases tend to expand and occupy all the available
volume.

1.2 The Fluid as a Continuum

A fluid flow is characterized by the specification of fluid variables (sometimes
also called fluid properties) such as density ρ, pressure p, temperature T ,
velocity vector v, chemical concentration of the component A ρA, and so on.
But according to the molecular structure of nature, if matter is made of voids
and fast moving particles, how can we define each one of the above fluid
variables?

For example, let us examine the fluid density. For that purpose, let us take
a volume of matter δV , which will have a mass δm. In principle, the density
can be calculated as the ratio between the mass δm and its volume δV ,

ρ =
δm

δV
(1.3)

However, depending on the size of the volume δV , we will find different values
of the density.

If δV is very small, let’s say microscopic, due to random molecular mo-
tion, we may at one time find one molecule, at others three, etc. Therefore,
the value of the density will vary from one measurement to the next. This
type of uncertainty is called microscopic uncertainty and is caused by the
discontinuous and fluctuating nature of matter.

On the other hand, if the sampling volume is very large, such as a room,
statistically speaking the number of molecules inside is going to be constant.
However, due to variations of density inside the volume, the average density
might differ from the actual density at the center of the room. This type of
uncertainty is called macroscopic uncertainty and is caused by spatial variation
of the fluid variables.
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ρ

δ V
δ V*

Fig. 1.4. Behavior of the measured density as a function of the sample volume.

As a consequence, in order to calculate a reasonable value of the density
we need a specific size of the sampling volume δV ∗, not too large nor too
tiny. This volume also needs to contain enough molecules to be able to attain
statistically meaningful averages. Thus, the density at a point in space is
defined as

ρ = lim
δV →δV ∗

δm

δV
(1.4)

It has been estimated that for a stable measurement, this volume must contain
around 106 molecules. Therefore, the size of δV ∗ must be 3

√
δV ∗/δ ≈ 100

where δ is the distance between molecules [14]. For instance, for air at ambient
temperature, a volume δV ∗ of the order of 10−9 mm3 contains about 3× 107

molecules [25], a number sufficiently large to attain a correct value of density.
Furthermore, in order to be able to employ differential calculus, it will

be assumed that the above definition of density yields a continuous and con-
tinuously differentiable function. The substances that are treated with this
hypothesis are called continuum media and are studied in the branch of phys-
ics called continuum mechanics.

In conclusion, the continuum hypothesis allows us to model discontinu-
ous matter as continuous. Certainly, every hypothesis has a range of validity.
The continuum hypothesis is valid as long as a characteristic length of the
flow L is much larger than that of δV ∗, i.e. 3

√
δV ∗ << L. This is the case

for routine flows at moderate speeds, such as those encountered in chemical
plants, engineering applications and vehicle aerodynamics. However, this hy-
pothesis cannot be applied for instance to flows at pressures close to zero
(called rarefied gases), such as the spacecraft reentry into the atmosphere.
Also in microfluidic applications, where fluid transport phenomena take part
in devices at the micro and nano scale, the continuum hypothesis can easily
break down.
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1.3 Local Thermodynamic Equilibrium

Fluid dynamics is tightly linked to thermodynamics, which studies the equi-
librium states of substances. This equilibrium implies that the properties of
matter are constant in space and time, which is rarely the case in moving
fluids.

However, as in the continuum hypothesis, under certain conditions it can
be assumed that each piece of fluid is in thermodynamic equilibrium. Since
molecular collisions are the mechanism responsible for equilibrium, it can
be assumed that there exists local thermodynamic equilibrium if within a
characteristic distance for property variations L = c/|∇c| (where c is any
thermodynamic variable) there are enough collisions [8]. This condition can be
expressed as λ << L, where λ is the mean free path (the path that molecules
travel between collisions).

Similar arguments can be applied in time if the characteristic collision time
is much smaller than the characteristic flow time scale.

Local equilibrium implies that each little piece of fluid can be considered
in thermodynamic equilibrium and that at each point, the thermodynamic
relations among thermodynamic properties can be safely used.

Remark 1.2. For gas flows, the applicability of the continuum hypothesis and
the local thermodynamic equilibrium is usually expressed by the dimensionless
Knudsen number [14]

Kn =
λ

L
(1.5)

For Kn < 0.01 the medium can be considered as a continuum and the trans-
port equations of this text are valid. For larger Kn, other models, like the
Boltzmann equation, must be used.

Remark 1.3. In the case of liquids, the break-down of the continuum hypo-
thesis manifests in anomalous diffusion mechanisms.

Problems

1.1 The stress in the plane defined by the normal n = 1√
5
(1, 2) is f s =

(15, 34) MPa. Calculate the normal and tangential stresses in that plane.
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Elementary Fluid Kinematics

Kinematics is the branch of fluid mechanics that studies the description of fluid
motion without consideration of the forces that bring it out. There exist three
formulations to describe the motion of continuum materials: the Lagrangian,
the Eulerian and the arbitrary Lagrangian-Eulerian descriptions. Also, three
tools to visualize fluid motion will be presented: streamlines, trajectories and
streaklines. These are important in theoretical, experimental and computa-
tional fluid dynamics to visualize flow dynamics. Finally, the concept of flux
will be explained.

2.1 Description of a Fluid Field

The field of transport phenomena studies the evolution of fluid variables, such
as temperature, chemical concentrations, velocity and energy.

A fluid can be modeled as a numerous set of small fluid particles that
translate, rotate and deform. This is a simple model that proves helpful to
understand fluid physics. Therefore, a way to understand a fluid is to describe
the motion of the particles that form the fluid.

Traditionally, there exist two ways to describe the motion of a fluid: the
Lagrangian description and the Eulerian description. Presently, a combination
of the above two formulations, the Arbitrary Lagrangian-Eulerian description
(ALE), has been proved very useful in computational mechanics.

2.1.1 Lagrangian Description

This description consists of following every fluid particle, for instance, in the
form of an equation for the path of each fluid particle. This approach is typic-
ally used in solid particle and rigid body mechanics and in (deformable) solid /
structural mechanics. In fluid mechanics, this description is particularly suited
for multiphase flows, where bubble and solid particles can be easily tracked
using the Lagrangian formulation.
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Mathematically, the Lagrangian description provides the position of each
fluid particle x at every time instant t. Since a fluid contains an infinite
number of particles, each particle is selected by specifying its position x0 at
time t = 0,

x = x(t, x0) (2.1)

t = 0

Fig. 2.1. Lagrangian description. Position of various fluid particles as a function of
time.

In this description, the acceleration of a fluid particle is determined as in
kinematics of rigid bodies, where x = x(t, x0) represents the position of the
same particle with time. Thus,

v(t, x0) =
dx(t, x0)

dt

a(t, x0) =
dv(t, x0)

dt
=

d2x(t, x0)
dt2

(2.2)

Likewise, for other fluid properties such as evolution of temperature, for
which the function

T = T (t, x0) (2.3)

reveals the temperature T at time t of the particle that initially was at x0.

Example 2.1 (Uniform flow). The Lagrangian description of a uniform two-
dimensional flow parallel to the x axis, with velocity

v =
{

V
0

}

consists of the equations

x(t, x0) =
{

x1(t, x0)
x2(t, x0)

}
=
{

x01 + V t
x02

}

where

x0 =
{

x01

x02

}

is the position of the particle at time t = 0.



2.1 Description of a Fluid Field 13

The acceleration is indeed zero,

a(t, x0) =
dv(t, x0)

dt
=
{

0
0

}

Example 2.2 (Rotating flow). In this example, the velocity field of a particle,
initially at the point (x0, 0), describing a circumference centered at the origin
of coordinates, with angular velocity ω is given by

x(t, x0) = x0

{
cosωt
sinωt

}

In the Lagrangian formulation, the particle velocity is simply the time deriv-
ative of the position vector,

v =
dx

dt
= x0ω

{
− sinωt
cosωt

}

and its acceleration,

a =
dv

dt
= −x0ω

2

{
cosωt
sin ωt

}

Note that
a = −ω2x

so the particle is subjected to a centripetal acceleration towards the center of
rotation, of modulus rω2.

2.1.2 Eulerian Description

Although fluid mechanics uses both, the Lagrangian and the Eulerian descrip-
tions, the Eulerian description is the most frequently used because generally
it yields simpler formulations. Indeed, in the Eulerian Description, the fluid
domain is not followed as it deforms, but rather, the focus is on a fixed spatial
domain, through which the fluid flows.

This formulation consists of giving the velocity field v at every spatial
point x and instant of time t,

v = v(x, t) (2.4)

Thus, this description does not provide information about the motion of each
individual particle, but rather, gives information at fixed spatial points.

In this case, the acceleration of a fluid particle cannot be calculated as the
partial derivative of the fluid velocity with respect to time, because v(x, t)
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y

x

Fig. 2.2. Eulerian description. Particle velocities at fixed spatial points for a given
time instant.

represents the velocity of many different particles as they travel through the
same point x. Therefore, to calculate the acceleration of the fluid particle, the
substantial or material derivative is introduced, D · /Dt

a(x, t) =
Dv(x, t)

Dt
(2.5)

whose definition will be given later.
Likewise, the temperature distribution is represented as the function

T = T (x, t) (2.6)

where x is the spatial coordinate and t time.

Example 2.3 (Uniform flow). The flow field of Example 2.1 in the Eulerian
description would simply be

v(x, t) =
{

V
0

}

Example 2.4 (Rotating flow). In Example 2.2, the Eulerian description would
not give the velocity of a single particle, but the velocity at each spatial point
when different particles pass by. Thus,

v(x, y, t) = ω

{
−y
x

}

In this case, note that the particle acceleration is not simply the temporal de-
rivative (which vanishes), but is given by the substantial derivative, explained
below.
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Example 2.5 (Measuring the water temperature in a river). Now let us present
one more example to clarify the differences between the Lagrangian and Eu-
lerian descriptions. Let us assume that we want to measure the temperature of
the water in a river. If we hang a thermometer from a bridge and register the
water temperature versus time at various locations on the bridge, we would
be using the Eulerian description. The thermometer would be measuring the
temperature of different fluid particles as they pass through a fixed point.

However, if we took a boat that was so light that it moved at the flow
speed, then a thermometer glued to it would be registering the temperature
of the (approximately) same fluid particle. In this case we would be using the
Lagrangian description because we would be describing the temperature of
the same fluid particle with time.

Obviously it is much simpler and much more accurate to fix the thermo-
meter at a spatial point.

2.1.3 Arbitrary Lagrangian-Eulerian Description (ALE)

This description finds application in modern computational tools developed
for analysis in engineering and sciences. It consists of recording data at points
which move arbitrarily. For example, in a numerical computation the fluid
properties are calculated at the mesh nodes. If the mesh moves, then we
can use an Arbitrary Langrangian-Eulerian formulation to calculate the fluid
variables at the mesh nodes.

2.2 The Substantial or Material Derivative

In classical mechanics, physical laws are formulated for a piece of matter, that
is, for a particle or a set of particles. This is the case of the Lagrangian formu-
lation, where the particle acceleration can be calculated directly as d2x/dt2.

However, in the Eulerian and ALE formulations, the fluid particles are
not tracked anymore. The fluid field is given as fluid properties at fixed or
arbitrary points, respectively. Therefore, if evolution of the particle properties
is desired, we will need specific mathematical transformations to recover the
derivative following the fluid particle.

Let r(t) denote the position of a particle in a fluid field,

r(t) =

⎧⎨
⎩

rx(t)
ry(t)
rz(t)

⎫⎬
⎭ (2.7)

The velocity of this particle is
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Fig. 2.3. Motion of the fluid particle.

v(t) =

⎧⎨
⎩

u(t)
v(t)
w(t)

⎫⎬
⎭ =

dr(t)
dt

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

drx(t)
dt

dry(t)
dt

drz(t)
dt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

Let a scalar Eulerian field, such as a velocity component, chemical concentra-
tion or temperature, be given by c(x, y, z, t) where x, y, z are spatial coordin-
ates. If we follow a fluid particle, the spatial coordinates are not arbitrary,
but are given by the position that the fluid particle is occupying, that is, the
particle trajectory, r(t). Thus, following a fluid particle,

c = c(rx(t), ry(t), rz(t), t) (2.9)

The total derivative of c with respect to time, Dc/Dt, which represents the
variation of c in time following the fluid particle, can be computed by the
chain rule,

Dc

Dt
=

∂c

∂t
+

∂c

∂x

drx

dt
+

∂c

∂y

dry

dt
+

∂c

∂z

drz

dt

=
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
(2.10)

With the help of the nabla operator ∇, which is a vector operator that com-
putes the spatial derivatives of a function,

∇c =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂c

∂x
∂c

∂y
∂c

∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.11)

the derivative following the fluid particle can be expressed in tensor notation
as

Dc

Dt
=

∂c

∂t
+

⎧⎨
⎩

u
v
w

⎫⎬
⎭ ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂c

∂x
∂c

∂y
∂c

∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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=
∂c

∂t
+ (v · ∇)c (2.12)

If the velocity vector is expressed in components vi, i = 1, 2, 3, and the
Cartesian coordinates as xi, i = 1, 2, 3,

Dc

Dt
=

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z

=
∂c

∂t
+ v1

∂c

∂x1
+ v2

∂c

∂x2
+ v3

∂c

∂x3

=
∂c

∂t
+

3∑
j=1

vj
∂c

∂xj
(2.13)

Thus,

Dc

Dt
=

∂c

∂t︸︷︷︸
temporal

+
3∑

j=1

vj
∂c

∂xj︸ ︷︷ ︸
convective

(2.14)

This derivative is called the substantial or material derivative and represents
the variation of c following a fluid particle. It is made from the temporal term
and the convective term. The latter represents the transport of a property in
the fluid due to its macroscopic motion.

Remark 2.1. In the last term of the above equation, the index j is repeated
and, using the Einstein summation convention on repeated indices, the sum
symbol can be eliminated (see Appendix D). Therefore, in indicial notation
and for Cartesian coordinates, the substantial derivative can be written as

Dc

Dt
=

∂c

∂t
+ vj

∂c

∂xj
(2.15)

If the substantial derivative is applied to the velocity vector, we obtain
the acceleration of the fluid particle. In this case, the substantial derivative is
applied component by component, that is, for v = (vx, vy, vz)

a =
Dv

Dt
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dvx

Dt
Dvy

Dt
Dvz

Dt

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.16)

Definition 2.1 (Stationary or steady flow). A fluid flow is stationary
when in the Eulerian description none of the variables depends on time, i.e.,
∂·
∂t

= 0.
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ρ

hH
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x

L

Fig. 2.4. Example: acceleration of the fluid particle inside a nozzle.

Definition 2.2 (Transient flow). A fluid flow is said to be transient when
it is not stationary.

Example 2.6 (Flow acceleration in a converging nozzle). Let the stationary
fluid flow in the nozzle of Fig. 2.4 with a decreasing cross sectional area
between x = 0 and x = L be given by the one-dimensional velocity field

v =

⎧⎨
⎩

vx

vy

vz

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

V0(1 +
1
2

x

L
)

0
0

⎫⎪⎬
⎪⎭

Calculate the acceleration of the fluid particle.
Solution. Since the fluid flow is in the x direction, ay = az = 0. Even though
there is no temporal dependency of the flow (∂vx/∂t = 0) the fluid particle
is still experiencing acceleration. Indeed, because the section of the nozzle is
decreasing in the direction of the flow, the velocity will increase.

In order to compute the acceleration let us use the definition of the sub-
stantial derivative (2.14) applied to the component vx of the velocity,

ax =
∂vx

∂t

∖
+ vx

∂vx

∂x
+ vy

∂vx

∂y

∖
+ vz

∂vx

∂z

∖

= vx
∂vx

∂x

= V0(1 +
1
2

x

L
)
(

V0

2L

)

=
V 2

0

2L
(1 +

1
2

x

L
)

Example 2.7 (Rotating flow). Let us turn back to the circular motion of Ex-
ample 2.2. In the Eulerian description, the velocity field would be given by

v(x, y, t) = ω

{
−y
x

}
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And the acceleration of the fluid particle can be calculated as

a =
Dv

Dt
=

∂v

∂t
+ vx

∂v

∂x
+ vy

∂v

∂y

=
{

0
0

}
− (ωy) ω

{
0
1

}
+ (ωx) ω

{
−1
0

}

= −ω2

{
x
y

}

which coincides with the centripetal acceleration.

Remark 2.2 (Substantial Derivative in the ALE Formulation). For data points
that move at the velocity vmesh, the substantial derivative of c(x, y, z) in
Cartesian coordinates can be written as

Dc

Dt
=

∂c

∂t
+

3∑
j=1

(vj − vmesh
j )

∂c

∂xj
(2.17)

2.3 Mechanisms of Transport Phenomena

In a fluid there are two classes of transport phenomena: transport by convec-
tion and transport by diffusion.

The convective transport is due to the macroscopic fluid velocity. The fluid,
with its motion, drags the fluid particles and its properties. Mathematically,
the net flux by convection is modeled by the convective term of the substantial
derivative,

v1
∂c

∂x1
+ v2

∂c

∂x2
+ v3

∂c

∂x3

This type of transport phenomenon is responsible, for example, for the wind
transporting fallen tree leaves. At the same time as the wind blows the fallen
tree leaves, it transports all the fluid properties, such as temperature, chemical
concentration of the chemical species, energy, momentum and so on. In short,
this transport phenomenon is caused by fluid velocity.

The second class of transport phenomena is due to diffusion transport or
molecular transport, and it will be explained in more detail in Chapter 7 on
Constitutive Equations.

Mathematically, for the case of constant coefficients, the net local balance
of transport by diffusion around a fluid particle is proportional to the diffusion
coefficient α and the Laplacian,

α∆c = α

(
∂2c

∂x2
1

+
∂2c

∂x2
2

+
∂2c

∂x2
3

)
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and it contains second derivatives.
This transport phenomenon is due to the random motion (translational,

vibrational, etc.) of molecules at the microscopic level, which tends to make
the properties uniform. An important trait of transport by diffusion is that it
can occur at a zero macroscopic velocity.

As an example, heat in a solid propagates by diffusion. In a closed room,
a scent placed in a corner ends up diffusing to the whole space.

Another important characteristic of diffusive transport is that variations
of fluid properties must exist. If the fluid variable is constant, then there is
no transport by diffusion for that property.

v

Fig. 2.5. Transport of a river spillage by convection and diffusion.

But in fluids it is common that both transport phenomena occur simul-
taneously. For example, let us take the spillage in the river of Fig. 2.5. The
fluid velocity transports the spill downstream, and at the same time the width
of the stains grows perpendicularly to the fluid velocity due to diffusion. In
the absence of diffusion, the cross-sectional width of the stain would remain
constant. When the flow in the river is turbulent, the mixing rate is increased
considerably due to stochastic convection mechanisms, and the stain widens
at an even faster rate.

2.4 Streamlines, Trajectories and Streaklines

Fluid fields can be visualized. There are three tools employed in the laborat-
ory and in computational fluid dynamics (CFD) to visualize a velocity field:
streamlines, trajectories and streaklines. They are explained next.

Definition 2.3 (Streamline). The streamline is the line tangent at every
point to the velocity vector.
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v

v

v

Fig. 2.6. The streamline is tangent to the velocity vector at every point.

Definition 2.4 (Trajectory). The trajectory or path is the track followed by
a fluid particle.

Fig. 2.7. Trajectory. The fluid particle follows the plotted line.

Definition 2.5 (Streakline). The streakline is the geometric place occupied
by fluid particles that have passed by the same point at previous times.

Fig. 2.8. The plume of a chimney is a streakline.

Streamlines indicate the velocity direction. They can be visualized by
implanting little flags inside the fluid and observing their orientation. The
streamlines can be obtained by drawing lines tangent to the flags. They are a
rather mathematical object.

The trajectory is the path followed by a fluid particle. For example, the
braking marks on a road indicate the position that a tire has been occupying
while the wheel was being dragged. They depict, therefore, the trajectory of
the tire. Another example is the path that a hiker follows to climb the peak
Aneto. The same applies to fluid particles.
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t 0 t 1 t 2 t 3

Fig. 2.9. Streakline (solid line) and trajectories (dashed lines) of the smoke particles
(dots) from a chimney at successive time instants.

Finally, streaklines are the easiest element to be seen in nature or an
experimental rig. Examples include a plume in the sky, the spilled colored
contaminant in a river or the injected smoke in an aerodynamic tunnel. Fig. 2.9
shows how a streakline is formed and the difference between a streakline and
a trajectory.

Remark 2.3. If the flow is stationary, then streamlines, trajectories and streak-
lines coincide.

Below, it is explained how streamlines, trajectories and streaklines are
calculated. As an example, we will take the unsteady (non-stationary) two-
dimensional flow field given by u = 2x(t + 1) and v = 2y(t − 1).

v

v

v
d l

Fig. 2.10. Streamline and differential of length.

2.4.1 Calculation of Streamlines

Let dl be a differential of length along a streamline. By definition of stream-
line, the little piece of curve dl should be parallel to the velocity vector
v = (u, v, w), that is,
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dl × v =

⎧⎨
⎩

dx
dy
dz

⎫⎬
⎭×

⎧⎨
⎩

u
v
w

⎫⎬
⎭

= det

∣∣∣∣∣∣
i j k

dx dy dz
u v w

∣∣∣∣∣∣ (2.18)

= 0

Expanding the determinant,

u

dx
=

v

dy
=

w

dz
(2.19)

For the two-dimensional case, setting dz = 0 and w = 0 in the determinant
yields

u

dx
=

v

dy
(2.20)

Remark 2.4. In polar coordinates, the infinitesimal lengths along the r and θ
axes are dr and rdθ, respectively. Therefore, the streamlines are the solution
of

u

dr
=

v

rdθ
(2.21)

with u and v the velocity components in the r and θ directions, respectively.

Example 2.8 (Streamline). Calculate the streamlines for the unsteady, two-
dimensional flow field given by,

u = 2x(t + 1)
v = 2y(t − 1)

Particularize for the case in which the streamline passes through the point
(x0, y0) at all times.
Solution. Applying (2.20),

2x(t + 1)
dx

=
2y(t − 1)

dy

Integrating
(t + 1) ln y = (t − 1) ln x + lnC

Thus,
yt+1 = Cxt−1

To determine the integration constant C, the conditions of the particular case
are imposed for all t,

yt+1
0 = Cxt−1

0
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and so

C =
yt+1
0

xt−1
0

Finally, substituting the value of C

y

y0
=
(

x

x0

) t−1
t+1

2.4.2 Calculation of Trajectories

A trajectory is the path followed by a fluid particle. Since the particle velocity
is known at each spatial point, the trajectory coordinates x(t) can be obtained
by integrating the equation of motion,

dx

dt
= u

dy

dt
= v

dz

dt
= w (2.22)

where (x, y, z) is the position of the particle as a function of time. As boundary
condition we will need the position of a particle at a given time. Then, the
variable time t can be eliminated to reach the equation of the trajectory in
explicit or implicit form.

Example 2.9 (Trajectory). For the flow field of the above example, determine
the trajectory of the fluid particle that passes through the point (x0, y0), at
t = 0.
Solution. Integrating the equation of motion,

dx = 2x(t + 1)dt

dy = 2y(t − 1)dt

yields

ln x = (t + 1)2 + lnC1

ln y = (t − 1)2 + lnC2

Thus,

x = C1e
(t+1)2

y = C2e
(t−1)2

To determine the constants of integration C1, C2, the conditions of the prob-
lem are imposed,

x0 = C1e
(0+1)2

y0 = C2e
(0−1)2
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which implies

C1 = x0/e

C2 = y0/e

Finally, the trajectory is given in parametric form through the combination
of

x
x0

= e(t+1)2−1

y
y0

= e(t−1)2−1

This is a valid curve in two dimensions. Sometimes it is possible to eliminate
t and write the same curve in explicit form, that is, as y(x). Getting t from
the first equation,

t =
√

ln x
x0

+ 1 − 1

and substituting in the second one,

y
y0

= e

(√
ln x

x0
+1−2

)2
−1

which is the equation of the trajectory in explicit form.

2.4.3 Calculation of Streaklines

To calculate the streaklines of a flow field, it is first necessary to compute the
trajectories. The process is very similar to the one presented above, differing
only in the way the boundary conditions are imposed. Assume that a tracer is
injected into the flow field at the point (x0, y0). Then, proceed in three steps:

1. Integrate the equation of motion.
2. Calculate the integration constants, such that at time ξ <

t the fluid particle was at (x0, y0). Here ξ is the parameter
that designates the particle, by the time it passed through
the injection point. What we have done is to obtain all the
trajectories of the particles that were injected in the flow field
before the present time t.

3. Eliminate ξ.

Example 2.10 (Streakline). In the flow field of the previous example, determine
the streakline that passes by x0, y0.
Solution. Integration of the equation of motion yields

x = C1e
(t+1)2

y = C2e
(t−1)2
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Now, in order to determine the integration constants C1, C2, we search the
particles that at time ξ passed by x0, y0:

x0 = C1e
(ξ+1)2

y0 = C2e
(ξ−1)2

yielding

C1 = x0/e(ξ+1)2

C2 = y0/e(ξ−1)2

Substituting,
x
x0

= e(t+1)2−(ξ+1)2

y
y0

= e(t−1)2−(ξ−1)2

The parameter ξ represents the different particles that make the streakline.
For each ξ, the trajectory of a different particle is attained. As ξ is varied, we
run through the various particles that make the streakline.

Getting ξ from the first equation,

ξ =
√

(t + 1)2 − ln x
x0

− 1

and substituting in the second one we run through all the particles that make
the streakline,

y
y0

= e
(t−1)2−(

√
(t+1)2−ln x

x0
−2)2

2.5 The Concept of Flux

The flux is a quantity used to measure the amount of a property transported
across a surface per unit time. It is one of the most widely used concepts in
fluid mechanics. As examples of daily used fluxes, we can cite the volumetric
flux and the mass flux.

Before proceeding, we need to define the normal vector to a surface.

Definition 2.6 (Normal vector). The exterior normal n at a point of a
closed surface is the outward unit vector orthogonal to the surface at that
point (see Fig. 2.11).

Now we can proceed to defining the volumetric and mass flux.

Definition 2.7 (Volumetric flow rate). The volumetric flow rate Q is the
volume of fluid that crosses the surface per unit time,

Q =
∫

S

v · ndS (2.23)

Its dimensions are [Q] = L3T−1 and its units in the SI, m3/s.
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n

Fig. 2.11. Exterior normal to the surface of a volume.

Definition 2.8 (Mass flow rate). The mass flux ṁ or G is the mass per
unit time that flows across a surface,

ṁ =
∫

S

ρv · ndS (2.24)

Its dimensions are [ṁ] = MT−1 and its SI units, kg/s.

dA

S

v

n

n

θ

v

Fig. 2.12. Flux across a surface.

In order to check expression (2.23), let us take the differential of area dA
over the surface S of Fig. 2.12. The fluid volume dVol that flows during the
time interval dt across dA is

dVol = base × height
= dA × v dt cos θ (2.25)
= dA dt (v · n)

Therefore, dividing by dt we calculate the volume per unit time,

dQ =
dVol
dt

= (v · n) dA (2.26)

Integrating dQ over the whole surface, the flow rate Q is calculated.
The expression for the mass flow rate is obtained following the same steps,

taking into account that the differential of mass across the surface is

dmass = ρ dVol (2.27)
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Remark 2.5. Since n is the outward normal vector to the surface, then outgo-
ing flow rates are positive and inward flow rates, negative.

Definition 2.9 (Mean velocity). The mean velocity v̄ is the velocity that
multiplied by the cross sectional area gives the volumetric flow rate,

v̄ =
Q

A
(2.28)

Example 2.11 (Volumetric flow rate for uniform velocity v parallel to the nor-
mal vector of the surface A). In this case, the volumetric flow rate is simply

Q = vA

The mean velocity is
v̄ = Q/A = v

z

r

R v(r)

Fig. 2.13. Fully developed laminar flow in a constant section pipe.

Example 2.12 (Laminar flow in a circular cross-section pipe). The fully de-
veloped laminar axial velocity in a circular cross-section straight pipe, of ra-
dius R, obeys

v(r) = V0

[
1 −

( r

R

)2
]

This flow is called Hagen-Poiseuille flow. Determine the volumetric flow rate
in the pipe and the mean velocity.
Solution. Let us take a section perpendicular to the pipe axis, S. The volu-
metric flow rate is

Q =
∫

S

v · n dS =
∫

S

v(r) dS

Since the velocity is constant for a given radius, we can take the surface
differential dS = 2πr dr. Substituting,
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Q =
∫ r=R

r=0

v(r) 2πr dr

= 2π

∫ R

0

V0

[
1 −

( r

R

)2
]

r dr

= 2πV0

[
r2

2
− r4

4R2

]R

0

= 2πV0
R2

4

=
πR2

2
V0

Observe that the dimensions of the above expression are correct.
The mean velocity is

v̄ =
Q

πR2
=

V0

2
which is half the maximum velocity at the center of the pipe.

In transport phenomena, we will frequently use the convection or convect-
ive flux of a fluid property, which represents the amount of property transpor-
ted across a surface per unit time. This flux is calculated from the property per
unit mass φ. In general, we can define the convective flux of a fluid property
as follows.

Definition 2.10 (Convective flux). The convective flux of a property in a
fluid with velocity v across the surface S is

F =
∫

S

ρφ v · ndS (2.29)

where φ is the property per unit mass. It represents the amount of that property
that crosses the surface S per unit time.

For example, for the property mass, mass per unit mass is the unity, φ = 1,
and the mass flow rate definition is recovered. The volumetric flux is recovered
for φ = 1/ρ. For the flux of internal energy, the internal energy per unit mass
is φ = e, where e represents the specific internal energy.

Remark 2.6. Note that for a positive ρφ, the convective flux is positive for
outgoing flow (v · n > 0) and negative, for incoming flow (v · n < 0).

Definition 2.11 (Flux). In general, the flux of a vector Φ equals the integral
of Φ · n over the surface S

F =
∫

S

Φ · ndS (2.30)

where n is the exterior normal to the surface.
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Example 2.13 (Heat flux across a surface). The heat flow or heat flux across
a surface can be calculated by setting Φ = q, where q is the vector of heat
per unit surface per unit time [W/m2]. Thus, in direction n,

Q̇ =
∫

S

q · ndS (2.31)

Table 2.1. Examples of fluxes across a surface S.

Flux Symbol Units Expression

Volumetric flux Q m3/s
∫

S
v · n dS

Mass flux ṁ, G kg/s
∫

S
ρv · n dS

Flux of a property,
with φ = prop./mass

[prop.]/s
∫

S
ρφ · n dS

Heat flux Q̇ W
∫

S
q · n dS

Problems

2.1 Given the Eulerian fluid field

v(x, y, z, t) = 3ti + xzj + ty2k

where i, j and k are the unit vectors along the coordinate axis, determine the
flow acceleration.

2.2 A fluid field is described by

u =
x

1 + t
; v =

y

1 + 2t
; w = 0

where t represents time. Calculate the streamlines and trajectories that pass
by x0, y0 at t = 0 and the streakline that passes by x0, y0 ∀t.

2.3 Using polar coordinates, the fluid field in a tornado can be approximated
as

v = −a

r
er +

b

r
eθ

where er and eθ are the unit vectors in the directions r and θ. Show that the
streamlines obey the logarithmic spiral equation
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r = C exp(−a

b
θ)

2.4 A two-dimensional transient velocity field is given by

u = 5x(1 + t) v = 5y(−1 + t)

where u is the x velocity component and v, the y component. Find:

(a) The trajectory x(t), y(t) if x = x0, y = y0 at t = 0. Is this a Lagrangian
or Eulerian flow description?

(b) The streamlines that pass by x0, y0.
(c) The streakline that goes by x0, y0.

2.5 The ideal flow around a corner placed at the axis origin is given by

ux = ax

uy = −ay

with a a constant. Determine the streamlines and draw the streamline that
goes by the point (1, 1) indicating the flow direction for a > 0. Calculate the
substantial derivative.

2.6 The velocity field in an irrotational vortex, like the ones present in
cyclones, is given by

ux = −Ky/(x2 + y2)
uy = Kx/(x2 + y2)

Determine the streamlines and draw a few of them.

2.7 Check if the velocity field of the above exercise can be expressed in polar
coordinates as

ur = 0
uθ = K/r

and calculate the streamlines in polar coordinates.

2.8 Calculate the volumetric and mass flow rate, Q and ṁ, respectively,
across the slit S of width w shown in the Figure, where the velocity vector has
an angle of 60◦ with the x axis and its magnitude is given by v = v0(b2−x2)/b2.
The fluid density is ρ.

2.9 In film condensation along a vertical plate in a vapor atmosphere (see
the Figure), Nusselt found out that in laminar flow the velocity profile at a
station x is
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y

x

v (x)
S

60 o

2 b

Problem 2.8. Slit geometry.

vx(y) =
(ρl − ρv)gδ2

µ

[
y

δ
− 1

2

(y

δ

)2
]

0 ≤ y ≤ δ(x)

where ρl and ρv are the density of the fluid in the liquid and vapor phase,
respectively, and µ the liquid density. Find the volumetric flow rate per unit
width at any value of x.

y 

x 

δ(x)

v (y) x 

Problem 2.9. Film condensation on a vertical plate.

2.10 Write the expression of the kinetic energy flux across a surface S.
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Fluid Forces

The intensity of transport processes crucially depends on fluid motion. This
is one of the salient features of transport phenomena in fluids. And since the
fluid motion is impelled by the forces applied to the fluid, these fluid forces
are of paramount importance in determination of the mentioned processes.
Therefore, this chapter introduces the main forces that for engineering pur-
poses act upon a fluid, namely, body forces, surface forces and surface tension.
The concept of static pressure is also explained.

3.1 Introduction

Eventually, we are interested in describing transport phenomena in moving
fluids. In classical mechanics, a motion is described by the second law of
Newton. For example, the acceleration a of a particle of mass m subject to
external forces

∑
F is given by

∑
F = ma

Therefore, to determine the motion of the fluid, we need to know the forces
that act upon the fluid particles.

Typically, in fluid engineering applications three types of forces are con-
sidered:

(a) Body forces
(b) Surface forces
(c) Line forces or surface tension

They are explained next.
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3.2 Body Forces

This type of force acts upon the whole material volume at a distance, without
contact. An example is gravitational force. This force field can be defined in
two different ways.

The first way is as a volume force, which is defined as the exerted force
per unit volume

fv =
force

volume
It can also be defined as a massic force, the force exerted over the body per
unit mass,

fm =
force
mass

The differential force dF v acting on a differential element of volume dV
and mass dm = ρdV can be calculated as

dF v = fv dV (3.1)
dF v = fm dm = fm ρdV (3.2)

The total force over a given domain V can be calculated by integration

F v =
∫

V

fv dV

F v =
∫

V

ρfm dV

(3.3)

Note that both types of forces (per unit mass or volume) can be used to
compute the total force F v exerted over a body. As a consequence,

fv = ρ fm (3.4)

As examples of this type of force, we can cite

(a) The gravity
fv = ρg

where ρ is the fluid density (ML−3) and g, the acceleration of the gravit-
ational field (with dimensions LT−2 and |g| = 9.81 m/s2).

(b) The electromagnetic force

fv = ρeE + J × B

(c) Inertial forces due to the acceleration of relative systems of reference

fm = −(a0 + Ω̇ × r + Ω × (Ω × r) + 2Ω × v)

where a0 is the acceleration of the origin of the relative system; Ω is the
angular velocity of the reference system; Ω̇, its angular acceleration; r, the
position vector and v, the fluid velocity with respect to the relative system
of reference.
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3.3 Surface Forces

As the name indicates these forces act upon the surface of the fluid particle
or upon the surface of the considered fluid domain.

These forces are computed from stresses (see Chapter 1),

fs =
force

surface

The force acting on a differential element of surface dS is

dF s = fs dS (3.5)

whose integration over the given surface S yields the global force

F s =
∫

S

fs dS (3.6)

Examples of stresses that produce surface forces are

(a) The pressure p, where the stress acting on the direction n is given by

fs = −pn

(b) The friction force.

p dS

p dS

p dS

p dS

p dS

p dS

Fig. 3.1. Pressure forces acting on the fluid particle.

3.3.1 The Stress Tensor

The mathematical formulation to calculate surface stresses (and forces) is
much more complex than that of the body forces because they depend on the
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orientation of the surface. Indeed, at a point in space there are infinitely many
planes, and this needs to be accounted for.

The fundamental idea is that to calculate f s in any plane, the stresses
acting on three perpendicular planes are necessary. That is, we need 3 planes×
3 forces

plane = 9 data per point. These stresses are gathered in the stress tensor.

Definition 3.1 (Stress tensor). The stress tensor is the matrix τ whose
components τij represent stresses, i.e., ratios

stress =
force

surface

For three-dimensional flows, 1 ≤ i, j ≤ 3, and

τ =

⎡
⎣ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎤
⎦

Definition 3.2 (Components of the stress tensor). The component τij

of the stress tensor is the stress that acts on the plane perpendicular to the
axis i and in the direction of the axis j for foreground faces and in the opposite
direction for background faces.

x

y

z

Fig. 3.2. Positive stresses that act upon the foreground faces of an elemental cube.

Remark 3.1. Foreground faces are those where the normal vector is aligned to
a coordinate axis and background faces those where the normal vector is in
the opposite direction to a coordinate axis.

Remark 3.2. The opposite convention for i and j is equally found. This has
no practical implication since, as shown below, the stress tensor is symmetric.
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Definition 3.3 (Normal stress). Normal stresses are those perpendicular
to the face upon which they act, i.e. τ11, τ22 and τ33.

Definition 3.4 (Shear or tangential stress). Shear or tangential stresses
are those tangent to the surface upon which they act, i.e. τ12, τ13, τ21, τ23,
τ31 and τ32.

Remark 3.3. In Cartesian coordinates, the components of the stress tensor are
also denoted by τxx, τyy, τzz, τxy, τxz, and τyz.

1

2

3

B

C

P

D

f

n

s

τ12

τ13

τ11

τ23

τ22

τ21

τ33

τ31

τ32

Fig. 3.3. Infinitesimal tetrahedron employed to obtain the stress tensor at the
point P.

Derivation of the Stress Tensor

In order to determine the general expression of the stress at a point P from
the stresses on three perpendicular planes, let us select the infinitesimal fluid
volume of Fig. 3.3 and apply the second Newton’s law

∑
F = ma
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The following notation is employed for the vectors and areas,

PB = dx1

PC = dx2

PD = dx3

dA = BCD

dA1 = CPD = n1dA

dA2 = BPD = n2dA

dA3 = BPC = n3dA

fs =

⎧⎨
⎩

fs1

fs2

fs3

⎫⎬
⎭

n =

⎧⎨
⎩

n1

n2

n3

⎫⎬
⎭

a =

⎧⎨
⎩

a1

a2

a3

⎫⎬
⎭

fv = ρg = ρ

⎧⎨
⎩

g1

g2

g3

⎫⎬
⎭

The infinitesimal element is a tetrahedron of volume

dV =
1
3

(
1
2
dx1dx2) dx3 =

1
6
dx1dx2dx3

and mass
dm = ρdV

The first component of the equation of motion is

fs1dA − τ11n1dA − τ21n2dA − τ31n3dA + ρg1
1
6
dx1dx2dx3 = ρa1

1
6
dx1dx2dx3

Ignoring the infinitesimals of third order dx1dx2dx3 compared to the infin-
itesimals of second order dA,

fs1 − τ11n1 − τ21n2 − τ31n3 = 0

Likewise, for the directions 2 and 3 we have, respectively,

fs2 − τ12n1 − τ22n2 − τ32n3 = 0
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fs3 − τ13n1 − τ23n2 − τ33n3 = 0

Summarizing,
⎧⎨
⎩

fs1

fs2

fs3

⎫⎬
⎭ =

⎡
⎣ τ11 τ21 τ31

τ12 τ22 τ32

τ13 τ23 τ33

⎤
⎦
⎧⎨
⎩

n1

n2

n3

⎫⎬
⎭

As will be shown, the stress tensor is symmetric and, therefore, in tensor
notation we can write,

fs = τ n (3.7)

Conclusion. If τ is known, the surface force acting on any direction can be
calculated.

x

y

τ 21 (x,y)

τ 21 (x,y+dy)

τ 12 (x+dx,y)τ 12 (x,y)
Ody

dx

(x,y)

Fig. 3.4. Stresses on a cube acting on the torque balance around the z axis.

Symmetry of the Stress Tensor

The tensor τ is symmetric, i.e.

τ12 = τ21

τ13 = τ31

τ23 = τ32

(3.8)

Proof. Let us take an infinitesimal cube of sides dx, dy, dz (see Fig. 3.4). The
angular momentum equation with respect to an axis parallel to z that passes
through the point O implies
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∑
MO = IΩ̇

with
∑

MO the external moments around the z axis acting on the cube, I the
moment of inertia and Ω̇ the angular acceleration around the z axis. Fig. 3.4
shows all the components of the stress tensor that contribute to the above
moment balance.

As in the previous section, the external moment is an infinitesimal of third
order while the moment of inertia is an infinitesimal of fourth order. Therefore,
in the dV → 0 limit, the above equation tends to

∑
MO = 0

Taking moments with respect to the point O, and using Taylor series,

∑
MO =

(
τ12 + ∂τ12

∂x dx
)

dx
2 (dydz) + τ12

dx
2 (dydz)

−
(
τ21 + ∂τ21

∂y dy
)

dy
2 (dxdz) − τ21

dy
2 (dxdz) = 0

Ignoring the fourth-order infinitesimals against the third-order ones yields

τ12dxdydz − τ21dxdydz = 0

and since dxdydz �= 0,
τ12 = τ21

Similarly for the rest of the stresses.

3.3.2 The Concept of Pressure

In order to introduce the concept of pressure, let us take a fluid at rest.
According to the definition of a fluid, a fluid at rest cannot withstand any
tangential stresses, implying that all the off-diagonal components of the stress
tensor vanish,

τ12 = τ13 = τ23 = 0

and the stress tensor reduces to normal stresses,

τ =

⎡
⎣ τ11 0 0

0 τ22 0
0 0 τ33

⎤
⎦ (3.9)

Let us take the rectangular prism of Fig. 3.5. The equilibrium of forces in
the x direction implies

−τxxdzdy + τdsdy sin θ = 0

Taking into account that from the geometry of the prism



3.3 Surface Forces 41

x

y

z

τ

τzz

τxx

dy

dz

dx

θ

z

θ

τzz

τxx

τ

ds

θ

dz

x

Fig. 3.5. Infinitesimal volume to derive the concept of pressure.

dz

ds
= sin θ

we conclude
τxx = τ for any plane θ

Likewise, it holds
τxx = τzz

Consequence. In a fluid at rest, the normal stresses are identical in any
spatial direction. This normal stress is called pressure, p > 0, and because it
is a compression stress, it is negative, so that

τ = τxx = τyy = τzz = −p

Therefore, the stress tensor in a fluid at rest is:

τ =

⎡
⎣−p 0 0

0 −p 0
0 0 −p

⎤
⎦ (3.10)

Note that the pressure is a scalar and it acts equally in any spatial direc-
tion. The direction of the force that the pressure causes is determined by the
normal to the surface n. The minus sign indicates that pressure is a negative
normal stress, also called compression, that acts in the opposite direction to
the exterior normal. When the normal stress is positive, then it acts in the
direction of the exterior normal, producing traction.

Remark 3.4. This type of tensor, proportional to the identity tensor, is called
an isotropic tensor.
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Remark 3.5. For a fluid in motion, the stress tensor is the sum of the action
due to the pressure plus a contribution from the motion, called the viscous
stress tensor τ ′, which is introduced in Chapter 7.

Remark 3.6. For a liquid, the pressure is a mechanical variable. It can also be
defined as the average normal stress of the fluid particle, technically speaking,
the trace of the stress tensor.

Remark 3.7. For a gas, the pressure is a thermodynamic variable. In this
case, the pressure cannot be defined as the average normal stress of the fluid
particle.

Units of Pressure

As a normal stress, the units of pressure are equivalent to

force
surface

See Table 3.1.

Table 3.1. SI and non-SI common units of pressure.

Name Symbol Equivalence

pascal (SI) Pa 1 Pa = 1 N/m2

bar bar 1 bar = 105 Pa

atmosphere (standard) atm 1 atm = 101 300 Pa

meter of water mH2O 1 mH2O = 1 000g Pa

millimeter of mercury mmHg 1 mmHg = 13 600g Pa

kilogram-force per square centimeter (TS) kgf/cm2 1 kgf/cm2 = 104 g Pa

p

0

pgag

pabs

patm

Fig. 3.6. Absolute and gage pressure.
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Absolute and Gage Pressure

The absolute pressure pabs represents the force per unit area exerted by the
molecules against the walls. It is always positive and in the case of a gas, it
corresponds to the thermodynamic pressure.

The gage pressure pgag is the pressure measured relatively to the atmo-
spheric pressure patm,

pgag = pabs − patm (3.11)

It can be positive or negative, its minimum value being −patm (see Fig. 3.6).
The atmospheric pressure is taken as

patm = 101.3 kPa = 1.013 bar

3.4 Surface Tension

At interfaces between two substances, the inter-molecular forces at both sides
differ, appearing to be an additional force. At the macroscopic level, the in-
terfacial forces can be modeled by the surface tension σ,

surface tension =
force
length

which causes a force tangent to the interface and orthogonal to any line
through the interface, of modulus

dFl = σ dl (3.12)

The surface tension depends on the pair of substances that form the in-
terface and on the temperature. When the surface tension is positive, the
molecules of each phase tend to be repelled back to their own phase. This is
the case, for instance, of two inmiscible liquids. When the surface tension is
negative, the molecules of both phases tend to mix, like two miscible liquids.
In the case of a liquid/gas interface, the surface tension tends to maintain the
interface (or free surface) straight.

An important situation appears when three substances meet forming three
interfaces, for instance, at a wall/liquid/gas interface. In this case, the line,
which is the intersection of the three interfaces, is called the contact line. The
angle that two interfaces form at the contact line is called the contact angle
and depends on the surface tension of all interfaces. Therefore, the contact
angle depends solely on the three substances and the temperature.

The dimensionless number that controls the significance of the surface
tension force is called the Weber number,

We = =
ρU2L

σ
Weber number
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Table 3.2. Surface tension for various pairs of fluids at 20◦ in N/m × 103 [8].

Water Mercury Ethanol Benzene

Air 72.8 487 22 29

Water 375 < 0 35

θ

σdlσdl

h

2R

Fig. 3.7. Liquid ascending through a capillary.

where U and L are a characteristic velocity and length scale of the problem,
respectively.

Example 3.1 (Capillary forces). Calculate the maximum height that a liquid
can ascend through a capillary.
Solution. Due to surface tension, a liquid inside a capillary is subject to an
ascending force of 2πRσ cos θ, where θ is the contact angle between the water
and the solid surface of the capillary. Since the weight of the liquid column
ρgπR2h is equal to the ascending force, the maximum height that a liquid can
climb through a capillary due to surface tension is

h =
2σ cos θ

ρgR

Example 3.2 (Pressure jump across a bubble. Young-Laplace equation). Cal-
culate the pressure jump across a spherical bubble in a fluid at rest.
Solution. Let us cut the bubble into two hemispheres and invoke force equilib-
rium. In each of the hemispheres, the pressure difference causes a force equal
to

(pin − pout)πR2

whereas the surface tension creates a force equal to
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R

pinpout

cut ¬

pin pout
σ

pin·πR² pout·πR²

σ⋅2πR

Fig. 3.8. Pressure jump across a bubble immersed in a fluid.

σ2πR

Combining

pin − pout =
2σ

R

3.5 Summary

Table 3.3 summarizes the variables which are employed to calculate the three
types of forces of most interest in engineering applications.

Table 3.3. Summary of variables to calculate forces acting on a fluid.

Force Calculated from Units Dimensions

Body force F v f v volumic force N/m3 ML−2T−2

fm massic force N/kg LT−2

Surface force F s f s stress/traction N/m2 = Pa ML−1T−2

τ stress tensor N/m2 = Pa ML−1T−2

Line force F l σ surface tension N/m MT−2

Problems

3.1 Determine the normal stress acting on the plane of the Figure, where
the non-vanishing stress tensor components are: τxx = 35 kgf/cm2, τyy =
−7 kgf/cm2 and τxy = τyx = 2 kgf/cm2.
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y
n

x

60°

Problem 3.1. Stresses over an inclined plane.

3.2 Prove that the gage pressure cannot be lower than −patm.

3.3 As shown in the Figure, to experimentally determine the surface tension
of a gas/liquid interface, the Du Noüy balance measures the force to detach a
thin ring from a liquid double meniscus. Ignoring the curvature of the menis-
cus, determine the surface tension as a function of the measured force F and
the ring diameter D.

F 

D 

ring

Problem 3.3. Du Noüy balance to measure surface tension.



4

Fluid Statics

Fluid statics is the part of fluid mechanics that deals with fluids when there
is no relative motion between the fluid particles. Typically this includes two
situations: when the fluid is at rest and when it moves like a rigid solid. This
chapter will show how to calculate the pressure field in fluids at rest and how
to calculate the interaction forces between the fluid and submerged surfaces.

4.1 The Fundamental Equation of Fluid Statics

Let us take an arbitrary fluid volume V , with surface S. For a fluid at rest, a
force balance yields ∑

F = 0

Taking into consideration body and surface forces acting over the volume V ,

F v + F s = 0 (4.1)

that is, ∫
V

ρfm dV +
∫

S

τn dS = 0 (4.2)

In the previous chapter it was shown that a fluid at rest can only withstand
normal stresses and, therefore, the stress tensor takes on the form

τ =

⎡
⎣−p 0 0

0 −p 0
0 0 −p

⎤
⎦ = −pI (4.3)

where p is the pressure. Substituting,
∫

V

ρfm dV +
∫

S

−pndS = 0 (4.4)
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and applying the Gauss theorem (see Appendix E) to transform the second
integral into a volume integral,∫

V

(ρfm −∇p) dV = 0 (4.5)

Since the above equation holds for any volume, taking the limit as V → 0,
the fundamental equation of fluid statics is derived,

ρfm −∇p = 0 (4.6)

In Cartesian components,
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂p

∂x
∂p

∂y
∂p

∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= ρ

⎧⎨
⎩

fmx

fmy

fmz

⎫⎬
⎭ (4.7)

Remark 4.1. (a) The net force caused by the pressure depends on the pres-
sure gradient, that is, on spatial variations of pressure. If the pressure is
uniform, then it causes no net force over the fluid particle.

(b) The fundamental equation of fluid statics can also be derived from a bal-
ance of forces over an infinitesimal fluid cube and applying Taylor series
expansions to relate the pressure at opposite sides of the cube.

(c) In rigid solid motions (rotation, translation, or a combination of both),
the fundamental equation of fluid statics takes on the form

ρfm − ρa −∇p = 0 (4.8)

where a is the acceleration of a relative reference system attached to the
fluid,

a = a0︸︷︷︸
origin acc.

+ Ω̇ × r︸ ︷︷ ︸
angular acc.

+ Ω × (Ω × r)︸ ︷︷ ︸
centripetal acc.

+ 2Ω × v︸ ︷︷ ︸
Coriolis acc.

= a0 + Ω̇ × r + Ω × (Ω × r) (4.9)

The last step was given taking into account that the relative velocity v of
the fluid particles with respect to the reference system is zero.

4.2 Applications

The applications of fluid statics stem from the fundamental equation (4.6),

∇p = ρfm

Next we will cover examples on hydrostatics, manometry and forces on sub-
merged structures.
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z

x

Patm

g

Fig. 4.1. Hydrostatics. Axes.

4.2.1 Hydrostatics

Hydrostatics is the part of fluid statics dedicated to incompressible fluids.
Let us calculate the pressure distribution in a liquid at rest. Take the

coordinate axes of Fig. 4.1, where z is the upward vertical axis. The body
force due to the acceleration of gravity can be written as

fv = ρfm = ρg =

⎧⎨
⎩

0
0

−ρg

⎫⎬
⎭ (4.10)

where the density ρ is constant. Substituting into the fundamental equation
of fluid statics (4.6) ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂p

∂x
= 0

∂p

∂y
= 0

∂p

∂z
= −ρg

(4.11)

from where the pressure distribution p(x, y, z) can be calculated. The first two
equations imply that the pressure is independent of x and y, depending solely
on z,

p = p(z) (4.12)

The third component of the equation can now be written with the total de-
rivative,

dp

dz
= −ρg (4.13)

from where
dp = −ρgdz (4.14)

Due to the density being constant, the last equation can be integrated between
the points 1 and 2 as follows

∫ p2

p1

dp = −ρg

∫ z2

z1

dz (4.15)
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to yield
p2 − p1 = −ρg(z2 − z1) (4.16)

Remark 4.2. The pressure difference between two points inside a liquid de-
pends only on the height difference between the points.

z

x

Patm

h

Fig. 4.2. The depth h as a coordinate axis.

The Hydrostatic Pressure as a Function of Depth

Frequently, instead of the vertical axis z, the depth with respect to the free
surface h is employed (see Fig. 4.2). In order to obtain the pressure as a
function of h, let us introduce the change of variables

dz = −dh (4.17)

The differential equation (4.14) becomes

dp = ρgdh (4.18)

Integrating between a point of depth h and the free surface, where h = 0 and
p = patm, ∫ p

patm

dp = ρg

∫ h

0

dh

one arrives at
p = patm + ρgh (4.19)

Consequences.

(a) The pressure at a point in a liquid depends on the depth of that point
with respect to the free surface.

(b) The pressure increases linearly with depth.
(c) The pressure in a liquid does not depend on the shape of the container.



4.2 Applications 51

atmP

3

21

0

ρ

ρ

a

b

z

Fig. 4.3. Manometer.

4.2.2 Manometry

A manometer is a device to measure the gage pressure. A typical manometer
is depicted in Fig. 4.3.

In order to derive the expression that gives the pressure in a manometer,
the hydrostatic equation should be applied within the same fluid, from the
point of measurement to the point of reference pressure.

For the manometer of Fig. 4.3, the container pressure at the point O
depends on the various liquid levels and equals

p0 = patm + ρbg(z3 − z1) + ρag(z1 − z0) (4.20)

Example 4.1. Prove equation (4.20).
Solution. Within the same fluid, points at the same height have the same
pressure. Thus,

p1 = p2

Next, applying (4.16) within the columns of fluid a and b,

p1 = p0 + ρag(z0 − z1)

p2 = patm + ρbg(z3 − z2)

Combining the three above equations the desired result is attained.

4.2.3 Fluid Statics of an Isothermal Perfect Gas

When the fluid is a gas, the density is a function of pressure. For a perfect
gas (see Appendix H)

p = ρRgasT (4.21)
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where Rgas is the gas constant, p the absolute pressure, ρ the density and T
the absolute temperature. Substituting into the fundamental equation of fluid
statics,

dp = −ρgdz

= − p
RgasT

gdz

Separating variables,
dp

p
= − g

RgasT
dz

If the temperature variations are neglected,

ln
p2

p1
= − g

RgasT
(z2 − z1)

p2 = p1 e
− g

RgasT (z2−z1) (4.22)

4.2.4 Forces over Submerged Surfaces

For a fluid at rest, the surface forces are only due to the pressure. Integration
of the stress over the surface yields the force and torque acting on the surface,

F =
∫

S

−pn dS

MO =
∫

S

r × (−pn) dS

(4.23)

Patm

n

rO

Fig. 4.4. Normal n and position vector r for computing the force and moment with
respect to the point O on submerged surfaces.

In the above expressions, n is the exterior normal with respect to the body
(see Fig. 4.4), and r is the position vector with respect the point where the
moment is calculated.
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Center of Pressure

Definition 4.1 (Center of pressure). The center of pressure is the applic-
ation point of the resultant force F due to the pressure distribution.

The center of pressure is calculated imposing that the moment of the
resultant force F equals the moment of the pressure distribution with respect
to any point,

rcp × F =
∫

S

r × (−pn) dS (4.24)

y

x

Fy

Fx
rcp

cp

Fig. 4.5. Computation of the moment from the center of pressure.

For two-dimensional flows in the x-y plane, the moment is about the z
axis, so the total moment can be calculated from the moments originated by
Fx and Fy independently (see Fig. 4.5),

Mz = xcpFy − ycpFx =
∫

S

(xdFy − ydFx) (4.25)

Each of the above contributions can be obtained from

ycpFx =
∫

S

y dFx

xcpFy =
∫

S

x dFy

(4.26)

so the total moment can be calculated as

Mz = xcpFy − ycpFx (4.27)
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Fig. 4.6. Calculation of the net force on a dam.

Example 4.2 (Net force over a structure). Let us consider the dam of Fig. 4.6.
Determine the net force exerted by the hydrostatic pressure and the atmo-
spheric pressure.
Solution. In order to calculate the force due to the hydrostatic pressure on
the left side of the dam, we will use the integral

F left = −
∫

Sleft

pndS

On this side,

n =
{

sin θ
cos θ

}

and
p(y) = patm + ρgh = patm + ρg(H − y)

To integrate the pressure along the wet surface of the dam, we change vari-
ables, y → ξ and set dS = bdξ, with b the width orthogonal to the paper.
Next, the pressure distribution needs to be expressed as a function of ξ,

p(ξ) = patm + ρg(H − ξ sin θ)

Substituting,

F left = −
∫ H/ sin θ

0

[
patm + ρg(H − ξ sin θ)

]{ sin θ
cos θ

}
bdξ

= −b

{
sin θ
cos θ

}[
patmξ + ρg(Hξ − ξ2

2 sin θ)
]H/ sin θ

0

= −b

{
sin θ
cos θ

}[
patm

H

sin θ
+ ρg( H2

2 sin θ
)
]

To get the force due to the atmospheric pressure on the right side of the dam,
it will be assumed that the atmospheric pressure is constant and equal to
patm. The force over that side is
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F right = −
∫

Sright

pndS = −
∫

Sright

patm

{
−1
0

}
dS = patmHb

{
1
0

}

Similarly, the atmospheric pressure produces on the top and bottom sides a
force equal to

F top−bottom = −
∫

Stop−bottom

pndS = patm
Hb

tan θ

{
0
1

}

The sum of all the contributions gives the net force:

F net = −b

{
sin θ
cos θ

}[
ρg( H2

2 sin θ
)
]

= −ρg H2b
2

{
1

cotg θ

}

Corollary 4.1. When net forces are desired, it is not necessary to consider
the atmospheric pressure since, being constant, its action over all the surfaces
of the body cancels.

Example 4.3 (Center of pressure). In the above example, let us compute the
center of pressure using (4.26), now without the atmospheric component of
the hydrostatic pressure,

ycpFx =
∫

S

y dFx

= −
∫ H/ sin θ

0

ξ sin θ [ρg(H − ξ sin θ)] sin θbdξ

= −b sin2 θ

[
ρg(

Hξ2

2
− ξ3

3
sin θ)

]H/ sin θ

0

= −ρg
H3b

6

Thus
ycp =

1
3
H

For the other coordinate of the center of pressure, an analogous process yields

xcpFy =
∫

S

x dFy

= −
∫ H/ sin θ

0

(−ξ cos θ) [ρg(H − ξ sin θ)] cos θbdξ

= b cos2 θ

[
ρg(

Hξ2

2
− ξ3

3
sin θ)

]H/ sin θ

0

= ρg
H3b cotg2 θ

6
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Thus
xcp = −1

3
H cotg θ

Finally, the total moment with respect to the coordinates origin is

Mz = xcpFy − ycpFx = ρg
H3b

6 sin2 θ

Plane Surfaces

For a plane surface, the resultant force due to the hydrostatic pressure and
the depth of its application point can be calculated as

F = −pcg A n

hcp = hcg +
sin2 θIηη

hcgA

(4.28)

where hcg is the depth of the center of gravity of the surface (centroid) with
respect to the free surface, pcg is the pressure at the center of gravity, A is
the area of the surface, n the normal vector and Iηη the inertia moment of
the surface with respect to a horizontal axis through the center of gravity,

Iηη =
∫

A

ξ2 dA

cg

cg
cp

dξ

ξ

ξ

n η

θ

Fig. 4.7. Force and moment of a plane surface.
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Table 4.1. Moments of inertia of various surfaces.

Shape Moment of inertia

h

b

y

x

y’

x’cg

Ix′x′ = 1
12

bh3

Ixx = 1
3
bh3

y

xO

r
Ixx = 1

4
πr4

O
r

y

x

x’cg

Ixx = 1
8
πr4

Iyy = 1
8
πr4

h

b

y

x

x’cg h
3

Ix′x′ = 1
36

bh3

Ixx = 1
12

bh3

y

xO

a

b Ixx = 1
4
πab3

Iyy = 1
4
πa3b

Example 4.4 (Plane surface). Repeat the above example taking into account
that the surface of the dam is a plane surface.
Solution. The wetted surface of the dam is a rectangle of area Hb/ sin θ, in-
clined an angle θ. The center of gravity or geometric center of that rectangle
is at the mid-point, which has a depth and a pressure of

hcg = 1
2H

pcg = ρg 1
2H

The normal vector, exterior to the dam, is

n =
{

sin θ
cos θ

}

Thus, the net force is given by

F =
{

Fx

Fy

}
= −ρg

H

2
Hb

sin θ

{
sin θ
cos θ

}
= −ρg

H2b

2

{
1

cotg θ

}
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The point of application of the resulting force can be calculated using the
moment of inertia of the rectangle, which is

Iηη =
1
12

b(H/ sin θ)3

Thus,

hcp = hcg +
sin2 θ 1

12b(H/ sin θ)3
1
2H(bH/ sin θ)

=
1
2
H +

1
6
H =

2
3
H

Calculation of Forces Using Projected Areas

Sometimes, the calculation of forces and moments due to the pressure distri-
bution can be simplified by using projected areas. This is the case when the
horizontal force on a complex surface is searched.

Patm

n dS

x

y

dS x

dS y

dS
n

x

y

θ
θ

Fig. 4.8. Projection of an infinitesimal area into the coordinate axis.

Let us take a differential area dS on the surface of Fig. 4.8. The projected
areas of the differential surface are

|nx| dS = | cos θ| dS = dSx > 0

|ny| dS = | sin θ| dS = dSy > 0
(4.29)

where

(a) dSx is the projection of dS orthogonal to the x axis
(b) dSy is the projection of dS orthogonal to the y axis.

In the above expressions, the absolute value is necessary because area is a
non-negative magnitude whereas the components of the normal vector are
signed.

Then, the force over the surface can be calculated as
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Fx = −
∫

S

pnxdS

= −
∫

S

sign(nx)p|nx|dS

= −
∫

S

sign(nx)p dSx (4.30)

and similarly for the y component. Thus,

Fx = −
∫

S

sign(nx) p dSx

Fy = −
∫

S

sign(ny) p dSy

(4.31)

Applying the above concepts to the center of pressure, we arrive at

ycpFx = −
∫

S

sign(nx) p y dSx

xcpFy = −
∫

S

sign(ny) p x dSy

(4.32)

Corollary 4.2. The horizontal component of the force Fx does not depend on
the shape of the surface.

Corollary 4.3. When the pressure is constant, the force that it creates in a
given direction equals the pressure times the projected area in that direction.

Example 4.5 (Projected surface). Determine the horizontal component of the
net force Fx exerted by the hydrostatic pressure upon the dam of Fig. 4.8,
whose height is H and its width b.
Solution. Using Eqs. (4.31), emanating from the projected areas,

Fx = −
∫

S

sign(nx) p dSx

= −(+1)
∫

S

p(y) bdy

= −
∫ H

0

ρg(H − y) bdy

= −ρg
H2b

2
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y

xx xdx

h

1 2

Fig. 4.9. Calculation of the pressure forces as the weight of the fluid between the
body and the free surface.

Calculation of Vertical Forces as the Weight of the Volume

Consider the surface of Fig. 4.9. Let us calculate the vertical force exerted
over the top side of the surface using the vertically projected area,

Fy = −sign(ny)
∫

S

ρghdSy

= −ρg

∫ x2

x1

h(bdx) (4.33)

The above integral is exactly the volume V of liquid between the surface and
the free surface. Thus,

Fy = −ρgV (4.34)

The point of application of this force lies at the center of gravity of the
volume V .

Example 4.6 (Weight of the fluid volume). In the example of the dam, the ver-
tical force can be determined using the weight of the volume of fluid between
the dam and the free surface,

Fy = −ρgV = −ρgb
HH cotg θ

2
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Archimedes’ Principle

As a consequence of the previous section, the celebrated Principle of Archimedes
can be deduced: The net buoyant force exerted over a submerged body equals
the weight of the displaced fluid.

= +V

g Vρ g Vρ g Vρ1 2

V
V

1

2

Fig. 4.10. Buoyant force over a submerged body.

The proof of this theorem can be obtained observing Fig. 4.10, where
there is an immersed body of volume V . On the top surface the pressure
distribution produces a downward force of magnitude ρgV1, where V1 is the
volume of fluid between the body and the free surface. On the bottom surface
there is an upward force of magnitude ρgV2, where V2 is the fluid volume
between the bottom surface and the free surface. Thus, the net buoyant force
is given by

F = ρgV2 − ρgV1 = ρgV (4.35)

Example 4.7 (Archimedes’ Principle). Determine the buoyant flow acting
upon a sphere of radius R = 1 m submerged in water (density ρ =
1 000 kg/m3).
Solution. Using the Archimedes’ Principle,

F = ρg
4
3
πR3 = 41 092 N

Summary

As a summary, there are several ways to calculate forces on submerged struc-
tures:

(a) Direct integration
(b) Plane surfaces
(c) Projected areas
(d) Weight of the volume of fluid
(e) Buoyant force: Archimedes’ principle

In each particular situation, the simplest method should be chosen.
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Problems

4.1 The density ρ of sea water increases as a function of the gage pressure
p according to

ρ = ρ0(1 + Kp)

The density at sea level ρ0 (where p = 0) is 1 000 kg/m3 and the compressib-
ility coefficient is K = 5 × 10−10 Pa−1. Calculate the pressure at a depth of
5 000 m in the following cases:

(a) Assuming that sea water is incompressible, i.e. K = 0.
(b) Assuming that the density varies weakly with pressure according to the

above expression.

4.2 The inclined gate of the Figure has a hinge at A and is 5 m wide.
Determine the net force acting on the inclined surface.

A

30°

L= 4 m

D= 2 m

Problem 4.2. Force on a plane gate.

4.3 The gate of a tank articulated at A is shaped as a quarter of a circle.
Determine the force per unit width T necessary to keep the gate in the depicted
position.

T

Ro

A

Problem 4.3. Force acting on a circular gate.
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4.4 The gate ABC of the Figure has the shape of an L and it is articulated
at B. Its width perpendicular to the paper is 2 m. When the water level is
sufficiently high, the gate opens at A, allowing the liquid to flow. Calculate
the water level h at which this happens.

hB20 cmA

1 m

C

Problem 4.4. Automatic gate.

4.5 The square gate of the Figure has a side of 1 m and is articulated in
B. It automatically opens if the water level h is high enough. Calculate the
minimum level for opening. Does the result depend on the liquid density?

B

h
water

60 cm

40 cm

Problem 4.5. Plane automatic gate.
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4.6 Before launching a weather balloon, it is filled with 100 kg of helium at
atmospheric pressure and temperature (1.033×105 Pa and 288.15 K, respect-
ively).

(a) Calculate the maximum load (balloon plus scientific load) that can be
carried by the above amount of helium.

(b) The balloon rises with the load of item (a) up to an altitude of 11 km,
where the atmospheric conditions are 2.263× 104 Pa and 216.65 K. If the
helium pressure and temperature are equal to the atmospheric conditions,
calculate the net force acting upon the balloon and scientific load at this
altitude.
Gas constants: RHe = 2 077 J/(kg K), Rair = 287 J/(kg K)

4.7 Prove the result (4.28) for plane surfaces. Use that

ξcp =
sin θIηη

hcgA

4.8 Relate the reading of the inclined manometer of the Figure with the
pressure at O.

l

θ

O 

Problem 4.8. Inclined manometer.

4.9 The pressure loss ∆p = p1−p2 in the duct of the Figure is due to friction
losses. Assuming fully developed flow, calculate the pressure loss as a function
of the fluid densities and h.
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v
ρ

H2O

ρ
Hg

h

p
1

p
2

Problem 4.9. Pressure loss in a horizontal duct.
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Transport Theorems

The application of classical mechanics principles to fluid dynamics is not a
straightforward task. Since fluids are extremely deformable media, Lagrangian
formulations find a hard time tracking all the fluid particles. Therefore, it is
very convenient to rewrite the equations of mechanics and thermodynamics
in a more amenable way for the solution of transport problems. This can be
achieved with the help of the transport theorems, presented in this chapter.

5.1 Fluid Volume and Control Volume

The fundamental laws of mechanics, such as the second Newton’s law, have
been initially developed for particle systems or pieces of matter. In transport
phenomena, we find ourselves with pieces of matter that deform in complex
ways, continuously changing shape and size. Therefore, given an initial set of
fluid particles, it is a difficult task to follow their motion and evolution.

t t t+ ∆

Vf

Fig. 5.1. Evolution of a fluid volume Vf (t).

Definition 5.1 (Fluid volume). A fluid volume is a volume that always
contains the same particles of fluid. It is denoted by Vf (t). In continuum



70 5 Transport Theorems

mechanics, it is also called a material volume, because it is formed by and
follows the same piece of matter. As a consequence, a fluid volume moves
with the fluid velocity, v.

However, to solve practical problems, it would be very convenient that the
equations could be applied to any volume, arbitrarily chosen. Portions of this
volume could be fixed or in motion; matter could flow across its boundaries or
its boundaries could follow the fluid; and so on. This gives rise to the concept
of control volume.

Definition 5.2 (Control volume). A control volume is an arbitrary volume
selected to analyze a transport problem. It is denoted by Vc(t) and it moves at
the velocity vc.

In principle, the control volumes used in this text will contain only fluid,
but this is not the only approach. A control volume can contain any parts of
the analyzed system, such as walls and other devices.

Vc

Fig. 5.2. Fixed control volume Vc(t) to analyze, for example, a pipe.

The relationship between the equations written for a fluid volume and
those written for a control volume is based on the Reynolds transport theor-
ems, which are derived next.

5.2 Transport Theorems

The transport integral equations are made of integrals of the form

d
dt

∫
V (t)

f(x, t) dV (5.1)

One can notice that

(a) The domain integral V (t) depends on time t.
(b) The integrand f(·, t) also depends on time t.
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Therefore, when taking the derivative of (5.1) with respect to time, two con-
tributions will emanate. One way to perform this calculation is using the
Leibnitz differentiation rule for integrals.

Theorem 5.1. Let V (t) be an arbitrary volume with boundary S(t), which
moves at the velocity w. The exterior normal to the boundary is denoted by
n. Then,

d
dt

∫
V (t)

φ(x, t) dV =
∫

V (t)

∂φ(x, t)
∂t

dV +
∫

S(t)

φ(x, t) w · n dS (5.2)

V(t)

V(t+   t)∆

V1

V2

S1

S2

w
n  w. t dS2∆

Fig. 5.3. Moving domain of integration V (t) with surface S(t).

Proof. Let V (t) be the domain at time t, shown in Fig. 5.3, whose surface
moves at a speed w. At some later time t + ∆t, the domain will occupy the
space denoted by V (t + ∆t). This volume at t + ∆t can be decomposed as

V (t + ∆t) = V (t) + V2(∆t) − V1(∆t) (5.3)

The intersection of the surfaces of V (t) and V (t + ∆t), decomposes S(t) into
two surfaces, S1(t) y S2(t), as shown in the Figure.

Applying the definition of derivative,

d
dt

∫
V (t)

φ(x, t) dV = lim
∆t→0

1
∆t

[∫
V (t+∆t)

φ(x, t + ∆t) dV −
∫

V (t)

φ(x, t) dV

]

(5.4)
Next, the decomposition (5.3) is substituted in the integral on V (t + ∆t)
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d
dt

∫
V (t)

φ(x, t) dV = lim
∆t→0

1
∆t

[∫
V (t)

φ(x, t + ∆t) dV

+
∫

V2(∆t)

φ(x, t + ∆t) dV −
∫

V1(∆t)

φ(x, t + ∆t) dV

−
∫

V (t)

φ(x, t) dV
]

(5.5)

By definition of derivative, the combination of the first and last integrals is
precisely ∫

V (t)

∂φ(x, t)
∂t

dV (5.6)

Now let us turn our attention to the second integral on the right-hand side
of (5.5). The volume differential in V2(∆t) can be written as

dV = base × height = dS (w∆t) · n (5.7)

where both the volume differential and (w∆t) · n are positive. Thus,

lim
∆t→0

1
∆t

∫
V2(∆t)

φ(x, t + ∆t) dV

= lim
∆t→0

1
∆t

∫
S2(t)

φ(x, t + ∆t) (w∆t · n) dS

=
∫

S2(t)

φ(x, t) w · n dS (5.8)

Analogously for the integral on V1, where in this case the volume differen-
tial is positive but the product (w∆t) · n, negative. Therefore,

dV = base × height = −dS (w∆t) · n (5.9)

Thus,

lim
∆t→0

− 1
∆t

∫
V1(∆t)

φ(x, t + ∆t) dV

= lim
∆t→0

1
∆t

∫
S1(t)

φ(x, t + ∆t) (w∆t · n) dS

=
∫

S1(t)

φ(x, t) w · n dS (5.10)

Gathering all the contributions, the desired result is attained.

5.2.1 First Transport Theorem

This first theorem consists of applying the Reynolds transport theorem to a
fluid volume. Thus, choosing V (t) = Vf (t), S(t) = Sf(t) and w = v,

d
dt

∫
Vf (t)

φ(x, t) dV =
∫

Vf (t)

∂φ(x, t)
∂t

dV +
∫

Sf (t)

φ(x, t) v · n dS (5.11)
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5.2.2 Second Transport Theorem

It consists of applying the Reynolds transport theorem to a control volume.
Thus, selecting V (t) = Vc(t), S(t) = Sc(t) and w = vc,

d
dt

∫
Vc(t)

φ(x, t) dV =
∫

Vc(t)

∂φ(x, t)
∂t

dV +
∫

Sc(t)

φ(x, t) vc · n dS (5.12)

5.2.3 Third Transport Theorem

The third transport theorem relates the rate of variation of integrals on a fluid
and a control volume. Let Vc(t) be an arbitrary control volume. Next, choose
a fluid volume Vf (t) such that it coincides with the control volume at time t:

Vf (t) = Vc(t) (5.13)

Then, the following integrals are equal,
∫

Vf (t)

∂φ(x, t)
∂t

dV =
∫

Vc(t)

∂φ(x, t)
∂t

dV (5.14)

Finally, subtracting the first two transport theorems yields,

d
dt

∫
Vf (t)

φ(x, t) dV =
d
dt

∫
Vc(t)

φ(x, t) dV +
∫

Sc(t)

φ(x, t) (v − vc) · n dS

(5.15)
In this manner, we have related integrals over fluid volumes to integrals

over control volumes. The first term on the right-hand side reflects the vari-
ation in time of the property φ(x, t) inside the control volume, Vc(t). The
second term on the right-hand side represents the contribution due to the flux
across the control volume surface Sc(t).
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Integral Conservation Principles

The equations that govern the dynamics of fluids stem from the application
of the basic laws of mechanics and thermodynamics to moving deformable
media. In this chapter, from these basic laws, the integral conservation equa-
tions of fluid dynamics will be derived. These include the equation of mass
conservation, the equations of momentum and angular momentum, and the
equation of energy conservation. Special attention is given to various forms
of energy equations. Also, the equation of mass conservation will be exten-
ded to multicomponent reactive systems to derive the conservation equations
of chemical species. Finally, a useful equation for inmiscible liquids will be
presented.

The equations derived in this chapter apply for multicomponent systems
with the same body force for all chemical species. For the transport equations
where the body force depends on the species, see Appendix I.

6.1 Mass Conservation

The principle of mass conservation establishes that the mass of a fluid volume
(a volume that always contains the same fluid particles) is constant. Therefore,
for a fluid volume,

Mass(Vf ) = constant (6.1)

and
d
dt

Mass(Vf ) = 0 (6.2)

The mass of a fluid volume can be written as

Mass(Vf ) =
∫

Vf (t)

ρ dV (6.3)

and substituting into the above equation,
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d
dt

∫
Vf (t)

ρ dV = 0 (6.4)

which is the equation of mass conservation for a fluid volume.
Applying the third transport theorem with φ = ρ (see Chapter 5), the

equation is transformed for a control volume,

d
dt

∫
Vc(t)

ρ dV +
∫

Sc(t)

ρ [(v − vc) · n] dS = 0 (6.5)

Rearranging the convective term into the right-hand side, the physical in-
terpretation of the above equation is that the rate of change of the mass in
the control volume, d

dtM(Vc), equals the ingoing minus the outgoing mass
flow rate (kg/s) across the surface, Ṁin − Ṁou. In other words, this equation
represents the global balance of mass per unit time

d
dt

M(Vc) = Ṁin − Ṁout (6.6)

S p

S 2

S 1

v 1

ρ

hH

y

x

L

Fig. 6.1. One-dimensional flow in a converging nozzle.

Example 6.1 (One-dimensional steady flow through a converging nozzle). Along
the square cross-section nozzle of Fig. 6.1, the side of length H at the inlet
decreases to h at the outlet. If the liquid density ρ and the inlet velocity v1

are known, determine the exit uniform fluid velocity v2.
Solution. Let us apply the mass conservation equation. The first step consists
of choosing a control volume for analysis, which in this example contains the
fluid within the nozzle between sections 1 and 2. Since this is a fixed control
volume, vc = 0. The surface of the control volume is split into the surfaces
S1 (inlet), S2 (outlet), Sp (walls). Then,

d
dt

∫
Vc(t)

∖
ρ dV

︸ ︷︷ ︸
steady flow

+
∫

S1+S2+Sp

∖ ρ [(v − vc

∖
) · n] dS = 0
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The integral along Sp vanishes because there is no mass flow through solid
walls. At the walls, either the velocity is zero (viscous flow) or the velocity
is parallel to the wall (ideal flow). If the flow is one-dimensional, the velocity
at each cross section of the nozzle is uniform and the integrals are easily
calculated,

−ρv1H
2 + ρv2h

2 = 0

from where the exit velocity is

v2 =
H2

h2
v1

Example 6.2 (Velocity distribution along a nozzle). In the previous example,
find the one-dimensional velocity distribution along the nozzle v(x).
Solution. Again, the mass conservation equation is applied to the control
volume between the inlet section S1 at x = 0 and an arbitrary cross section
S(x) at x. Repeating the above process,

d
dt

∫
Vc(t)

∖
ρ dV

︸ ︷︷ ︸
steady flow

+
∫

S1+S(x)+Sp

∖ ρ [(v − vc

∖
) · n] dS = 0

and integrating,
−ρv1H

2 + ρv(x)S(x) = 0

Assuming a linear variation of the side of the nozzle with x,

S(x) = (H − H − h

L
x)2

and substituting, the desired velocity is obtained,

v(x) =
1[

1 − (1 − h
H ) x

L

]2 v1

Example 6.3 (Pumped fluid by a piston pump). The piston inside a cylinder
of diameter D moves at a speed V . Assuming that the fluid is incompress-
ible, determine the relationship between the velocity of the piston V and the
outflow velocity of the fluid vs at the exhaust valve of diameter d.
Solution. The solution is found by application of the equation of mass con-
servation. In this case, the control volume contains all the fluid inside the
cylinder, which is a moving control volume, vc �= 0. Furthermore, in this
problem the flow is unsteady. The surface of the control volume is divided
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S p

S v

S c

V

d

D
vs

L

Fig. 6.2. Pumped flow by a piston pump.

into Sp (moving wall of the piston), Sv (outflow section at the exhaust valve),
Sc (fixed walls of the cylinder). Then,

d
dt

∫
Vc(t)

ρ dV +
∫

Sp+Sv+Sc

∖ ρ [(v − vc) · n] dS = 0

where the integral on Sc cancels because there is no mass flux across the solid
wall. Operating,

d
dt

∫
Vc(t)

ρ dV = ρ d
dtVc(t) = ρπD2

4
dL
dt = −ρπD2

4 V

∫
Sp

ρ [(v − vc)

∖
· n]

︸ ︷︷ ︸
v=vc

dS = 0

∫
Sv

ρ [(v − vc

∖
) · n] dS = ρvs

πd2

4

Note that, even though Sp is in motion, there is no mass flow across the piston
because the fluid velocity equals the piston velocity. The last integral has been
evaluated assuming a uniform velocity profile at the exit Sv. Gathering all the
contributions,

vs =
D2

d2
V

6.2 Momentum Equation

This equation stems from the fundamental equation of mechanics, the second
law of Newton,

P =
∑

F ext (6.7)
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where P is the linear momentum and
∑

F ext, the external forces acting over
the particles of the system.

Recall that for a system of particles P =
∑

i mivi and, therefore, for a
fluid volume, the sum extended to an infinite number of particles of mass
dm = ρdV is equivalent to an integral,

P =
∫

Vf (t)

ρv dV (6.8)

In Chapter 3 it was shown that, neglecting the surface tension, the forces
acting on the fluid particle are body and surface forces,

∑
F ext =

∫
Sf (t)

f s dS +
∫

Vf (t)

ρfm dV (6.9)

=
∫

Sf (t)

τn dS +
∫

Vf (t)

ρfm dV (6.10)

Thus, the momentum integral equation of a fluid volume can be written as

d
dt

∫
Vf (t)

ρv dV =
∫

Sf (t)

τn dS +
∫

Vf (t)

ρfm dV (6.11)

Applying the third transport theorem with φ = ρv, the following equation for
a control volume is derived

d
dt

∫
Vc(t)

ρv dV +
∫

Sc(t)

ρv [(v − vc) · n] dS =
∫

Sc(t)

τn dS +
∫

Vc(t)

ρfm dV

(6.12)
The physical meaning of this equation is that the rate of change of the mo-
mentum inside the Vc(t) plus the outgoing flux of momentum across the sur-
face of the control volume Ṗ out − Ṗ in equals the action of the surface and
body forces over the control volume. Rearranging,

d
dt

P (Vc) = Ṗ in − Ṗ out +
∑

F ext (6.13)

Remark 6.1. The integral ∫
Vc(t)

ρfm dV

for fm = g represents the weight of the fluid inside the control volume Vc(t).

6.2.1 Decomposition of the Stress Tensor

In fluid statics, typically when the fluid velocities are zero, it was seen that the
stress tensor is an isotropic tensor, given by the static pressure (see Section
3.3.2),
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τ =

⎛
⎝−p 0 0

0 −p 0
0 0 −p

⎞
⎠ = −pI (6.14)

In the presence of a velocity field, the stress tensor presents an additional
term due to the viscous stresses of the velocity field, τ ′, so that the total
stress tensor is the sum of both contributions,

τ = −pI + τ ′ (6.15)

The tensor τ ′ is called the viscous stress tensor, and it is responsible for the
friction that real fluids undergo. Real fluids always present friction. In contrast,
fluids without friction are called ideal fluids. The property that measures this
quality of the fluid is called viscosity µ and will be described in more detail
in Chapter 7 together with the constitutive equation for τ ′.

Therefore, the surface forces on a real fluid can be expressed as∫
Sc(t)

f s dS =
∫

Sc(t)

τn dS =
∫

Sc(t)

(−pn + τ ′n) dS (6.16)

Example 6.4 (Force to hold a symmetric bifurcation). A flow in a circular
cross-section pipe is divided into two streams, as Fig. 6.3 depicts. The flow
is steady with density ρ = 1 000 kg/m3. Neglecting the force due to gravity,
determine the necessary force to hold the bifurcation.

S pv  = 10 m/se
p  = 1 MPae
S  = 1 me

2

p  = 0.7 MPas
S  = 0.4 ms

2

p  = 0.7 MPas
S  = 0.4 ms

2

30°
y

x

Fig. 6.3. Symmetric flow in a bifurcation.

Solution. Let us select the control volume between the inlet section, Se, and
the outlet sections 2Ss of the bifurcation. The remaining surfaces of the control
volume correspond to solid surfaces (walls), Sp. To determine the exit velo-
city vs, which will be assumed aligned with the duct, the mass conservation
equation is applied assuming uniform fluid properties at inlets and outlets, in
particular, velocities and pressures. The result is
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vs =
veSe

2Ss
= 12.5 m/s

Due to the symmetry of the flow with respect to the horizontal axis, and
having ignored the weight of the fluid, the vertical forces cancel. Thus, it is
only necessary to apply the x component of the momentum equation, which
is extracted as follows,

d
dt

∫
Vc(t)

∖
ρvx dV

︸ ︷︷ ︸
stationary

+
∫

Se+2Ss+Sp

∖ρvx [(v − vc

∖
) · n] dS =

∫
Sc(t)

τn
∣∣∣
x

dS

+
∫

Vc(t)

∖
ρfmx dV

︸ ︷︷ ︸
no x component

Thus, the left-hand side equals
∫

Se+2Ss

ρvx (v · n) dS = ρve(−veSe) + 2 ρ (vs cos 30◦)(vsSs)

In the surface forces term, the interaction force from the solid walls to the fluid
is gathered in F wall→fluid. Due to the third Newton’s law (action-reaction),
this force has the same magnitude, but opposite sign, as the force exerted by
the flow to the solid wall. Thus,

∫
Sp

(−pn + τ ′n) dS = F wall→fluid = −F fluid→wall

Taking everything into account, the right-hand side can be written as

∫
Sc(t)

τn
∣∣∣
x

dS =
∫

Se+2Ss

−pnx dS +
∫

Se+2Ss

∖
τ ′n

∣∣∣
x

dS

︸ ︷︷ ︸
τ ′≈0 inlet, outlet

+
∫

Sp

(−pnx + τ ′n
∣∣∣
x
) dS

︸ ︷︷ ︸
Fx=Fwall→fluidx

= −pe(−1)Se − 2ps cos 30◦ Ss + Fx

Substituting, Fx is found to be

Fx = ρ(2v2
sSs cos 30◦ − v2

eSe) + 2ps cos 30◦ Ss − peSe

= −507 kN
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6.3 Angular Momentum Equation

The angular momentum equation for a system of particles establishes that

d
dt

H =
∑

M ext

where H represents the angular momentum and
∑

M ext, the moment of the
external forces acting over the particles. For a system of particles, the angular
momentum is H =

∑
i mi(ri ×vi). Thus, for a fluid volume, integrating over

all the fluid particles of mass ρdV ,

H =
∫

Vf (t)

r × ρv dV (6.17)

The moment over the fluid particle is due to surface and body forces, respect-
ively,

dMs = r × dF s = r × fs dS (6.18)
dMv = r × dF v = r × ρfm dV (6.19)

The total moment is the sum of both contributions,∑
M ext = Ms + M v (6.20)

=
∫

Sf (t)

r × f s dS +
∫

Vf (t)

r × ρfm dV (6.21)

Substituting yields,

d
dt

∫
Vf (t)

r × ρv dV =
∫

Sf (t)

r × (τ · n) dS +
∫

Vf (t)

r × ρfm dV (6.22)

And for a control volume,

d
dt

∫
Vc(t)

r × ρv dV +
∫

Sc(t)

r × ρv [(v − vc) · n] dS

=
∫

Sc(t)

r × (τ · n) dS +
∫

Vc(t)

r × ρfm dV

(6.23)
The physical meaning of this equation is that the rate of variation of the
angular momentum per unit time inside Vc(t) equals the net inflow angular
momentum across the surfaces of the control volume (product of the volumet-
ric flux times the angular momentum per unit volume) plus the moment of
the external forces. Mathematically,

d
dt

H(Vc) = Ḣ in − Ḣout +
∑

M ext (6.24)
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Example 6.5 (Force and moment to hold an inclined jet). Let us calculate the
force F and moment M to hold the nozzle of Fig. 6.4, which has a constant
cross-section S.

p v 

θ

y 

F 
M

 

P 
v 

x 

F y 

atm 

e e 

s 

H
 

x 

Fig. 6.4. Reactions at the base of an inclined nozzle.

Solution. We will assume a stationary, incompressible flow with uniform prop-
erties at the inlet and outlet. The viscous stresses will be neglected at the inlet
and outlet. The gravity forces are also ignored, which means that the moment
due to the weight of the fluid inside the nozzle is neglegible compared to
the pressure moment or change of the fluid angular momentum. Finally, gage
pressures will be used, i.e. patm = 0.

Then, let us take the fixed control volume of the Figure, which includes
the fluid inside the nozzle. Its boundaries are the inlet Se, outlet Ss and solid
walls Sp.

The mass conservation equation implies

ve = vs =
Q

S

The momentum equation can be used to determine the force to hold the
nozzle,

d
dt

∫
Vc(t)

∖
ρv dV

︸ ︷︷ ︸
steady

+
∫

Se+Ss+Sp

∖ρv [(v−vc

∖
) ·n] dS =

∫
Sc(t)

τn dS +
∫

Vc(t)

∖
ρfm dV

︸ ︷︷ ︸
ignored

Taking into account that ve = (0, ve, 0) and vs = vs(cos θ, sin θ, 0), the mo-
mentum flux is
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∫
Se+Ss

ρv [v · n] dS = ρ

⎧⎨
⎩

0
ve

0

⎫⎬
⎭ (−Q) + ρvs

⎧⎨
⎩

cos θ
sin θ

0

⎫⎬
⎭ (+Q)

The surface forces are calculated as follows:∫
Se+Ss+Sp

τn dS =
∫

Sp

τn dS

︸ ︷︷ ︸
F wall→fluid

+
∫

Se

−pn dS +
∫

Ss

−p
∖

n dS

︸ ︷︷ ︸
patm=0

+
∫

Se+Ss

τ ′n

∖

︸ ︷︷ ︸
τ ′≈0 inlet, outlet

dS

= F wall→fluid − pe

⎧⎨
⎩

0
−1
0

⎫⎬
⎭Se

Finally, the reactions at the base are

F wall→fluid =
{

Fx

Fy

}
= ρQ

⎧⎨
⎩

vs cos θ
−vs(1 − sin θ)

0

⎫⎬
⎭−

⎧⎨
⎩

0
peS
0

⎫⎬
⎭

Thus, the nozzle tends to move to the left and upwards, and the forces to hold
it point to the right and downwards.

Next, to calculate the moment at the base, we apply the angular mo-
mentum equation,

d
dt

∫
Vc(t)

∖
r × ρv dV

︸ ︷︷ ︸
steady

+
∫

Se+Ss+Sp

∖r × ρv [(v − vc

∖
) · n] dS =

∫
Sc(t)

r × τn dS

+
∫

Vc(t)

∖
r × ρfm dV

︸ ︷︷ ︸
ignored

Taking moments with respect to the origin of coordinates, at Se, re ≈ 0, and
at Ss we will take rs ≈ (0, H, 0). As vs = vs(cos θ, sin θ, 0),

∫
Se+Ss

r×ρv [v·n] dS = 0+

⎧⎨
⎩

0
H
0

⎫⎬
⎭×ρvs

⎧⎨
⎩

cos θ
sin θ

0

⎫⎬
⎭ (+Q) =

⎧⎨
⎩

0
0

−ρHvs cos θQ

⎫⎬
⎭

Similarly, for the surface forces,
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Se+Ss+Sp

r × τn dS =
∫

Sp

r × τn dS

︸ ︷︷ ︸
Mwall→fluid

+
∫

Se

r
∖
×−pn dS

︸ ︷︷ ︸
re=0

+
∫

Ss

r ×−p
∖

n dS

︸ ︷︷ ︸
patm=0

+
∫

Se+Ss

r × τ ′n

︸ ︷︷ ︸
τ ′≈0 inlet, outlet

dS

= Mwall→fluid

Gathering all the contributions, the resulting moment (about the z axis) is

Mwall→fluid =

⎧⎨
⎩

0
0

−ρHvs cos θQ

⎫⎬
⎭

The negative sign implies that the moment is towards the right.

6.4 Total Energy Conservation

The total energy equation is based on the first principle of thermodynamics:
the change of total energy E in a system equals the work done over the system
Wext plus the added heat Qin:

∆Esystem = Wext + Qin (6.25)

Rewriting the balance per unit time and taking the limit

lim
∆t→0

∆Esystem

∆t
=

dE

dt
(6.26)

which gives the equation in its rate form, with dimension of power,

dE

dt
= Ẇext + Q̇in (6.27)

For a simple compressible substance, the possible forms of energy are the
internal and kinetic energy,

E =
∫

Vf (t)

ρetot dV =
∫

Vf (t)

ρ(e +
1
2
v2) dV

where etot represents the total energy per unit mass, e [J/kg] the specific
internal energy (see Appendix H) and v the velocity modulus, that is, v2 =
v · v.
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On the other side, the power of the exterior forces is,

Ẇext =
∫

Sf (t)

(τn) · v dS +
∫

Vf (t)

ρfm · v dV

The heat transmitted to the system has two contributions. One is due to
thermal diffusion across the surface, which can be calculated from the heat
flux vector, q (see Chapter 2). The second contribution is caused by the heat
received per unit volume, q̇v. Thus,

Q̇in =
∫

Sf (t)

−q · n dS +
∫

Vf (t)

q̇v dV

The minus sign on the heat flux term is due to the fact that the contribu-
tion represents heat entering the system, towards the fluid, therefore, in the
direction −n. The corresponding SI units are [q̇v] = W/m3, [q] = W/m2.

Thus, for a fluid volume, we have

d
dt

∫
Vf (t)

ρ

(
e +

1
2
v2

)
dV =

∫
Sf (t)

(−pn + τ ′n) · v dS

+
∫

Vf (t)

ρfm · v dV

−
∫

Sf (t)

q · n dS +
∫

Vf (t)

q̇v dV

(6.28)

Applying the third transport theorem,

d
dt

∫
Vc(t)

ρ

(
e +

1
2
v2

)
dV +

∫
Sc(t)

ρ

(
e +

1
2
v2

)
[(v − vc) · n] dS =

=
∫

Sc(t)

(−pn + τ ′n) · v dS

+
∫

Vc(t)

ρfm · v dV

−
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

(6.29)
From the physical standpoint, the above equation represents the following
energy balance

d
dt

E(Vc) = Ėin − Ėout + Ẇext + Q̇in (6.30)

That is, the rate of increase of the total energy in the control volume is due
to the incoming energy flux, minus the outgoing energy flux, plus the work
done on the system per unit time plus the added heat per unit time.



6.4 Total Energy Conservation 87

6.4.1 Body Force Stemming from a Potential

When the body force fm stems from a potential, it can be written as the
gradient of a scalar function U , called the potential,

fm = −∇U (6.31)

The most common case is that of the gravitational force, which for an upward
z axis,

U = gz (6.32)

It can be checked that the gradient of the potential gives

−∇U =

⎧⎨
⎩

0
0
−g

⎫⎬
⎭ (6.33)

which is indeed the force per unit mass fm = g.
To transform the body force integral into a potential energy term, we will

employ the continuity equation (see Chapter 8)

∂ρ

∂t
+ ∇ · (ρv) = 0

Starting from the integral of the body force power,∫
Vc(t)

ρ fm · v dV =
∫

Vc(t)

−ρ∇U · v dV (potential definition)

=
∫

Vc(t)

(−∇ · (ρUv) + U∇ · (ρv)) dV (product differential)

=
∫

Vc(t)

(
−∇ · (ρUv) − U

∂ρ

∂t

)
dV (continuity)

=
∫

Vc(t)

(
−∇ · (ρUv) − ∂ρU

∂t

)
dV (U not a function of t)

= −
∫

Vc(t)

∂ρU

∂t
dV −

∫
Sc(t)

ρUv · n dS (Gauss theorem)

−
∫

Sc(t)

ρUvc · n dS +
∫

Sc(t)

ρUvc · n dS (add & substract)

= − d
dt

∫
Vc(t)

ρU dV −
∫

Sc(t)

ρU(v − vc) · n dS (transp. th.)

Inserting this term into the total energy equation, if the potential is steady,

d
dt

∫
Vc(t)

ρ
(
e + 1

2v2 + U
)

dV

+
∫

Sc(t)

ρ

(
e +

1
2
v2 + U

)
[(v − vc) · n] dS =

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS −
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

(6.34)



88 6 Integral Conservation Principles

Remark 6.2. In the energy equations, the body force must be accounted only
once: either as a potential energy term U or as the power of the body forces.

S p

S 2

v1

S 1

p1
e1

p2
e2

h1

h2

Qin

Qout

Fig. 6.5. Principle of total energy conservation in a burner.

Example 6.6 (Heat added to a burner). A device adds Q̇in heat per unit time
to the burner of Fig. 6.5, so the specific internal energy of the fluid is increased
from e1 to e2 at the exit . Determine the heat losses per unit time Q̇out through
the walls.
Solution. Let us start applying the mass conservation equation with the usual
hypothesis: steady, incompressible flow, with uniform inlet and outlet proper-
ties.

The fixed control volume (depicted in Fig. 6.5) includes the fluid inside
the burner. Applying the mass conservation equation, the exit velocity results
in

v2 =
v1S1

S2
=

Q

S2

where Q is the incoming volumetric flux. Next, the total energy conservation
principle states

d
dt

∫
Vc(t)

∖
ρ

(
e +

1
2
v2 + U

)
dV

︸ ︷︷ ︸
steady

+
∫

Se+Ss+Sp

∖ ρ

(
e +

1
2
v2 + U

)
[(v − vc

∖
) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS −
∫

Sc(t)

q · n dS

︸ ︷︷ ︸
Q̇in−Q̇out

+
∫

Vc(t)

∖
q̇v dV

︸ ︷︷ ︸
absent, considered in q

The energy flux and the stress integrals can be calculated as
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∫
Se+Ss

ρ

(
e +

1
2
v2 + U

)
(v · n) dS = −ρ(e1 + 1

2v2
1 + gh1)v1S1

+ρ(e2 + 1
2v2

2 + gh2)v2S2

∫
S1+S2+Sp

−pn · v dS = p1v1S1 − p2v2S2 +
∫

Sp

∖
− pn · v dS

︸ ︷︷ ︸
v=0∫

S1+S2+Sp

(τ ′ · n) · v dS =
∫

S1+S2

∖
(τ ′ · n) · v dS

︸ ︷︷ ︸
τ ′≈0 inlet, outlet

+
∫

Sp

∖
(τ ′ · n) · v dS

︸ ︷︷ ︸
v=0 on walls if µ�=0

The integral
∫

Sp
(τ ′ · n) · v dS cancels also under the condition of ideal flow,

in which case µ = 0 and, consequently, τ ′ = 0. In an ideal flow, the velocity
is parallel to the wall and −

∫
Sp

pn ·v dS = 0. Gathering everything, one gets

Q̇out as

Q̇out = Q̇in + ρ(e1 + 1
2v2

1 + gh1)v1S1 − ρ(e2 + 1
2v2

2 + gh2)v2S2

+p1v1S1 − p2v2S2

= Q̇in + ρQ
[
(e1 + 1

2v2
1 + gh1 + p1

ρ ) − (e2 + 1
2v2

2 + gh2 + p2
ρ )
]

That is, the heat lost per unit time is the difference between the total energy
that the fluid should have at the exit minus the total energy that the fluid
actually has. Note that the pressure enters into the energy balance because
due to the fluid motion it exchanges power.

6.5 Other Energy Equations

6.5.1 Mechanical Energy Equation

The mechanical energy equation can be obtained from the differential form of
the momentum equation (see Chapter 8),

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ∇ · τ ′ + ρfm (6.35)

This equation is multiplied by the scalar product of the vector velocity v

v ·
(

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ∇ · τ ′ + ρfm

)
(6.36)

Operating yields
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∂ρ 1
2v2

∂t
+ ∇ · (ρv

1
2
v2) = −v · ∇p + v · ∇ · τ ′ + ρv · fm (6.37)

The first term on the right-hand side can be rewritten as

v · ∇p = ∇ · (pv) − p∇ · v (6.38)

which equals the power of the pressure forces ∇ · (pv) minus the expansion
power,

p∇ · v = p vi,i (6.39)

The reader is reminded that the divergence of the velocity represents the
change of volume per unit time per unit volume of a fluid particle,

div v = ∇ · v = vi,i =
1

Vol
dVol
dt

The second term on the right-hand side can be rewritten as

v · ∇ · τ ′ = vi τ ′
ij,j = (viτ

′
ij),j − vi,jτ

′
ij

= ∇ · (τ ′v) − φv

(6.40)

The function φv is called the viscous dissipation function,

φv = ∇v : τ ′ = vi,j τ ′
ij ≥ 0 (6.41)

which is always positive. Remember that the Einstein summation convention is
used and repeated indices are added up. In Cartesian coordinates, the viscous
dissipation function can be expanded as

φv = v1,1 τ ′
11 + v1,2 τ ′

12 + v1,3 τ ′
13

+ v2,1 τ ′
21 + v2,2 τ ′

22 + v2,3 τ ′
23

+ v3,1 τ ′
31 + v3,2 τ ′

32 + v3,3 τ ′
33

(6.42)

The viscous dissipation represents the energy loss per unit time and volume
due to the viscosity, that is, to friction. Its units are power per unit volume,
W/m3.

Integrating in a fluid volume and applying the transport theorems,

d
dt

∫
Vc(t)

ρ 1
2v2 dV +

∫
Sc(t)

ρ
1
2
v2 [(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS +
∫

Vc(t)

p∇ · v dV −
∫

Vc(t)

φv dV

+
∫

Vc(t)

ρfm · v dV

(6.43)
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Physically, this equation states that the variation of mechanical energy per
unit time in Vc(t) equals the inflow of mechanical energy across the control
surface, minus the outflow flux of mechanical energy, plus the power supplied
by the external forces Ẇext, plus the expansion power Ẇexp, minus the energy
lost per unit time due to the viscous dissipation Dv,

d
dt

Emec(Vc) = Ėmec
in − Ėmec

out + Ẇext + Ẇexp − Dv (6.44)

where
Dv =

∫
Vc(t)

φv dV (6.45)

If the body force stems from a stationary potential,

ρfm · v = ρ (−∇U) · v

= −ρ (
∂U

∂t
+ v · ∇U) (6.46)

= −
(

∂ρU

∂t
+ ∇ · (vρU)

)

Employing the potential, the equation of mechanical energy can be written as

∂(ρ 1
2v2 + ρU)

∂t
+∇·(ρv

1
2
v2+ρvU) = −∇·(pv)+∇·(τ ′v)+p∇·v−φv (6.47)

and the integral counterpart is

d
dt

∫
Vc(t)

ρ
(

1
2v2 + U

)
dV +

∫
Sc(t)

ρ

(
1
2
v2 + U

)
[(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS +
∫

Vc(t)

p∇ · v dV −
∫

Vc(t)

φv dV

(6.48)

A 3 A 1=A 2A 1

Q

p 1 p 2
p 3

Fig. 6.6. This converging-diverging duct is called a Venturi and can be used as a
flowmeter.
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Example 6.7 (Venturi meter). A Venturi is a converging-diverging nozzle that
can be used as a flowmeter (see Fig. 6.6). In order to measure the flow rate,
there are two pressure gages, one at the duct and the other at the throat.
Assuming ideal flow (i.e. neglecting the viscous dissipation) determine the
relation between the pressure difference at the gages, ∆p = p1 − p2, and the
volumetric flow rate Q.
Solution. The mass conservation equation reads

d
dt

∫
Vc(t)

∖
ρ dV

︸ ︷︷ ︸
steady

+
∫

S1+S2+Sp

∖ ρ [(v − vc

∖
) · n] dS = 0

and simplifies for uniform variables to

Q = v1A1 = v2A2

The mechanical energy equation implies

d
dt

∫
Vc(t)

∖
ρ

(
1
2
v2 + U

)
dV

︸ ︷︷ ︸
steady

+
∫

S1+S2+Sp

∖ ρ

(
1
2
v2 + U

∖)
[(v − vc

∖
) · n] dS

︸ ︷︷ ︸
U=const (horizontal Venturi)

=

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS

+
∫

Vc(t)

p ∇ · v
∖

dV

︸ ︷︷ ︸
ρ=const (incompressibleflow)

−
∫

Vc(t)

φv

∖
dV

︸ ︷︷ ︸
problemhypothesis

The non-vanishing integrals are
∫

S1+S2

ρ

(
1
2
v2

)
(v · n) dS = ρ(1

2v2
1)(−Q) + ρ(1

2v2
2)(+Q)

∫
S1+S2+Sp

−pn · v dS = p1v1A1 − p2v2A2 +
∫

Sp

∖
− pn · v dS

︸ ︷︷ ︸
v ⊥ n

= Q(p1 − p2)∫
S1+S2+Sp

(τ ′ · n) · v dS =
∫

S1+S2

∖
(τ ′ · n) · v dS

︸ ︷︷ ︸
τ ′≈0 inlet, outlet

+
∫

Sp

∖
(τ ′ · n) · v dS

︸ ︷︷ ︸
ideal flow
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Gathering all the terms,

ρQ(−1
2
v2
1 +

1
2
v2
2) = Q(p1 − p2)

from where the result we are looking for is

Q = A1

√√√√√
2(p1 − p2)

ρ

[(
A1
A2

)2

− 1
]

Remark 6.3. In order to take into account the energy losses, an experimental
factor is included in the above formula, so the real volumetric flow rate is

Q = A1η

√√√√√
2(p1 − p2)

ρ

[(
A1
A2

)2

− 1
]

where 0 < η < 1, lies between 0.98 − 0.99.

Example 6.8 (Viscous dissipation in a burner). In the burner of the above
example, assuming that the flow is incompressible, calculate the energy dis-
sipated per unit time.
Solution. Let us apply the mechanical energy equation with the usual hypo-
thesis,

d
dt

∫
Vc(t)

∖
ρ

(
1
2
v2 + U

)
dV

︸ ︷︷ ︸
steady

+
∫

Se+Ss+Sp

∖ ρ

(
1
2
v2 + U

)
[(v − vc

∖
) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS

+
∫

Vc(t)

p ∇ · v
∖

dV

︸ ︷︷ ︸
ρ=const (incompressibleflow)

−
∫

Vc(t)

φv dV

︸ ︷︷ ︸
viscous dissipation in Vc(t)=−Dv

In particular, the convective term and the power due to surface forces are
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∫
Se+Ss

ρ

(
1
2
v2 + U

)
(v · n) dS = −ρ(

1
2
v2
1 + gh1)v1S1 + ρ(

1
2
v2
2 + gh2)v2S2

∫
S1+S2+Sp

−pn · v dS = p1v1S1 − p2v2S2 +
∫

Sp

∖
− pn · v dS

︸ ︷︷ ︸
v=0∫

S1+S2+Sp

(τ ′ · n) · v dS =
∫

S1+S2

∖
(τ ′ · n) · v dS

︸ ︷︷ ︸
τ ′≈0 inlet,outlet

+
∫

Sp

∖
(τ ′ · n) · v dS

︸ ︷︷ ︸
v=0 at walls if µ�=0

Operating,

Dv = ρ(1
2v2

1 + gh1)v1S1 − ρ(1
2v2

2 + gh2)v2S2 + p1v1S1 − p2v2S2

= ρQ
[
(1
2v2

1 + gh1 + p1
ρ ) − (1

2v2
2 + gh2 + p2

ρ )
]

Therefore, since the flow is incompressible, the viscous dissipation in the con-
trol volume equals the mechanical energy difference (including the pressure)
between the inlet and the outlet.

The Bernoulli Equation

A very important version of the mechanical energy equation is the Bernoulli
equation. The simplest form of this equation states that for stationary, in-
compressible, ideal flow, the mechanical energy plus the pressure is constant
along a streamline if there is no power supplied to the flow,

1
2
ρv2 + p + ρU = Csl (6.49)

where the constant Csl depends on the streamline.

Example 6.9 (Venturi meter). Let us repeat the example of the Venturi meter
employing the Bernoulli equation (see Example 6.7). For that purpose, take
the centerline streamline between 1 and 2. The potential energy of that stream-
line is constant because it is horizontal and, neglecting the viscous losses, the
Bernoulli equation for a liquid can be written as

1
2
ρv2

1 + p1 =
1
2
ρv2

2 + p2

This is the same expression obtained in Example 6.7 for the mechanical energy
equation.
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6.5.2 Internal Energy Equation

Subtracting the mechanical energy equation from the total energy equation
results in the internal energy equation,

d
dt

∫
Vc(t)

ρe dV +
∫

Sc(t)

ρe [(v − vc) · n] dS

= −
∫

Sc(t)

p∇ · v dV +
∫

Vc(t)

φv dV −
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

(6.50)
This equation shows that the rate of variation of the internal energy in Vc(t)
d
dtE

int(Vc) equals the ingoing flux of internal energy through the control sur-
face, minus the outgoing internal energy flux, minus the expansion power Ẇexp

plus the power lost due to the viscous dissipation Dv plus the heat added to
the control volume,

d
dt

Eint(Vc) = Ėint
in − Ėint

out − Ẇexp + Dv + Q̇in (6.51)

Example 6.10 (Viscous dissipation in a burner). In the example of the burner,
calculate the viscous dissipation in the control volume using the internal en-
ergy equation and verify that the total energy equation is satisfied.
Solution.
(a) First, let us apply the internal energy equation using the standard hypo-
thesis.

d
dt

∫
Vc(t)

∖
ρe dV

︸ ︷︷ ︸
steady

+
∫

Se+Ss+Sp

∖ ρe [(v − vc

∖
) · n] dS

= −
∫

Sc(t)

q · n dS

︸ ︷︷ ︸
Q̇in−Q̇out

+
∫

Vc(t)

∖
q̇v dV

︸ ︷︷ ︸
absent, considered inq

−
∫

Vc(t)

p ∇ · v
∖

dV

︸ ︷︷ ︸
ρ=const. (incompressibleflow)

+
∫

Vc(t)

φv dV

︸ ︷︷ ︸
viscousdissipation inVc(t)=Dv

In particular, the convective term is∫
Se+Ss

ρe (v · n) dS = −ρe1v1S1 + ρe2v2S2

= ρQ(e2 − e1)
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Operating,
Dv = ρQ(e2 − e1) − (Q̇in − Q̇out)

(b) Substituting Dv into the mechanical energy equation yields

ρQ
[
(e2 + 1

2v2
2 + gh2 + p2

ρ ) − (e1 + 1
2v2

1 + gh1 + p1
ρ )
]

= Q̇in − Q̇out

which is an expression of the total energy equation.

6.5.3 Energy Transfer Between Mechanical and Internal Energy

In the mechanical and internal energy equations there are two common terms,
the expansion power Ẇexp and the viscous dissipation Dv.

The expansion power, when positive, increases the mechanical energy at
the expense of decreasing the internal energy. The expansion power can also be
negative when the fluid particles are compressed, in which case, the mechanical
energy is used to increase the internal energy. Therefore, this type of power is
reversible, it can be transformed back and forth into mechanical and internal
energy.

However, the viscous dissipation is always positive. It appears with a neg-
ative sign in the mechanical energy equation whereas with a positive sign in
the internal energy equation. Since the viscous dissipation is always positive,
this power transfer has only one direction: it always decreases the mechan-
ical energy to increase the internal energy. Thus, this is an irreversible energy
transfer. As a consequence, friction always tends to decrease the mechanical
energy, which is transformed into internal energy, increasing the fluid temper-
ature.

Note that none of the above process changes the total energy of the fluid,
because they are exchanging energy of two different types (mechanical and
internal energy). This is why they do not appear in the total energy equation.

6.6 Conservation of Chemical Species Equation

6.6.1 Introductory Definitions

Let us assume that the fluid is a mixture of nesp chemical species. Each chem-
ical species will be designated by the index A, 1 ≤ A ≤ nesp. Next, mass and
molar measures of the chemical concentration are explained.

Mass measures of chemical concentration

Definition 6.1 (Mass concentration). The mass concentration of the chem-
ical species A, ρA, is the mass of the chemical species A per unit volume of
mixture. The unit in the SI is kg/m3.
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Definition 6.2 (Mass fraction). The mass fraction of the chemical species
A, YA, is the mass of the chemical species A present per unit mass of mixture.
Note 0 ≤ YA ≤ 1. The mass fraction is dimensionless.

Note that between both measures the following relations hold

1 =
∑nesp

A=1 YA

ρ =
∑nesp

A=1 ρA

ρA = ρYA

(6.52)

Molar measures of chemical concentration

Let us recall that one mole (units mol) of substance corresponds to an amount
equal to 6.023×1023 molecules. This constant is called the Avogadro constant.

Definition 6.3 (Molar or mole mixture concentration). The molar con-
centration of a mixture, c, is the number of moles of mixture per unit volume
of mixture. The units in the SI are the mol/m3 but mol/l is used frequently.

Definition 6.4 (Molar or mole concentration). The molar concentration
of the chemical species A, cA, is the number of moles of the chemical species
A per unit of mixture volume. The units in the SI are the mol/m3 but mol/l
is used frequently.

Definition 6.5 (Molar fraction). The molar fraction of the chemical spe-
cies A, XA, is the number of moles of the chemical species A per number of
total moles of mixture. Note 0 ≤ XA ≤ 1. The molar fraction is dimensionless.

The molar concentrations obey the following relations:

1 =
∑nesp

A=1 XA

c =
∑nesp

A=1 cA

cA = cxA

(6.53)

Relations between mass and molar concentrations

Let us recall that the molar mass MA represents the mass of one mole of
substance. Its units are g/mol or kg/kmol.

The following relations between mass and molar concentrations hold

ρA = MAcA

ρ = Mc
(6.54)
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where MA is the molar mass (or molecular weight) of the chemical species A
and M the molar mass of the mixture

M =
∑nesp

A=1 XAMA

=
(∑nesp

A=1 YA/MA

)−1
(6.55)

As far as fraction concentration measures are concerned,

YA =
XAMA∑nesp

B=1 XBMB

XA =
YA/MA∑nesp

B=1 XB/MB

(6.56)

Average fluid velocity of the mixture

Because each chemical species may travel at a different speed vA, we need to
introduce a definition of the average fluid velocity v.

Definition 6.6 (Chemical species velocity). We will denote with vA the
velocity of the chemical species A.

There are several possibilities for defining the average fluid velocity. Here,
we will consider mass and molar averaging.

Definition 6.7 (Mass average fluid velocity). We will denote by v the
mass mean velocity of the mixture,

v =
∑nesp

A=1 ρAvA

ρ
=

nesp∑
A=1

YAvA (6.57)

In general v �= vA.

Definition 6.8 (Molar average fluid velocity). We can define a mean
molar velocity of the mixture as

vm =
∑nesp

A=1 cAvA

c
=

nesp∑
A=1

XAvA (6.58)

6.6.2 Derivation of the Conservation Equations

Since every chemical species travels at a different speed vA, it is complicated
to derive the chemical species mass conservation equation for a fluid volume,
which moves at one of the mean velocities defined above.

Instead, we will take a specific control volume for each species. In partic-
ular, for the species A let us select the control volume VcA(t) that contains
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always the same particles of that species. In absence of chemical reaction, the
mass of species A in the control volume VcA(t) is constant,

d
dt

∫
VcA(t)

ρA dV = 0 (6.59)

In the presence of chemical reactions, there will be a global rate of pro-
duction per unit volume for every chemical species ω̇A [kg/(m3 s)] and finally
the mass conservation equation can be written as

d
dt

∫
VcA(t)

ρA dV =
∫

VcA(t)

ω̇A dV (6.60)

It is more practical to rewrite the above equation for an arbitrary con-
trol volume. Applying the transport theorems to a control volume Vc(t) that
coincides at time t with VcA(t),

Vc(t) = VcA(t) (6.61)

we have

d
dt

∫
VcA(t)

ρA dV =
∫

VcA(t)

∂ρA

∂t
dV +

∫
ScA(t)

ρAvA · n dS

d
dt

∫
Vc(t)

ρA dV =
∫

Vc(t)

∂ρA

∂t
dV +

∫
Sc(t)

ρAvc · n dS
(6.62)

Subtracting the second equation from the first one, and subtracting and
adding the surface integral

d
dt

∫
VcA(t)

ρA dV =
d
dt

∫
Vc(t)

ρA dV +
∫

Sc(t)

ρA(vA − vc) · n dS

−
∫

ScA(t)

ρAv · n dS +
∫

ScA(t)

ρAv · n dS

=
d
dt

∫
Vc(t)

ρA dV +
∫

Sc(t)

ρA(v − vc) · n dS

+
∫

Sc(t)

ρA(vA − v) · n dS

(6.63)

Substituting and reorganizing,

d
dt

∫
Vc(t)

ρA dV +
∫

Sc(t)

ρA [(v − vc) · n] dS

= −
∫

Sc(t)

ρA(vA − v) · n dS +
∫

Vc(t)

ω̇A dV
(6.64)

The physical interpretation of the above equation is as follows. The increase of
mass of the chemical species A per unit time in the control volume d

dtMA(Vc)



100 6 Integral Conservation Principles

equals the ingoing mass flux of chemical species A through the control surface
ṀA in − ṀA out plus the inward diffusion transport JA in − JA out [kg/s] and
the production due to chemical reaction, ĠA:

d
dt

MA(Vc) = (ṀA in − ṀA out) + (JA in − JA out) + ĠA (6.65)

Remark 6.4. The first integral on the right-hand side contains the velocity
difference between the chemical species vA and the mean flow velocity v.
This is modeled by molecular diffusion of the species A, and is written as a
diffusion mass flux vector, jA [kg/(m2 s)]

jA = ρA(vA − v) (no sum) (6.66)

such that
−
∫

Sc(t)

ρA(vA − v) · n dS = −
∫

Sc(t)

jA · n dS (6.67)

Remark 6.5. Many times, instead of the diffusion mass flux, the diffusion ve-
locity is imployed,

V A =
jA

ρA
= (vA − v) (no sum) (6.68)

Remark 6.6. Not all the chemical conservation equations are independent. In
fact, its sum adds up to the mass conservation equation. Let us check this
term by term.

nesp∑
A=1

d
dt

∫
Vc(t)

ρA dV =
d
dt

∫
Vc(t)

nesp∑
A=1

ρA dV

=
d
dt

∫
Vc(t)

ρ dV (6.69)

nesp∑
A=1

∫
Sc(t)

ρA [(v − vc) · n] dS =
∫

Sc(t)

nesp∑
A=1

ρA [(v − vc) · n] dS

=
∫

Sc(t)

ρ [(v − vc) · n] dS (6.70)

nesp∑
A=1

∫
Sc(t)

ρA(vA − v) · n dS =
∫

Sc(t)

nesp∑
A=1

ρA(vA − v) · n dS

=
∫

Sc(t)

(nesp∑
A=1

ρAvA −
nesp∑
A=1

ρAv

)
· n dS

=
∫

Sc(t)

(ρv − ρv) · n dS = 0 (6.71)

nesp∑
A=1

∫
Vc(t)

ω̇A dV =
∫

Vc(t)

nesp∑
A=1

ω̇A dV = 0 (6.72)
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Note that
nesp∑
A=1

jA = 0 (6.73)

nesp∑
A=1

ω̇A = 0 (6.74)

Remark 6.7. See Appendix I for how to compute ω̇A.

Example 6.11 (Soil cleaning). There is a soil polluted with an initial concen-
tration of benzene ρb(t = 0) = ρb0. In order to clean the soil, air is introduced
into the ground through an inlet. The fluid mixes with the benzene and the
mixture is extracted at the outlet. Determine the evolution of mean benzene
concentration ρb(t) as a function of time t, the volumetric flow rate of air Q
and the volume of treated soil V .
Solution. Let us apply the chemical species conservation equation to the ben-
zene inside the control volume, which encompasses the polluted area of volume
V . Any chemical reaction and the molecular diffusion will be ignored. Also,
the concentration of benzene in the control volume will be assumed uniform,
i.e. ρb(t). Thus,

d
dt

∫
Vc(t)

ρb dV +
∫

Sc(t)

ρb [(v − vc) · n] dS = −
∫

Sc(t)

ρb(vb − v)

∖
· n dS

︸ ︷︷ ︸
well mixed

+
∫

Vc(t)

ω̇b

∖
dV

︸ ︷︷ ︸
no chemical reaction
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The temporal variation of the mass of benzene in the control volume is

d
dt

∫
Vc(t)

ρb(t) dV =
dρb(t)

dt
V

There exists only mass flow across the inlet and outlet, Se and Ss, so the flow
integral becomes∫

Se+Sp

∖
+Ss

ρb [(v − vc

∖
) · n] dS = −ρbe

∖
Q + ρbQ

The concentration of benzene at the inlet is zero, ρbe = 0, since it is fresh
air. Furthermore, let us take the concentration of benzene at the outlet equal
to the mean concentration of benzene at the polluted area, i.e. ρbs = ρb.
Gathering all the components, we arrive at the ordinary differential equation

dρb

dt
= −ρbQ

V

Integrating in time and imposing the initial condition,

ρb(t) = ρb0 e−
Qt
V

from where it is concluded that the pollution disappears as an exponentially
decreasing function. At the beginning, the soil gets cleaned very rapidly, but
the cleaner it is, the slower the process. Thus, it is more difficult to eliminate
small than large concentrations.

6.6.3 Chemical Species Equations for Molar Concentrations

It is possible to express the conservation equation of chemical species in molar
concentrations. To do so, equation (6.64) is divided by the molecular mass of
the corresponding chemical species, MA. The rate of mass production trans-
forms into the rate of molar production [mol/(m3 s)], i.e.

ω̇′
A =

ω̇A

MA
(6.75)

The equation of the evolution of the molar concentration with respect to the
mass mean velocity is

d
dt

∫
Vc(t)

cA dV +
∫

Sc(t)

cA [(v − vc) · n] dS

= −
∫

Sc(t)

cA(vA − v) · n dS +
∫

Vc(t)

ω̇′
A dV

(6.76)

The molecular diffusivity can be rewritten as a function of the vector of molar
flux j′

A [mol/(m2 s)],

j′
A = cA(vA − v) (no sum) (6.77)
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6.6.4 Equations with Respect to the Molar Average Velocity

The above chemical species equations have been written with respect to the
mass average mixture velocity. If instead, the molar average velocity vm is
employed, the corresponding equations are obtained:

d
dt

∫
Vc(t)

ρA dV +
∫

Sc(t)

ρA [(vm − vc) · n] dS

= −
∫

Sc(t)

ρA(vA − vm) · n dS +
∫

Vc(t)

ω̇A dV
(6.78)

Apparently, everything looks similar, but the mass diffusion flux [kg/(m3 s)]
is written with respect to the molar averaged velocity,

jm
A = ρA(vA − vm) (no sum)

For molar concentrations,

d
dt

∫
Vc(t)

cA dV +
∫

Sc(t)

cA [(vm − vc) · n] dS =

= −
∫

Sc(t)

cA(vA − vm) · n dS +
∫

Vc(t)

ω̇′
A dV

(6.79)

where the molar diffusion flux [mol/(m2 s)] is

jm
A

′ = cA(vA − vm) (no sum) (6.80)

6.7 Equation of Volume Conservation for Liquids

When the fluid is a mixture of inmiscible liquids, a similar principle to mass
conservation can be derived, but applied to the volume of the fluid. If the fluid
volume contains several liquids, in the absence of chemical reactions, then its
volume is constant and we can write

Volume(Vf ) = constant (6.81)

Thus,
d
dt

Volume(Vf ) = 0 (6.82)

The volume of Vf is simply

Volume(Vf ) =
∫

Vf (t)

dV (6.83)

Consequently, the principle of volume conservation for liquids is
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d
dt

∫
Vf (t)

dV = 0 (6.84)

Applying the third transport theorem with φ = 1,

d
dt

∫
Vc(t)

dV +
∫

Sc(t)

[(v − vc) · n] dS = 0 (6.85)

The physical interpretation of this equation is similar to that of other equa-
tions. All the fluid volume that enters in the control volume has to exit or
increase the volume Vc(t).

Remark 6.8. If there is only one liquid, this equation is equivalent to the mass
conservation equation.

Remark 6.9. If there are two or more liquids with different densities, this equa-
tion is linearly independent of the mass conservation equation.

Q
 ρ

S
S

S

Q
 ρ

1
1

m
m

1 m
p

S2

Q   ρ2     2

y

     x

Fig. 6.8. Mixing process through perpendicular ducts.

Example 6.12 (Mixing process through perpendicular jets). A method em-
ployed in the chemical industry to mix two fluids consists of merging two
flows perpendicularly. If the flow is stationary, using the data of the Figure
for the inlet liquid streams, determine the density and volumetric flow rate at
the exit.
Solution. Let us take the control volume of Fig. 6.8. From the mass conserva-
tion equation,

d
dt

∫
Vc(t)

∖
ρ dV

︸ ︷︷ ︸
stationary

+
∫

S1+S2+Ss+Sp

∖ ρ [(v − vc

∖
) · n] dS = 0
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The integral on Sp vanishes since there is no flow through solid walls. Assum-
ing that the density is uniform at the inlet and outlet sections,

−ρ1Q1 − ρ2Q2 + ρmQm = 0

In this equation, there are two unknowns, ρm and Qm. Thus, another equation
is necessary. If we used the nesp − 1 = 1 independent equation of chemical
species, we would add a new unknown, namely the chemical concentration of
the species 1 or 2 at the exit.

Therefore, a different equation is needed, in particular, the volume conser-
vation equation for liquids:

d
dt

∫
Vc(t)

∖
dV

︸ ︷︷ ︸
stationary

+
∫

S1+S2+Ss+Sp

∖ [(v − vc

∖
) · n] dS = 0

Simplifying
−Q1 − Q2 + Qm = 0

from where it can be concluded that the exit volumetric flow rate is the sum
of the inlet flow rates:

Qm = Q1 + Q2

Introducing this result into the mass conservation equation,

ρm =
ρ1Q1 + ρ2Q2

Q1 + Q2

6.8 Outline

It is enlightening to remark that all transport equations share common fea-
tures, since all of them can be cast in the general form

d
dt

∫
Vc(t)

ρφ dV +
∫

Sc(t)

ρφ [(v − vc) · n] dS = Dφ + Fφ (6.86)

On the left-hand side we can encounter the temporal term and the flux across
the control surface (which contains the convective transport). The right-hand
side may be zero or contain the diffusion transport Dφ and source term Fφ

depending on the specific equation.
Thus, selecting φ properly the various equations can be recovered, as in-

dicated on Table 6.1.

Remark 6.10. Note that ρφ is the conserved property density on each equation,
that is,

ρφ =
property
volume

See Table 6.2.
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Table 6.1. How to recover the conservation equations from the conserved property
per unit mass φ.

φ Equation

1 mass conservation

v momentum

r × v angular momentum

e + 1
2
v2 total energy conservation

1
2
v2 mechanical energy

e internal energy

YA conservation of chemical species A

xA/M idem for molar fluxes

1/ρ volume conservation

Table 6.2. Property density ρφ for various conservation equations.

Equation ρφ

mass conservation
mass

volume
= ρ

momentum
mass v

volume
= ρv

internal energy
mass e

volume
= ρe

Remark 6.11. The convective flux of the property per unit mass φ across a
surface Sc(t) that moves at a velocity vc is

∫
Sc(t)

ρφ [(v − vc) · n] dS

which represents the amount of property that flows per unit time across the
control surface, i.e.

flux(ρφ) = ρφ Q =
property
volume

· volume
time

=
property

time
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6.9 Initial and Boundary Conditions

In order to solve the conservation equations, initial and boundary conditions
need to be provided.

6.9.1 Initial Conditions

The initial conditions provide the initial state from which the flow evolves.
These data are the values of the fluid variables at the initial state and are
relevant in transient calculations.

6.9.2 Boundary Conditions

The boundary conditions are values of flow properties or fluxes that must be
provided on the surface of the control volume. The most frequent boundary
conditions, used in the examples, are summarized below.

Inlets and Outlets

Typically, at inlets and outlets most of the fluid variables are known, like the
velocity v, the temperature T , the pressure p, the chemical concentrations ρA,
and so on. A good starting point for our analysis can be to assume that these
fluid variables are uniform at inlet and outlets.

Due to the difficulty of evaluating τ ′, generally the viscous stress tensor is
neglected, τ ′ ≈ 0. This is only a small approximation if inlets and outlets are
chosen in areas of mostly uniform properties. Likewise for the diffusion heat
q and the mass transfer fluxes jA.

Solid Walls – Fluid/Solid interfaces

We can distinguish two cases: ideal and viscous flow. Next, we summarize
some boundary conditions in the absence of blowing or suction at the wall
(non-porous wall).

Ideal Flow

For an ideal flow, all the diffusivities are zero, i.e. µ = κ = DAB = 0 and in
this way, the diffusive fluxes vanish, τ ′ = 0, q = jA = 0 (see Chapter 7). In
this case, the following boundary conditions hold. Below, n denotes the unit
vector orthogonal to the wall.

(a) The velocity is parallel to the wall. Thus, the velocity component normal
to the wall is zero,

vn = v · n = 0 (6.87)

This is called the slip boundary condition.
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(b) For the energy equation, the heat flux vanishes,

qn = q · n = 0 (6.88)

(c) Likewise, for the chemical species equations there is no diffusion mass flux,

jAn = jA · n = 0 (6.89)

Viscous Flow

In real fluids, all the diffusion coefficients are non-zero. In this case, the fol-
lowing boundary conditions hold.

(a) The velocity v of the fluid in contact with a wall equals the wall velocity
vw. This is called the no-slip boundary condition.

(b) For the energy equation, the fluid temperature at the wall T equals the
wall temperature Tw. This boundary condition can be replaced by the heat
flux at the wall qn.

(c) For the chemical species equation, either the concentration ρA or the nor-
mal mass flux jAn can be set. The chemical concentration at the fluid by
the wall ρAw can be determined from equilibrium data.

Fluid/Fluid Interfaces

Fluid/fluid interfaces separate two fluids with different conditions. These en-
compass liquid/liquid, liquid/gas and gas/gas interfaces. One important class
of interfaces in engineering applications are free surfaces, which are liquid/gas
interfaces subject to a gravitational field.

The boundary conditions at interfaces are derived by applying the integral
conservation equations to a thin control volume that follows the interface.
Across the interface it may be important to consider the surface tension σ
(Chapter 3).

Let us denote by n and t the normal and tangential directions to the
interface, which separates media 1 and 2. The media will be denoted with
the superscripts 1 and 2. Next, we present the simplest form of boundary
conditions for real fluids when mass transfer and the motion of the interface
are neglected.

(a) For real fluids in thermodynamic equilibrium, the tangential fluid velo-
city and the temperature are continuous across the interface. This is a
generalization of the no-slip boundary condition.

(b) The tangential balance of momentum (in direction t) for negligible spatial
variations of σ yields

τ ′1
tn = τ ′2

tn (6.90)

That is, the viscous shear stress is continuous across the interface.
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In the particular case that the viscosity of one of the media is much smaller
than that of the other medium, for example µ1 << µ2, and the fluid is
not forced in the media of small viscosity, u1

t ≈ 0, we can approximate

∂u2
t

∂n
≈ 0 (6.91)

This boundary condition can be applied to the liquid side of free surfaces
where the gas is almost still.

(c) The normal momentum balance across the interface gives

τ1
nn − τ2

nn =
2σ

R
(6.92)

where R is the mean radius of curvature of the surface. Decomposing the
stress tensor into pressure and viscous components,(

−p1 + τ ′1
nn

)
−
(
−p2 + τ ′2

nn

)
=

2σ

R
(6.93)

which is the Young-Laplace equation.
(d) The thermal energy balance gives

q1
n = q2

n (6.94)

That is, the heat that flows out of a medium has to flow into the other
medium.

(e) The mass conservation balance of species A, at an interface without a
chemical reaction, yields

j1
An = j2

An (6.95)

The concentration at both sides of the interface are related by equilibrium
data.

Symmetry Boundary Conditions

Symmetries are of utmost importance in engineering and physics. They allow
for major simplifications of the problem and reduction of the calculation effort.
We can distinguish between plane, axial and spherical symmetry. Furthermore,
the effect of the symmetry is different depending on the tensor character of
the fluid variable.

Plane Symmetry

Let us denote with n the normal vector to the plane of symmetry.

(a) For a scalar field ϕ, at the plane of symmetry, ∂ϕ/∂n = 0.
(b) The velocity component orthogonal to the plane of symmetry must vanish

at the plane of symmetry, n ·v = 0 and its normal derivative with respect
to the plane of symmetry is zero, ∂n · v/∂n = 0. The velocity component
parallel to the plane of symmetry behaves like a standard scalar.
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τ 1
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nn

Fig. 6.9. Effect of the surface tension on the boundary conditions at interfaces.

1 

v(y) 

2 

y 

Fig. 6.10. Across an interface, the velocity and the tangential stress are continuous,
but not the derivative of the velocity.

Axial Symmetry

In this case, the flow is symmetric around an axis of symmetry. This is also
called symmetry of revolution. This type of flow is best analyzed using cyl-
indrical coordinates, r, θ, z, with z the axis of symmetry (see Appendix F).

(a) For a scalar field ϕ, at the axis of symmetry ∂ϕ/∂r|r=0 = 0. Furthermore,
there are no variations with respect to θ, ∂ϕ/∂θ = 0.

(b) The velocity component orthogonal to the axis of symmetry must vanish
at the axis of symmetry, vr = 0 at r = 0 and ∂vr/∂r|r=0 = 0. The
tangential velocity component cancels out everywhere, vθ = 0. The velocity
component parallel to the axis of symmetry, vz, behaves like a standard
scalar, ∂vz/∂r|r=0 = 0.
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Spherical Symmetry

In this case, the flow is symmetric around a center of symmetry. This is also
called spherical symmetry. This type of flow is best analyzed using spherical
coordinates, r, θ, φ, with r = 0 at the center of symmetry (see Appendix F).

(a) For a scalar field ϕ, at the axis of symmetry ∂ϕ/∂r|r=0 = 0. Furthermore,
there are no variations with respect to θ and φ, that is, ∂ϕ/∂θ = 0 and
∂ϕ/∂φ = 0.

(b) The radial velocity vanishes at the center of symmetry, vr = 0 at r = 0.
Furthermore, ∂vr/∂r|r=0 = 0. The tangential velocity components cancel
out everywhere, vθ = vφ = 0.

Problems

6.1 Two plane discs of radius R are separated by a distance b. The upper
plate moves downwards at a constant speed V . The fluid between both plates
is squeezed so it flows in the radial direction. Determine the outflow volumetric
flux Q and the maximum fluid velocity for the cases below.

(a) The outflow velocity is uniform.
(b) The outflow velocity profile is parabolic. (Consider the approximation:

v(z) = a0 + a1z + a2z
2 and find ai, 0 ≤ i ≤ 2, as a function of R, b and

Vmax).

(b)

R

(a)

b

V

Problem 6.1. The fluid squeezed between two parallel discs flows in the radial
direction.

6.2 The syringe of the figure contains a fluid of density ρ. What is the
relation between the piston speed V and the outflow volumetric flux Q ?

6.3 A tank of volume 0.05 m3 contains air at p = 800 kPa absolute pressure
and T = 15 ◦C. At t = 0 the valve opens and air escapes at a velocity of
v = 311 m/s and a density ρ = 6.13 kg/m3 through an opening of A = 65 mm2.
What is the rate of change of density dρ/dt in the tank at t = 0.

6.4 The reactor of the Figure has a depth of 6 m. Due to a chemical reaction
in the interior, the generated gas exits through the four openings. The gas
velocity and density at the exit are given by
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dD
V

Problem 6.2. Syringe.

v =
10
r

ρ = 0.002 + 0.001r

Calculate the rate of change of the mass in the reactor.

2 m r
1

Problem 6.4. Reactor with four outlets.

6.5 Through the 180◦ elbow of the Figure circulates water and discharges at
section 2 to the atmosphere. The gage pressure at 1 is Pm1 = 96 kPa. Also,
A1 = 2 600 mm2; A2 = 650 mm2; V1 = 3.05 m/s. Calculate the force Fx to
hold the elbow.

V1

A1

V
A2

2

Problem 6.5. Force to hold a 180◦ elbow.

6.6 A perfectly equilibrated weight W is supported with a vertical jet. If the
diameter of the jet is D0, what is the jet velocity?

6.7 A bin feeds gravel into a moving belt at a rate of 65 kg/s. The diameter
of the belt wheels is 80 cm and they rotate at 150 rpm. Estimate the power
to operate the belt. Hint: First calculate Fx and from there, the power.
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W

Do

v

Problem 6.6. A high speed jet can hold a weight.

Problem 6.7. Power to operate a moving belt.

6.8 In the pipe of the Figure flows an incompressible fluid. Taking into
account gravity, determine the force that the fluid exerts on the pipe.

Q = 10 l/s

A = 1 m

v = 0.005 m/s

v = 0.05/cos θ m/s

2

A = 0.1 m 2

θ

y

x

p = 10 MPa

p = 9 MPa

p = 9 Mpa
= 1000 kg/mρ 3

2 m

0.4
 m

Problem 6.8. Pipe with an inclined bifurcation.

6.9 The Figure shows a cart whose top surface guides the flow and ejects it
at an angle θ with respect to the horizontal line. A fixed nozzle thrusts the
liquid jet at a constant speed V , propelling the cart at the constant speed Vc.
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V
Se

Ss

c

θ =Se Ss

V

Problem 6.9. Cart propelled by a liquid jet.

(a) If the cart moves in a straight line, show that the power transferred to the
cart is maximum when Vc/V = 1/3.

(b) For gurus: Assuming that there is a large number of guides, like that shown
in the Figure, and that they are welded to a wheel whose surface turns
at the linear velocity of Vc, show that the power transferred to the cart is
maximum when Vc/V = 1/2.

6.10 The three-jet water sprinkler shown in the Figure uses the volumetric
flux 2.7 m3/h. Neglecting the friction at the turning axis and the friction with
the air, what is the rotation speed for θ = 0◦ and θ = 40◦?

R=15 cm

d=7 mm

θ

θ

θ

Problem 6.10. Three-jet sprinkler.

6.11 Water is forced into the device of the Figure through the inlet A at a
rate of 0.1 m3/s. At the same time, through the inlet B, oil with a relative
density of 0.8 enters at a rate of 0.03 m3/s. If the liquids are incompressible
and form a homogeneous mixture of oil droplets in water, what is the mean
velocity and density mixture at the outlet C, which has a diameter of 0.3 m?

6.12 In the previous problem, the piston at D has a diameter of 150 mm
and moves towards the left at a velocity of 0.3 m/s. What is the mean velocity
of the fluid exiting at C?
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Oil
Mixture

B C

D

A H O2

Problem 6.11. Perfectly agitated mixing tank.

6.13 The Figure depicts a 10 m wide rectangular ditch with an inclined
bottom. Water flows into the ditch at a rate of Q = 100 l/s. What is dh/dt
when h = 1 m? How long does it take for the level to increase from h = 1 m
to h = 1.2 m?

h Q
15o

Problem 6.13. Spill into a rectangular ditch.

6.14 A liquid flows from A to B across the gradual contraction of the Figure
with a volumetric flux of 54 l/s. The losses in the pipe due to friction are
equal to a head of hf = 0.135 m. When the pressure head at B is hp = 61 cm,
what is the pressure head at A? Note: hp = p/(ρg) and hf = Dv/(ρgQ);
Dv =

∫
Vc(t)

φv dV .

6.15 Let us consider the pipe network of the Figure, where the viscous
dissipation between 1 and 4 is Dv = 23 W. Find the pressure p3 when the
inlet pressures are p1 = p2 = 10 atm and the outlet pressure, p4 = 1 atm.
Data: R1 = 2.5 cm, R2 = 2.5 cm, R3 = 1.25 cm, R4 = 2.0 cm, R5 = 2.0 cm,
R6 = 2.0 cm. u1 = 0.01 m/s, u2 = 0.1 m/s, u3 = 0.05 m/s.

6.16 At a sudden expansion, the cross-section area increases from A1 to
A2 > A1. The incompressible flow has a uniform velocity V1 at the inlet A1.
Far enough downstream, the velocity is uniform and equal to V2.

(a) Determine V2 as a function of V1, A1 and A2.
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0.
15

 m

0.
3 

m Q

h pA

h pB

h f

A B

+    H∆ kin

Problem 6.14. Pressure fall at a gradual contraction.

2

3

1

6

5

4

Problem 6.15. Pipe network.

(b) Determine ∆p/ρ, that is, the pressure recovery across the expansion as a
function of V1, A1 and A2. Neglect the viscous forces at the conduit walls.

(c) Obtain the viscous dissipation Dv between the sections 1 and 2.
(d) Taking into account that the energy losses are given by the viscous dis-

sipation Dv, determine the coefficient of local losses Ks of the expansion,
using as a reference velocity V1 (see Chapter 12).

6.17 In a mixing tank, a fluid of density ρ and specific heat cp is stirred
by an agitator that is turned at ω [rad/s] by a torque M . Calculate the heat
transferred per unit time Q̇ [W] between the tank and the environment to
keep a constant temperature of 55 ◦C.

6.18 The conical tank of the Figure is initially full. The tank is opened and
because of gravity the liquid pours. Calculate the time for the tank to empty.
Tips: Relate V2 and dh/dt using the mass conservation equation. Then, apply
the mechanical energy equation to relate V2 as a function of h(t). Combine
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A1 A2v 1

p 1

v 2

p 2

Problem 6.16. At a sudden expansion the energy losses are large.

both expressions. Neglect the time variation of kinetic energy within the tank
and assume z2 << h(t). Initially h(0) = z0.

z

ro z = zo

r2
z = z2

z = 0

h

Problem 6.18. Time to empty a tank.

6.19 Consider a tank filled with a mixture of water and salt. At t = 0 the salt
concentration is ρs(t = 0) = ρs0. Through the inlet, fresh water is introduced
at a volumetric flow rate of Q. Calculate the salt concentration ρs(t) as a
function of time t, Q and the tank volume V .

6.20 In a perfectly stirred tank of 1 m3 takes place a first-order exothermic
reaction with a rate of extinction per unit volume of 0.1c mol/(l s) and a heat
production of 5 cal/mol. The initial reactant concentration and temperature
are c0 = 1 mol/l and 25 ◦C, respectively. Calculate:

(a) The rate of consumption of the reactant in the tank.
(b) The concentration evolution of the reactant as a function of time.
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(c) The heat generation per unit time due to the reaction. What happens to
the produced heat?

6.21 In the previous problem, if the reactor is adiabatic and the fluid has a
constant density ρ, a specific heat cp and an initial temperature T0, calculate
the temperature evolution of the fluid.

6.22 Water at 20 ◦C, with density ρ = 1 gr/cm3, specific heat cp =
4.18 J/(kg K), viscosity 1 cp and salt concentration c0 = 0.1 gr/cm3 enters a
mixer with a mean velocity u1 = 1 m/s through a pipe of section A1 = 10 cm2.
Pure water at the same temperature enters the mixer through a pipe of section
A2 = 5 cm2 at the mean speed u2 = 0.5 m/s. By heat addition the V = 1 m3

mixer is maintained at the constant temperature of T = 40 ◦C and agitation
provides 50 W of external work. Through a pipe of section A3 = 7 cm2, the
mixture exits the tank at the temperature T and concentration c of the fluid
in the mixer.
Calculate:

(a) The exit mean velocity u3.
(b) The salt concentration in the mixer.
(c) The heat added per unit time Q̇.
(d) What would happen to the concentration and temperature if no heat were

added?
(e) Determine the viscous dissipation inside the mixer, Dv.

6.23 Show that the mass conservation equation for a single liquid of density
ρ reduces to the volume conservation equation.



7

Constitutive Equations

In the previous chapter, the equations describing transport phenomena in
fluids have been introduced. However, these equations cannot be solved yet.
More information about the behavior of the particular fluid is necessary. For
example, the flow field will vary depending on the substance being a liquid or
a gas, on behaving like a Newtonian fluid or not, and so on. Therefore, the
solution of the problem will depend on equations that describe the specific
behavior of the fluid, called equations of state and constitutive equations.

7.1 Introduction

In order to predict the evolution of a fluid field, we need to solve the nonlinear
system of transport equations. In the general case, the equations to be solved
encompass the continuity equation, the nesp − 1 chemical species equations,
the momentum equation and the total energy equation.

Table 7.1. Number of equations and unknowns in the three-dimensional transport
equations.

Equation num. of main other num. of
equations unknowns unknowns unknowns

mass conservation 1 ρ 1

chemical species cons.1 nesp − 1 YA (v − vA) 4(nesp − 1)

momentum 3 vi p, τ ′ 3 + 1 + 6

total energy 1 e q 1 + 3

5 + nesp − 1 < 15 + 4(nesp − 1)
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For three-dimensional flows, Table 7.1 summarizes the number of equations
and unknowns involved. It can be concluded that the number of unknowns
exceeds the number of equations and, therefore, to solve a transport problem,
information about the fluid must be supplied. Certainly, and as an example,
the flow field for a gas will be different from that for a liquid. The information
about the substance is given in the form of equations of state and constitutive
equations.

The equations of state relate thermodynamic variables. For instance,

ρ = ρ(p, T )

e = e(p, T )

⎫⎬
⎭ 1 eq.

The constitutive equations describe other fluid behavior, in particular,
transport due to diffusion mechanisms, like

ρA(vA − v) = · · · 3(n − 1) eqs.

τ ′ = · · · 6

q = · · · 3

This chapter is devoted to the constitutive equations.

Remark 7.1. The equations of state and the constitutive equations character-
ize the behavior of the fluid and, therefore, are obtained experimentally.

7.2 Momentum Transport by Diffusion

Viscosity is responsible for this transport phenomenon. This property creates
friction between the layers of fluid because of the relative motion between the
fluid particles.

Example 7.1 (Agitation as a promoter of mixing). Let us consider a still mix-
ing tank. When the agitator starts to turn, it sets in motion a layer of fluid
around the blades. Due to friction, this initial fluid motion is propagated to
other layers, until all the fluid in the tank is in motion. At typical Reynolds
numbers, the turbulence intervenes in the process. Only for very small Reyn-
olds numbers (very low fluid velocities) would momentum transport be due
only to viscosity.

The nature of viscous diffusion transport was revealed by the Couette
experiment. In this experiment, a fluid flows between two parallel infinite
1 As explained in Chapter 6 only nesp − 1 chemical species equations are linearly

independent.
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F =     Sτʹ

H 0

Fig. 7.1. Couette flow.

plates (see Fig. 7.1). The top plate is horizontally displaced at a speed V ,
while the bottom plate is kept at rest. After reaching the steady state, the
force F to move the top plate is measured. From the force and the plate
surface, the viscous stress τ ′ is calculated. Measurements for various plate
distances H are plotted in Fig. 7.2 and lead to the observations below.

(a) For a given plate distance H0, the relation between τ ′ and V is linear.
(b) The slope of the line τ ′-V , tan γ, is inversely proportional to the distance

H ,
tanγ0

tan γ
=

H

H0

Then, the viscous stress at the wall can be calculated as

τ ′ =
F

S
= tanγ V

= tanγ0
H0
H V

= tanγ0H0︸ ︷︷ ︸
µ

V

H︸︷︷︸
du
dy

Note that du
dy (where u is the horizontal velocity component) equals V/H

for a linear velocity profile and generalizes the experimental observations to
nonlinear velocity profiles.

Definition 7.1 (Dynamic viscosity). The proportionality constant between
the viscous stress τ ′ and the velocity gradient is called dynamic viscosity µ.
Its dimensions are [µ] = ML−1T−1 and its units in the SI, Pa s or kg/(m s).

Newton’s law of friction

The above findings are expressed by the Newton’s law of friction

τ ′ = τ ′
xy = µ

du

dy
(7.1)
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Fig. 7.2. Lines τ ′-V as a function of the plates distance.

Law of Navier-Poisson

The generalization of Newton’s law of friction to three-dimensional flows is
known as the law of Navier-Poisson, which in indicial notation and Cartesian
coordinates is

τ ′
ij = µ

(
∂vi

∂xj
+

∂vj

∂xi

)
+ λ vk,kδij (7.2)

where µ is the dynamic viscosity and λ, the second viscosity coefficient. Ex-
panding (7.2)

τ ′ = µ

⎛
⎜⎜⎜⎜⎜⎝

2
∂v1

∂x1

∂v1

∂x2
+

∂v2

∂x1

∂v1

∂x3
+

∂v3

∂x1

2
∂v2

∂x2

∂v2

∂x3
+

∂v3

∂x2

symm. 2
∂v3

∂x3

⎞
⎟⎟⎟⎟⎟⎠

+ λvk,k

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

Definition 7.2 (Bulk viscosity). The coefficient B = λ + 2
3µ is called bulk

viscosity, and it is related to friction and dissipation associated with spherically
symmetric compression/expansion processes.

Remark 7.2. According to the Stokes hypothesis, it is usually assumed that

λ = −2
3
µ

This value implies that spherically symmetric expansion and contraction pro-
cesses are frictionless, i.e., B = 0.

Remark 7.3. The second law of thermodynamics dictates that µ ≥ 0 and
λ + 2/3µ ≥ 0.
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Definition 7.3 (Kinematic viscosity). The kinematic viscosity ν is the
ratio

ν =
µ

ρ
(7.3)

Its dimensions are [ν] = L2/T.

Remark 7.4. In the CGS system, the units of dynamic and kinematic viscosity
are, respectively, the poise, 1 P = 1 g/(cm s) = 0.1 kg/(m s), and the stokes,
1 St = 1 cm2/s = 10−4 m2/s. Very often, the centi-poise (cP) and the centi-
stokes (cSt) are used. For reference, it is useful to know that the viscosity of
water at 20 ◦C is approximately 1 cP and 1 cSt.

Remark 7.5. Tables 7.2 and 7.3 show the viscosity of several substances. Note
that the viscosity is a temperature dependent function. For gases, the viscosity
tends to increase with temperature, whereas for liquids, to decrease.

x

y

2h

u1(x,y)

Fig. 7.3. Plane Hagen-Poiseuille flow.

Example 7.2 (Viscous stress in Poiseuille flow). In the steady, incompressible,
plane Hagen-Poiseuille flow (see Fig. 7.3), determine the viscous stresses.
Solution. The steady Hagen-Poiseuille flow corresponds to the fully developed
velocity field between two parallel infinite plates, separated by a distance 2h,
and is given by

u(x, y) =
{

u1(x, y)
u2(x, y)

}
=

{
V0

[
1 −

(
y
h

)2]
0

}

where y is the axis perpendicular to the plates and x is aligned with the
plates and the flow direction, placed at the axis of symmetry. The maximum
centerline velocity V0 depends on the pressure gradient and the viscosity.

The divergence of the velocity field can be calculated as

uk,k = u1,1 + u2,2 = 0
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and, therefore, the flow is incompressible. The viscous stress tensor is

τ ′(x, y) = µ

[
2u1,1 u1,2 + u2,1

u1,2 + u2,1 2u2,2

]
= µ

[
0 − 2V0

h
y
h

−2V0
h

y
h 0

]

At the bottom wall y = −h, the wall shear stress is

τ ′
12

∣∣∣
y=−h

= τ ′
0 = 2µV0/h

so the viscous stress tensor can be written as

τ ′(x, y) =

⎡
⎣ 0 −τ ′

0

y

h
−τ ′

0

y

h
0

⎤
⎦

An important concept that enters into the constitutive relation of the
viscous stress is the rate of deformation.

Definition 7.4 (Deformation rate or strain rate). Given a velocity field,
v, the deformation or strain rate S is the symmetric part of the velocity gradi-
ent tensor,

S =
1
2
(∇v + (∇v)T ) (7.4)

In Cartesian components,

Sij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(7.5)

The rate of deformation represents how fast the fluid particle deforms. The
deformation is expressed as change of angles and change of unitary volume
per unit time of a fluid particle. Its dimensions are [S] = T−1.

Using the strain rate, the Navier-Poisson constitutive equation (7.2) can
be written as

τ ′ = 2µ S + λ∇ · v δ

Rheology

Rheology is the branch of mechanics that studies the deformation of sub-
stances and their viscosity as a function of the relevant variables.

Definition 7.5 (Rheograms). The behavior of the viscous shear stress as a
function of the deformation rate is displayed in the curves called rheograms.
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Table 7.2. Viscosity of liquid water and air at 1 atm [3].

Liquid Water Air

T µ × 103 ν × 106 µ × 105 ν × 105

◦C kg/(m s) m2/s kg/(m s) m2/s

0 1.787 1.787 1.716 1.327

20 1.0019 1.0036 1.813 1.505

40 0.653 0.6581 1.908 1.692

60 0.4665 0.4744 1.999 1.886

80 0.3548 0.3651 2.087 2.088

100 0.2821 0.2944 2.173 2.298

Table 7.3. Viscosity of several gases at 1 atm [3].

Gas T µ × 105

◦C kg/(m s)

CH4 20 1.09

H2O 100 1.211

CO2 20 1.46

N2 20 1.75

O2 20 2.04

For the most frequently encountered substances, such as water and air,
the viscosity depends only on thermodynamic variables, like the temperature,
and is independent on the velocity gradient or deformation rate. These fluids
are called Newtonian and the constitutive relation between the viscous stress
and the deformation rate is linear. Other examples of Newtonian fluids are
oils, glycerine, monomers, liquid metals, milk and honey.

However, this is not the case for all substances, where the viscosity may
be a function of the deformation rate. In this case, the fluid is called non-
Newtonian, and the constitutive equation is a nonlinear function of the de-
formation rate. Examples of this type of fluid are paintings, mayonnaise,
plaster, slurries, etc.

Fig. 7.4 shows the rheogram of a Newtonian fluid compared with that of
various classes of non-Newtonian substances: dilatant, pseudoplastic and ideal
plastic (Bingham).
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du/dy

τ ideal plastic or Bingham

pseudoplastic

Newtonian

dilatant

Fig. 7.4. Rheogram.

In order to clarify the behavior of non-Newtonian substances, we introduce
the apparent viscosity,

ηa =
τ ′

du/dy

which coincides with the viscosity µ for Newtonian fluids. For non-Newtonian
fluids, the apparent viscosity is a function of the deformation rate.

Classification of non-Newtonian Fluids

According to the behavior of the viscous stress, non-Newtonian fluids can be
classified as follows.

(a) Dilatant or shear-thickening: the apparent viscosity increases with the de-
formation rate. Dilatant fluids are typically multi-phase fluids, like fluids
with bubbles or particles. For small deformation rates, the bubbles behave
as if they were not present. But at large deformation rates, the bubbles or
particles start to collide, increasing the friction and, as a consequence, the
viscosity. Examples: corn-starch, suspensions, emulsions, dispersions and
mixtures.

(b) Pseudoplastic or shear-thinning: the apparent viscosity decreases with the
deformation rate. Pseudoplastic fluids are fluids made of large chains. At
small deformation rates, the chains are disorganized and tangled, causing
a large apparent viscosity. As the deformation rate increases, the chains
organize, tending to align with the flow, decreasing the viscosity. Examples:
solutions of polymers and melted polymers, foams, painting, food sauces.
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(c) Bingham or viscoplastic: these substances behave like a solid until a
threshold on the stress is exceeded. Then, they start to flow, either as New-
tonian or non-Newtonian fluids. When the slope of the rheogram is con-
stant, the substance is called ideal plastic. Examples: toothpaste, ketchup,
mayonnaise, butter, paintings, mud, wax, blood.

(d) Viscoelastic fluids: these are fluids that at the same time present charac-
teristics of fluids (which are viscous) and solids (which are elastic). The
behavior of these fluids depends on their history, so they are said to have
memory effects and can recover their original state. The constitutive re-
lations for these fluids are very complex, even transport equations. Ex-
amples: melted polymers, polymers solutions, egg-white, dough and tar.

du/dy = const

µ

t

rheopectic

thixotropic

Fig. 7.5. Evolution of the viscosity on time.

Time Dependency

For certain substances, the viscosity can depend on the time that the fluid has
been subject to stress (Fig. 7.5). This is an example of viscosity depending on
history. When the viscosity decreases or increases with time, the fluid is said
to be rheopectic or thixotropic, respectively.

In this case, when subject to cyclic rheograms, the substances exhibit
hysteresis.

Constitutive Equations for Non-Newtonian Fluids

A very simple constitutive relation for non-Newtonian fluids is the power law,
which is capable of representing dilatant and pseudoplastic fluids,

τ ′ = µ

∣∣∣∣du

dy

∣∣∣∣
n−1 du

dy
(7.6)



128 7 Constitutive Equations

Note that Newtonian fluids are recovered for n = 1. For other cases, the
apparent viscosity can be calculated as

ηa = µ

∣∣∣∣du

dy

∣∣∣∣
n−1

(7.7)

If n > 1, the apparent viscosity increases with the deformation rate (dilatant
fluid), whereas for n < 1, it decreases (pseudoplastic fluid).

The behavior of a Bingham fluid can be represented by the law
⎧⎨
⎩

τ ′ ≥ τ ′
0 τ ′ = τ ′

0 + µ
∣∣∣du
dy

∣∣∣n−1
du
dy

τ ′ < τ ′
0 0 = du

dy

(7.8)

where τ ′
0 is the stress threshold from which the substance starts to flow, sep-

arating the solid and liquid behavior.
Another example of constitutive relation for a non-Newtonian fluid is the

Ellis law,

τ ′ = µ

[
1 + µ

∣∣∣∣du

dy

∣∣∣∣
n]−1 du

dy
(7.9)

where the Newtonian case is recovered for n = 0.
A very extended model for viscoelastic fluids is the Oldroyd model, where

τ ′ + λ1
dτ ′

dt
= µ

(
du

dy
+ λ2

d
dt

du

dy

)

The constants λ1 and λ2 are relaxation times and µ the viscosity.
The viscoelastic behaviour of these fluids is characterized by the dimen-

sionless Weissenberg and Deborah numbers. These numbers are similar, but
not identical. The Weissenberg number can be defined as the product of the
relaxation time tr times the strain rate (which is a shear inverse time scale),

Wi = trS12

The relaxation time tr measures the time that the system uses to respond to
an external action, lets say, of time t0. Whereas the Deborah number is the
ratio between the relaxation time tr and a characteristic flow time scale,

De =
tr
t0

It characterizes how ”fluid” a substance is.

Example 7.3 (Fluency of a Bingham fluid). Let the constitutive equation of a
Bingham fluid of density ρ and fluency stress τ0 be given by

τ ′ = τ0 + η
du

dy



7.3 Heat Transport by Diffusion 129
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Fig. 7.6. Fluency threshold of a Bingham fluid in a vertical pipe due to gravity.

The fluid fills a vertical circular section pipe of length L. Determine the min-
imum radius R necessary for the substance to start flowing due to the gravity
acceleration g.
Solution. For a Bingham fluid to start to flow, it is necessary that the viscous
stress exceeds τ0, the threshold stress of fluency. Assuming steady, fully de-
veloped flow, the vertical momentum equation gives the force balance at the
point of fluency,

τ0 2πRL = ρπR2Lg

from where
R =

2τ0

ρg

If the radius is smaller, the fluid will not flow by gravity. The fluency stress
is very important when designing plants for Bingham fluids.

7.3 Heat Transport by Diffusion

Heat diffusion is the mechanism of heat transport by molecular interaction.
It can take place in both solids and fluids.

In order to investigate the nature of heat transport the experiment of
Fig. 7.7 is set up. Two parallel plates, separated a distance H , are heated
at constant temperature T1 and T2 < T1. In the steady state, it is observed
that the temperature distribution is linear and that the heat flux q [W/m2]
transferred from the hot plate to the cold plate obeys the following laws.



130 7 Constitutive Equations

y

x
H

T 1

T 2

q

T(y)

Fig. 7.7. Experiment for heat diffusion.

(a) The heat transfer is proportional to the temperature difference between
the plates, ∆T = T1 − T2.

(b) The heat transfer is inversely proportional to the distance between the
plates, H .

Mathematically, this can be expressed as

q =
Q̇

S
= κ

∆T

H

where κ is the proportionality constant.
In order to generalize the previous result to nonlinear temperature distri-

butions, the finite increments are substituted by the derivative of the temper-
ature with respect to space,

qy = −κ
∂T

∂y
(7.10)

which is called the Fourier’s law of heat conduction. The minus sign is added
because the heat travels from areas of large temperature to areas of small
temperatures, that is, in the opposite direction to the temperature gradient.

Definition 7.6 (Thermal conductivity). The proportionality coefficient
between the heat flux and the temperature gradient, κ, is called thermal con-
ductivity and its units in the SI are [κ] = W/(m K).

Fourier’s law

The three-dimensional form of Fourier’s law is

q = −κ ∇T (7.11)
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Example 7.4. Above 1 km height, the temperature in the troposphere (from
0 to 11 km height) decreases approximately 6.5 ◦C per km. If the thermal
conductivity of air is about 0.0241 W/(mK), calculate the vertical heat flux
due to heat conduction in the troposphere.
Solution. Neglecting other types of heat transport, the conduction heat flux
is calculated by Fourier’s law,

qz = −κ
∂T

∂z

where z is the vertical axis. From the data of the problem,

∂T

∂z
= −0.0065 K/m

and substituting,

qz = 0.0241× 0.0065 = 1.57 × 10−4 W/m2

Remark 7.6. For nonlinear materials, the thermal conductivity is a function
of the temperature κ(T ).

Remark 7.7. For non-isotropic materials, for which the heat flux does not point
in the direction of the temperature gradient, the thermal conductivity is a
matrix, κ, so

q = −κ ∇T

For isotropic materials, this matrix becomes the identity matrix times the
conductivity,

κ = κI (7.12)

and the heat flux vector points in the direction of the temperature gradient.

Definition 7.7 (Thermal diffusivity). The thermal diffusivity α is the ra-
tio

α =
κ

ρcp
(7.13)

where κ is the thermal conductivity, ρ the fluid density and cp the specific heat
at constant pressure. Note that its dimensions are L2/T.

Remark 7.8. Tables 7.4 and 7.5 show the thermal conductivity of saturated
water and various gases. The thermal conductivity of liquids and gases tends
to increase with temperature, but there are exceptions.

Remark 7.9. The second law of thermodynamics implies that κ ≥ 0.
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Table 7.4. Thermal conductivity and diffusivity of liquid water at saturated con-
ditions [27] and air at 1 atm [10].

Liquid Water Air

T κ × 103 α × 106 κ × 103 α × 106

K W/(m K) m2/s W/(m K) m2/s

300 608. 14.6 26.3 22.5

350 667. 16.4 30.0 29.9

400 686. 17.3 33.8 38.3

450 673. 17.1 37.3 47.2

500 635. 16.4 40.7 56.7

Table 7.5. Thermal conductivity of several gases at 1 atm [3, 10].

Gas T κ × 103 Gas T κ × 103

K W/(m K) K W/(m K)

CH4 100 10.63 N2 100 9.58

200 21.84 200 18.3

300 34.27 300 25.9

H2O 400 26.1 O2 100 9.04

500 33.9 200 18.33

600 42.2 300 26.57

CO2 200 9.50

300 16.65

7.4 Mass Transport by Binary Diffusion

Neglecting the effects of temperature gradients, pressure gradients and body
forces on mass diffusion, for binary mixtures (mixtures of two components)
the mechanics of diffusion mass transport is analogous to that of diffusion
heat transport.

In order to understand this process experimentally, two parallel plates
are set with constant concentrations of a substance A, ρA1 and ρA2 < ρA1.
When the steady state is reached, the concentration distribution is linear.
It is observed that the mass flux jA[kg/(m2 s)] between the walls obeys the
following rules.
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Fig. 7.8. Experiment for mass diffusion.

(a) The mass flux is proportional to the difference of concentration, ∆ρA =
ρA1 − ρA2.

(b) The mass flux is inversely proportional to the distance between the plates,
H .

Mathematically this can be expressed as

jA =
JA

S
= DAB

∆ρA

H
(7.14)

where DAB is the proportionality constant, which represents the diffusion of
A within the fluid B.

This is generalized as

jAy = −DAB
∂ρA

∂y
(7.15)

which is known as Fick’s law of binary mass diffusion. The minus sign indicates
that the mass transport is in the opposite direction from the concentration
gradient, that is, from areas of large concentration to areas of small concen-
tration.

Definition 7.8 (Molecular diffusivity). The coefficient of proportionality,
DAB, is called the coefficient of mass diffusion of the substance A within the
fluid B. Its units in the SI are [DAB] = m2/s.

The three-dimensional expression of Fick’s law for dilute binary mixtures
is

jA = −DAB ∇ρA (7.16)

This is a good approximation when the density of the mixture is practically
constant. More general forms of Fick’s law are presented below.
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Fick’s law for binary diffusion

Fluxes with respect to the mass average velocity

For mass fluxes [kg/(m2 s)] with respect to the mass average velocity v, Fick’s
law of binary diffusion states that

jA = −ρDAB ∇YA (7.17)

and for molar fluxes [mol/(m2 s)]

j′
A = −ρDAB

MA
∇YA (7.18)

Fluxes with respect to the molar average velocity

If the mean fluid velocity is calculated using the molar average, vm, the cor-
responding mass fluxes by diffusion can be defined. For example, the molar
flux, [mol/(m2 s)], can be calculated by the corresponding Fick’s law,

jm
A

′ = −cDAB ∇XA (7.19)

which can be particularized for constant mixture molar concentration as

jm
A

′ = −DAB ∇cA (7.20)

The above molar flux, as a mass flux, can be calculated as

jm
A = −cMADAB ∇XA (7.21)

Remark 7.10. The mass diffusion coefficients are symmetric and for a binary
mixture DBA = DAB.

Remark 7.11. The mass diffusion coefficients typically depend on the temper-
ature, the chemical composition and the pressure. For gases, a good approx-
imation is

D = D0

(
T

T0

)m
p0

p

which reflects that the diffusion coefficient D increases with temperature but
decreases with pressure and the molar mass. See Table 7.6. For liquids, the
diffusion coefficient increases with temperature.
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Table 7.6. Coefficients for the mass diffusivity of binary mixtures of gases at p0 =
101 300 Pa and T0 = 273 K [8].

Gases D0 × 104 m

A B m2/s

CO O2 0.185 1.75

O2 N2 0.181 1.75

O2 air 0.178 1.75

H2O air 0.22 1.75

CO2 air 0.138 2

H2 air 0.611 2

CH4 air 0.196 2

Example 7.5. In a lake there is a linear concentration of salt and sediments
ρsed = ρ0 + sz, with z the vertical axis. Determine the mass flux of deposition
of sediments at the bottom of the lake.
Solution. A mass balance at the bottom of the lake, yields that the deposition
flux at the bottom equals the diffusion flux. Thus, per unit area,

jsed n = −D
∂ρsed

∂n

∣∣∣∣
bottom

= D
∂ρsed

∂z

∣∣∣∣
bottom

= Ds

where D is the diffusivity of the sediments.

Table 7.7. Mass diffusivity of the liquid mixture ethanol/water at 25 ◦C [3].

A B T YA DAB × 109

◦C m2/s

Ethanol Water 25 0.026 1.076

0.266 0.368

0.408 0.405

0.680 0.743

0.880 1.047

0.944 1.181
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Remark 7.12. The above laws of Fourier and Fick are simplified versions of the
complete constitutive equations. Thermal and mass diffusion can be caused
by more physical phenomena. For instance, concentration gradients can in-
duce heat transport and, vice versa, temperature gradients can cause mass
transport. See Appendix I for further details.

Table 7.8. Summary of parameters and units entering the constitutive equations.

Property Flux Coefficient Diffusivity

Momentum τ ′ [Pa] Viscosity Kinematic viscosity

µ [kg/(m s)] ν = µ
ρ

[m2/s]

Heat q [W/m2] Thermal conductivity Thermal diffusivity

κ [W/(m K)] α = κ
ρcp

[m2/s]

Mass jA [kg/(m2 s)] Mass diffusivity Mass diffusivity

DAB [m2/s] DAB [m2/s]

Moles j′
A [mol/(m2 s)] Mass diffusivity Mass diffusivity

DAB [m2/s] DAB [m2/s]

7.5 Transport Phenomena by Diffusion

The transport phenomena presented in this chapter are transport phenomena
by molecular diffusion. In previous chapters, transport phenomena by convec-
tion have been introduced, and these have been shown to be caused by the
macroscopic fluid velocity.

In contrast, the transport by molecular diffusion is caused by the random
motion of the fluid molecules. This phenomenon tends to make uniform all
the fluid properties, so the fluid evolves from local to global thermodynamic
equilibrium conditions.

All the mechanisms of molecular diffusion are similarly modeled, that is,
by the product of a diffusivity constant (µ, κ, DAB) times a gradient of a fluid
variable (see Tables 7.8 and 7.8). This is not by chance, but rather because
all the diffusion mechanisms have the same origin: the microscopic random
motion and collisions of the molecules. In particular:

(a) Transport of momentum. Due to the translational random motion, the
molecules of smaller velocity travel to areas of higher velocity, and vice
versa, causing collisions which average their velocity.



7.6 Molecular Interpretation of Diffusion Transport 137

(b) Transport of heat. The temperature of a substance is an indication of its
vibrational energy. Collisions between molecules at different temperature
tend to average the vibrational energy of all the molecules, so the temper-
ature becomes more uniform.

(c) Transport of mass. The molecular collisions causes the migration of mo-
lecules from areas of high concentration to areas of smaller concentrations.

Table 7.9. Elementary one-dimensional constitutive equations.

Property Law Equation

Momentum Newton’s law τ ′
xy = µ

dvx

dy

Heat Fourier’s law qy = −κ
dT

dy

Mass Fick’s law jAy = −ρDAB
dYA

dy

Moles Fick’s law jm′
Ay = −cDAB

dXA

dy

Remark 7.13. All the diffusivity coefficients ν, α, DAB have the same dimen-
sions, L2/T.

7.6 Molecular Interpretation of Diffusion Transport

The diffusivity coefficients can be estimated for gases at low densities by the
kinetic theory of gases. In this theory, the gas molecules are considered rigid
spheres of mass mp, which neither repel nor attract.

Let us assume that the density of molecules is N and that the molecules
transport the property Γ . Γ represents the velocity u for momentum trans-
port, specific enthalpy cpT for heat transport and chemical concentration ρA

for mass transport of the species A.
According to the lattice model for gases, at equilibrium the relative ve-

locity of the molecules with respect to the fluid velocity, va =
√

8KT
πmp

, is
stochastically distributed in all spatial directions. In the above equation, K
is the Boltzmann constant, T the absolute temperature and mp the mass of
each molecule. Also, spatial variations of va are neglected.

Let us take a surface at x with normal n = (1, 0, 0) of 1 m2. We want to
calculate the net flux of property Γ to the right across the surface. Thus,
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Ψ = net flux = Ψleft − Ψright

= 1
6NmpvaΓ (left) − 1

6NmpvaΓ (right)

= 1
6Nmpva (Γ (left) − Γ (right))

= 1
6Nmpva(Γ (x − l/2)− Γ (x + l/2)

(7.22)

The coefficient 1/6 stems from distributing the molecules randomly in all three
Cartesian axes and, for each axis, in the two directions. Applying Taylor series
around x,

Γ (x − l/2) = Γ (x) − dΓ (x)
dx

l
2 + d2Γ (x)

dx2
l2

4 − · · ·

Γ (x + l/2) = Γ (x) + dΓ (x)
dx

l
2 + d2Γ (x)

dx2
l2

4 + · · ·
(7.23)

and subtracting,

Γ (x − l/2)− Γ (x + l/2) ≈ −dΓ (x)
dx

l (7.24)

The length l is related to the distance that the molecules travel between
collisions in direction x and is proportional to the mean-free path λ =
1/(

√
2πNd2), with d the molecule diameter. Thus,

Ψ = −1
6
Nmpval

dΓ (x)
dx

= −D
dΓ (x)

dx

(7.25)

where D is the diffusion coefficient,

D =
1
6
Nmpval (7.26)

Particularizing for each transport phenomenon,

Ψ Γ Diffusion Coefficient

τ ′ u µ = D

q cpT κ = cpD

jA ρA DAA = D

Therefore, for a gas at low pressures, the following relation between the
diffusion transport coefficients can be derived,

µ ≈ κ

cp
≈ DAA (7.27)

where DAA is the self-diffusion parameter.
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Remark 7.14. There is also a kinetic theory for liquids but, in general, it is
much more technical.

Problems

7.1 A rod of 15 cm diameter turns at 1800 rpm in the interior of an orifice
of 15.05 cm diameter and 30 cm length. The space between the rod and the
orifice is filled with an oil of viscosity µ = 0.018 kg/(m s). What is the power
P necessary to equilibrate the viscous resistance to turn the rod?

ω

Problem 7.1. Axle turning into a concentric bearing.

7.2 If the angular velocity of the axle in the above problem is doubled, how
many times does the power P increases?

7.3 A plastic panel of surface 1 m2 and thickness 1 cm transports heat at a
rate of 3 W at steady state when the top and bottom surface temperatures are,
respectively, T0 = 24 ◦C and T1 = 26 ◦C. What is the thermal conductivity κ
of the plastic?

7.4 The space between two parallel plates separated 1.5 cm is filled with an
oil of viscosity µ = 0.05 kg/(m s). Between the plates, a rectangular thin flat
plate with dimensions 30×60 cm is placed at 0.5 cm from the top plate. What
is the necessary force to move the middle plate at 0.4 m/s?

v = 0.4 m/s

0.5 cm

1.5 cm

Problem 7.4. A plate immersed in a fluid presents resistance to the motion.
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7.5 On a windy day, the wind blows at 30 m/s causing the free surface
of a puddle to move at a speed of 1 m/s. The thickness of the puddle is 5
cm. Assuming that the velocity profile is linear within the puddle and the
air boundary layer, estimate the air boundary layer thickness δ. Data: µair =
1.82 × 10−5 kg/(m s); µwater = 1.00 × 10−3 kg/(m s).

δ

U

h1

µ2

µ1

Problem 7.5. The wind drives the surface of the water by friction.

7.6 A block of mass m slides down an inclined plane as the Figure shows.
Determine the terminal speed of the block (i.e. the maximum speed that the
block reaches at steady state) if between the block and the plane there exists
a thin film of thickness h of a fluid with viscosity µ. Assume that the velocity
profile is linear in the film and that the contact area is A.

m
v ?

h
µ

θ

Problem 7.6. A thin film of fluid acts as a lubricant.
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Differential Conservation Principles

As shown in Chapter 6, the integral equations provide global information
about the domain of interest, such as global balances or average values of
the fluid variables. Sometimes, however, more detailed information about the
fluid field is required, like local temperature distributions or concentration
gradients. This kind of information can be provided by the differential form
of the transport equations.

The equations derived in this chapter stem from those of Chapter 6 and
therefore apply for multicomponent systems with the same body force for all
chemical species. For the transport equations where the body force depends
on the species, see Appendix I.

8.1 Derivation of the Differential Conservation Equations

Mainly there are two ways to derive the differential transport equations from
their integral counterparts.

(a) Write the conservation equations for a fixed, arbitrary control volume;
transform all the integrals into volume integrals and invoke the funda-
mental lemma of the calculus of variations.

(b) Write the conservation equations for a fixed infinitesimal elemental control
volume and then use Taylor series expansions to relate the variables at
opposite sides.

In this chapter, because of its simplicity, the first procedure will be applied.
Let Vc(t) be an arbitrary control volume, fixed in space, i.e vc = 0. For

a general property per unit mass φ, the integral transport equation can be
written in the form

d
dt

∫
Vc(t)

ρφ dV +
∫

Sc(t)

ρφ [(v − vc) · n] dS =
∫

Sc(t)

tφ · n dV +
∫

Vc(t)

fφ dV

(8.1)
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Applying the transport theorem to the left-hand side,
∫

Vc(t)

∂ρφ

∂t
dV +

∫
Sc(t)

ρφ v · n dS =
∫

Sc(t)

tφ · n dV +
∫

Vc(t)

fφ dV (8.2)

and using the Gauss divergence theorem (see Appendix E) to transform the
surface integrals into volume integrals,
∫

Vc(t)

∂ρφ

∂t
dV +

∫
Vc(t)

∇ · (ρφ v) dV =
∫

Vc(t)

∇ · tφ dV +
∫

Vc(t)

fφ dV (8.3)

Gathering all the contributions into a single volume integral,
∫

Vc(t)

[
∂ρφ

∂t
+ ∇ · (ρφ v) −∇ · tφ − fφ

]
dV = 0 (8.4)

and because the domain of integration Vc(t) is arbitrary, according to the
fundamental lemma of the calculus of variations, the integrand must vanish:

∂ρφ

∂t
+ ∇ · (ρφ v) −∇ · tφ − fφ = 0 (8.5)

This procedure can be carried out into every integral equation to attain
the results summarized below.

8.2 Continuity Equation

The integral equation of mass conservation can be recovered from the general
equation (8.1) by taking φ = 1, tφ = 0 and fφ = 0. Applying the above
procedure, the differential equation of mass conservation, called the continuity
equation, is obtained

∂ρ

∂t
+ ∇ · (ρ v) = 0 (8.6)

Using indicial notation, and for Cartesian coordinates,

∂ρ

∂t
+ (ρ vi),i = 0 (8.7)

Noting that
Dρ

Dt
=

∂ρ

∂t
+ v · ∇ρ (8.8)

the continuity equation can also be written as

1
ρ

Dρ

Dt
= −∇ · v (8.9)
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8.2.1 Particular case: incompressible fluid

For an incompressible fluid or a liquid, the density is constant and the con-
tinuity equation simplifies to

∇ · v = 0 (8.10)

In indicial notation and for Cartesian coordinates it can be written in the
more compact form

vi,i = 0 (8.11)

Recall that the divergence of the velocity is the unit dilatation per unit
time of an infinitesimal volume of fluid Vol (i.e. the rate of change of the
volume of a fluid particle per unit volume),

div v = ∇ · v =
1

Vol
dVol
dt

(8.12)

For a liquid, since the volume of a fluid particle (or a small fluid volume)
is constant, the dilatation is zero. Thus the divergence of the velocity in an
incompressible velocity field is zero.

8.3 Momentum Equation

Repeating the process shown above to the integral momentum equations yields

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ∇ · τ ′ + ρfm (8.13)

In indicial notation and Cartesian coordinates,

∂ρvi

∂t
+ (ρvivj),j = −p,i + τ ′

ij,j + ρfmi (8.14)

8.3.1 Particular case: Newtonian liquid with constant viscosity

For a Newtonian incompressible fluid, since the divergence of the velocity
vanishes, i.e.

vi,i = 0

the Navier-Poisson constitutive equation in Cartesian coordinates simplifies
to

τ ′
ij = µ

(
∂vi

∂xj
+

∂vj

∂xi

)
+ λ vk,k

∖
δij

= µ

(
∂vi

∂xj
+

∂vj

∂xi

)

= µ (vi,j + vj,i)

(8.15)
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Taking the divergence, that is, taking the spatial derivative with respect to j,

τ ′
ij,j = (µ (vi,j + vj,i)),j

= µ (vi,j + vj,i),j (µ constant)

= µ (vi,jj + vj,ij)

= µ (vi,jj + vj,ji) (continuous second derivative)

= µ vi,jj (incompressible fluid)

(8.16)

Thus, the momentum equation for a Newtonian incompressible fluid with
constant viscosity becomes

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + µ∆v + ρfm (8.17)

and using indicial notation

∂ρvi

∂t
+ (ρvivj),j = −p,i + µ vi,jj + ρfmi (8.18)

The non-conservative form of the above equation is

ρ
∂vi

∂t
+ ρvjvi,j = −p,i + µ vi,jj + ρfmi (8.19)

8.4 Energy Equations

There exist many versions of the energy equation. All of them can be obtained
as a combination of the first law of thermodynamics and other equations. Let
us introduce the most widely used energy equations.

8.4.1 Total Energy Equation

Similarly to previous sections, from the total energy integral equation we can
arrive at

∂ρ(e + 1
2v2)

∂t
+ ∇ ·

(
ρ(e +

1
2
v2)v

)
= ∇ · (τv) + ρfm · v − ∇ · q + q̇v (8.20)

If the body force is a function of a potential U independent of time, then

∂ρ(e + 1
2v2 + U)
∂t

+ ∇ ·
(

ρ(e +
1
2
v2 + U)v

)
= ∇ · (τv) − ∇ · q + q̇v (8.21)

Again, in indicial notation and for Cartesian coordinates,

∂ρ(e + 1
2v2 + U)
∂t

+
(

ρ(e +
1
2
v2 + U)vj

)
,j

= (τijvi),j − qi,i + q̇v (8.22)
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8.4.2 Mechanical Energy Equation

This equation can be obtained from the momentum equation by scalar mul-
tiplication with the velocity field,

v ·
(

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ∇ · τ ′ + ρfm

)
(8.23)

Operating

∂ρ 1
2v2

∂t
+ ∇ · (ρv

1
2
v2) = −v · ∇p + v · ∇ · τ ′ + ρv · fm (8.24)

The first term on the right-hand side can be rewritten as follows,

v · ∇p = ∇ · (pv) − p∇ · v (8.25)

which equals the power of the pressure forces, ∇ · (pv), minus the expansion
power,

p∇ · v = p vi,i (8.26)

The above term is called the expansion power because it is a function of the
dilatation, the unit change of volume per unit time of an (infinitesimal) fluid
particle (see Eq. (8.12)).

The second term on the right-hand side becomes

v · ∇ · τ ′ = vi τ ′
ij,j = (viτ

′
ij),j − vi,jτ

′
ij

= ∇ · (τ ′v) − φv

(8.27)

The function φv is the so-called viscous dissipation function,

φv = ∇v : τ ′ = vi,j τ ′
ij ≥ 0 (8.28)

a scalar which is always positive. Note that we are using the Einstein summa-
tion convention (see Appendix D), so repeated indices are added up. Thus,
the viscous dissipation function, in Cartesian coordinates can be expanded as

φv = v1,1 τ ′
11 + v1,2 τ ′

12 + v1,3 τ ′
13

+ v2,1 τ ′
21 + v2,2 τ ′

22 + v2,3 τ ′
23

+ v3,1 τ ′
31 + v3,2 τ ′

32 + v3,3 τ ′
33

(8.29)

The viscous dissipation represents the energy lost per unit time (i.e. power)
per unit volume due to viscosity, that is, to friction.

Finally, the equation of mechanical energy can be written as

∂ρ 1
2v2

∂t
+ ∇ ·

(
ρ
1
2
v2v

)
= ∇ · (τv) + p∇ · v − φv + ρfm · v (8.30)
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and in indicial notation,

∂ρ 1
2v2

i

∂t
+
(

ρ
1
2
v2

i vj

)
,j

= (τijvi),j + p vi,i − φv + ρfmivi (8.31)

If the body forces stem from a potential which does not depend on time,

ρfm · v = ρ (−∇U) · v

= −ρ (
∂U

∂t
+ v · ∇U)

= −
(

∂ρU

∂t
+ ∇ · (vρU)

) (8.32)

in which case, the mechanical energy equation becomes

∂(ρ 1
2v2 + ρU)

∂t
+ ∇ · (ρv

1
2
v2 + ρvU) = ∇ · (τv) + p∇ · v − φv (8.33)

or

∂ρ(1
2v2

i + U)
∂t

+
(

ρ(
1
2
v2

i + U) vj

)
,j

= (τijvi),j + p vi,i − φv (8.34)

8.4.3 Internal Energy Equation

As for the integral equation, the differential internal energy equation can also
be obtained subtracting the mechanical energy from the total energy equation.
The result is

∂ρe

∂t
+ ∇ · (ρev) = −p∇ · v + φv − ∇ · q + q̇v (8.35)

Using indicial notation and for Cartesian coordinates,

∂ρe

∂t
+ (ρevj),j = −p vi,i + φv − qi,i + q̇v (8.36)

Particular Case: Simple Compressible Substance

For a simple compressible substance (see Appendix H), the thermodynamic
state can be written as a function of two independent thermodynamic variables
and the Gibbs relation dictates

Tds = de − p

ρ2
dρ (8.37)

Considering e(p, T ), the above differential can be written as
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Tds = cpdT − αpT

ρ
dp (8.38)

where

αp =
1
ρ

(
∂ρ

∂T

)
p

(8.39)

From (8.37), using the internal energy and continuity equations,

ρT
Ds

Dt
= ρ

De

Dt
− p

ρ

Dρ

Dt

= φv − ∇ · q + q̇v

(8.40)

On the other hand, from (8.37),

ρT
Ds

Dt
= ρcp

DT

Dt
− αpT

Dp

Dt
(8.41)

Combining the last two equations,

ρcp
DT

Dt
= αpT

Dp

Dt
+ φv − ∇ · q + q̇v (8.42)

Particular Case: Thermally Perfect Fluid with Constant Thermal
Conductivity

For a fluid with constant thermal conductivity κ, the diffusion term can be
simplified as follows. Let us take Fourier’s law,

−qi,i = − (−κT,i),i

= κ T,ii

(8.43)

For a thermally perfect fluid (see Appendix H), the specific internal energy e
is governed by the equation of state

de = cv dT

where cv is the specific heat at constant volume. Then the temporal and
convective terms can be cast as

∂ρe

∂t
+ (ρevj),j = ρ

∂e

∂t
+ ρvje,j

= ρcv
∂T

∂t
+ ρcvvjT,j

(8.44)

In this way, the internal energy equation can be transformed into an equation
for the temperature, which in non-conservative form is,

ρcv
∂T

∂t
+ ρcvvjT,j = −p vi,i + φv + κ T,jj + q̇v (8.45)
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Particular Case: Incompressible Fluid with Constant Conductivity

To the conditions of the previous section, we add that the fluid be incom-
pressible. Since in this case the divergence of the velocity vanishes, vi,i = 0,
Eq. (8.45) simplifies to

ρcv
∂T

∂t
+ ρcvvjT,j = κ T,jj + φv + q̇v (8.46)

Futhermore, for a liquid the specific heats at constant volume and constant
pressure are equal,

cv = cp

and, as a consequence, the internal energy equation can be written as

ρcp
∂T

∂t
+ ρcpvjT,j = κ T,jj + φv + q̇v (8.47)

Note that this equation can be recovered from (8.42) imposing αp = 0.

8.4.4 Enthalpy Equation

The enthalpy equation can be derived from the internal energy equation and
the equation of state

h = e +
p

ρ
(8.48)

where h is the specific enthalpy. Taking differentials

dh = de + d
p

ρ
(8.49)

and likewise, taking the substantial derivative and multiplying by the density,

ρ
D

Dt
h = ρ

D

Dt
e + ρ

D

Dt

p

ρ
(8.50)

The last substantial derivative can be expanded as follows

ρ
D

Dt

p

ρ
= ρ

[
1
ρ

Dp

Dt
− p

ρ2

Dρ

Dt

]
(8.51)

=
Dp

Dt
− p

ρ

Dρ

Dt
(8.52)

=
Dp

Dt
+ p∇ · v (8.53)

where in the last step the continuity equation (8.9) has been substituted.
Plugging in the last result and the internal energy equation into Eq. (8.50)
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ρ
Dh

Dt
=

Dp

Dt
+ φv − ∇ · q + q̇v (8.54)

Again, using indicial notation and Cartesian coordinates,

∂ρh

∂t
+ (ρhvj),j =

∂p

∂t
+ vjp,j + φv − qi,i + q̇v (8.55)

8.5 Entropy Equation

As for the enthalpy equation, the transport equation for the entropy can be
derived combining transport equations and equations of state. In particular,
for a simple compressible substance (where the only reversible mode of work
is compression – see Appendix H) the Gibbs equation is

Tds = de + p d
1
ρ

(8.56)

where s is the specific entropy. Operating, the differential equation for the
entropy becomes

∂ρs

∂t
+ (ρsvj),j −

(
κT,i

T

)
,i

− q̇v

T
=

φv

T
+ κ

T,iT,i

T 2
(8.57)

The right-hand side gathers all the irreversible entropy-producing terms for a
simple compressible substance: the viscous dissipation due to friction and the
entropy production due to heat conduction, respectively.

Remark 8.1. For mixtures and in the presence of chemical reactions, the en-
tropy equation is much more involved and beyond the scope of this text.
Again, it can be derived from the Gibbs relation, which in this case is

Tds = de + p d
1
ρ
−

nesp∑
A=1

µchem
A dYA (8.58)

where µchem
A = hA − TsA is the specific chemical potential of species A.

Then, the entropy production includes contributions stemming from mixing
and chemical reaction.

8.6 Conservation of Chemical Species

The equation of conservation of chemical species is recovered from the general
transport equation (8.1) by letting φ = YA, tφ = −jA and fφ = ω̇A. Recall
that jA is the mass flux vector of species A due to mass diffusion,
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jA = ρA(vA − v) (no sum) (8.59)

The procedure of the first section yields

∂ρA

∂t
+ ∇ · (ρA v) = −∇ · jA + ω̇A (8.60)

In indicial notation and Cartesian coordinates

∂ρA

∂t
+ (ρA vj),j = −jAj,j + ω̇A (8.61)

or as a function of the mass fraction YA

∂ρYA

∂t
+ (ρYA vj),j = −jAj,j + ω̇A (8.62)

In non-conservative form, by means of the continuity equation, this equa-
tion can be written as

ρ
∂YA

∂t
+ ρvjYA,j = −jAj,j + ω̇A (8.63)

As a function of the averaged molar velocity, vm, the diffusion mass flux
relative to vm is

jm
A = ρA(vA − vm) (no sum) (8.64)

and the equation of chemical species becomes

∂ρA

∂t
+ ∇ · (ρA vm) = −∇ · jm

A + ω̇A (8.65)

Finally, dividing by the molecular weight, MA,

∂cA

∂t
+ ∇ · (cA vm) = −∇ · jm

A
′ + ω̇′

A (8.66)

where ω̇′
A = ω̇A

MA
.

8.6.1 Particular case: constant density and constant molecular
diffusivity

If both the molecular diffusivity coefficient D and the mixture density ρ are
constant, the diffusion mass flux of the chemical species A can be written as

−jAj,j = − (−ρD YA,j),j

= (D ρA,j),j

= D ρA,jj
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in which case, the transport equation simplifies to

∂ρA

∂t
+ (ρA vj),j = D ρA,jj + ω̇A (8.67)

As a function of the mass fraction YA, the above equation can be written in
non-conservative form as

∂YA

∂t
+ vjYA,j = D YA,jj + ω̇A/ρ (8.68)

Dividing Eq. (8.67) by the molecular weight of the species A, MA, yields the
corresponding equation for the molar concentration of species A,

∂cA

∂t
+ (cA vj),j = D cA,jj +

ω̇A

MA
(8.69)

Very dilute mixtures of fluids can be approximated fairly well with the
above hypothesis and equations, since the density is practically constant.

8.7 Summary

As occurs for the integral transport equations, the differential equations
present a common pattern,

∂ρφ

∂t
+ (ρφ vj),j = Dφ + Fφ (8.70)

The two terms on the left-hand side stem from the substantial derivative, sum
of the temporal and convective terms,

∂ρφ

∂t
+ (ρφ vj),j = ρ

∂φ

∂t
+ ρvjφ,j

= ρ
Dφ

Dt

(8.71)

On the right-hand side, we encounter the diffusion term Dφ and the source
term Fφ which, depending on the equation, may or may not be present. The
variable φ stands for the transported property per unit mass (see Table 8.1).

Similarly, ρφ is the density of the conserved property, that is, the amount
of property per unit volume

ρφ =
property
volume

(8.72)

See Table 8.2 for a few examples.
In the differential equations, the second term on the left-hand side (the

convective term) is of the form
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Table 8.1. Property per unit mass φ to recover the differential transport equations.

φ Equation

1 mass conservation

v momentum

e + 1
2
v2 total energy conservation

1
2
v2 mechanical energy

e internal energy

h enthalpy

s entropy

YA conservation of chemical species A

Table 8.2. Property per unit volume ρφ to recover the differential transport equa-
tions.

Equation ρφ

mass conservation mass
volume

= ρ

momentum
mass v

volume
= ρv

internal energy
mass e

volume
= ρe

chemical species A mass A
volume

= ρA = ρYA

(ρφvj),j (8.73)

which is the net flux per unit volume due to convective transport in an infin-
itesimal fluid volume,

(ρφ vj),j =
net flux(ρφ)

volume
=

ρφQ

volume
= property

volume · volume
time · 1

volume
= property

volume·time
(8.74)

Problems

8.1 Starting from the integral equations, derive the differential counterparts.

8.2 Using the continuity equation and assuming that all the variables are
continuous with continuous first derivatives, derive that
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∂ρφ

∂t
+ (ρφ vj),j = ρ

∂φ

∂t
+ ρvjφ,j

Note that the right-hand side equals

ρ
Dφ

Dt

that is, the density times the substantial derivative of φ.

8.3 In a fluid stream, the evolution of the concentration of sediments in
suspension S [kg/m3] is given by the transport equation

∂hS

∂t
+

∂uhS

∂x
+

∂vhS

∂y
=

∂

∂x

(
εh

∂S

∂x

)
+

∂

∂y

(
εh

∂S

∂y

)
+ R − wfS

where h is the water level; u, v Cartesian velocity components; R the re-
suspension of sediments into the stream; and wf the sedimentation coefficient.
Identify the temporal term, the convective term, the diffusion term and the
source terms, distinguishing between the generation and destruction terms.

8.4 Derive the fundamental equation of fluid statics from the momentum
equation.

8.5 Show that in Cartesian coordinates the viscous dissipation function can
be written as

φv =
1
2
µ(vi,j + vj,i)2 + 3λv2

k,k ≥ 0

and, therefore, it is always non-negative.

8.6 Prove Eq. (8.9).



9

Dimensional Analysis

Even in the absence of chemical reactions, transport phenomena treat very
complex physical processes. When chemical reactions are present, the com-
plexity increases in an extraordinary manner. As seen in previous chapters,
the calculation of the fluid field requires solving a set of coupled nonlinear
partial differential equations. Even though the arrival of the computer allows
us to obtain numerical solutions previously considered impossible, however,
many industrial problems still cannot be solved in detail or with exactitude.
For this to be possible, we must await an increase in the size and power of com-
puters in various orders of magnitude. Until this happens, to uncover in detail
and reliability the fluid dynamics of many industrial processes, one must re-
sort to experiments. And the essential tool for laboratory tests is dimensional
analysis.

9.1 Introduction

In previous chapters, we have seen that to solve transport problems we need
to find solutions to very complicated nonlinear integro-differential equations.
For this reason, very few exact or analytical solutions exist. Therefore, to
get trustworthy information regarding the designed plants, it is necessary to
resort to experiments in the lab or on a real scale.

As an example consider the flow around a sphere immersed in a uniform
flow, as presented in Fig. 9.1. If the flow is incompressible, isothermal (at a
constant temperature), without chemical reactions, the resistance force of the
sphere FD is a function of four variables,

FD = f(ρ, U, D, µ)

where ρ and µ are the fluid density and viscosity, respectively, U the upstream
fluid velocity and D the sphere diameter.

If we take 10 data for each variable, which is not very much, we would have
to carry out 10 × 10 × 10 × 10 = 104 experiments, only to obtain very poor
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U

FD
D

ρ,  µ

Fig. 9.1. Flow around a sphere. Problem setup.

information. As will be shown in this chapter, dimensional analysis reduces
the number of experiments to be carried out to 10!

On other occasions, many systems are far too large to introduce into the
laboratory. Take for example a cooling tower 100 meters high. In such situ-
ations, it is necessary to construct reduced models that fit into the lab. These
models should comply with certain rules so the experimental data can be
extrapolated to the real prototype. These rules of similarity are given by di-
mensional analysis.

Before immersing ourselves in the theory of dimensional analysis, we must
recall some fundamental concepts of dimensionality.

Table 9.1. Fundamental dimensions in the SI system [5].

SI

Dimension Symbol Unit Name

Mass M kg kilogram

Length L m meter

Time T s second

Temperature Θ K kelvin

Electric current I A ampere

Amount of substance N mol mole

Luminous intensity J cd candela

9.2 Dimensional Homogeneity Principle

All measurements are made up of magnitude, dimension and unit. The di-
mensions are divided into fundamental and derived dimensions, which de-
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pend upon the chosen units system. For example, in the International System
(SI) and Technical System (TS), the fundamental dimensions are shown in
Tables 9.1 and 9.2.

Table 9.2. Fundamental dimensions in the TS system.

TS

Dimension Symbol Unit Name

Force F kgf kilogram-force

Length L m meter

Time T s second

Temperature Θ K kelvin

Electric current I A ampere

Some examples of derived dimensions in the SI are gathered in Table 9.3.

Table 9.3. Examples of derived dimensions in the SI system.

Variable Symbol Units Name Dimensions

Frequency f Hz hertz T−1

Density ρ kg/m3 ML−3

Velocity v m/s LT−1

Acceleration a m/s2 LT−2

Force F N newton MLT−2

Pressure p Pa pascal ML−1T−2

Energy E J juole ML2T−2

Power Ẇ W watt ML2T−3

Theorem 9.1. All equations that establish a correct physical model of beha-
vior in a real system are dimensionally homogeneous or, likewise, are invari-
able when faced with a change of units.

Example 9.1 (Uniformly accelerated motion). The distance travelled by a
particle situated at x0 at t = 0, with an initial speed of v0 and then ac-
celerated at a constant acceleration a is
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x = x0 + v0t + 1
2at2

L L
L

T
T︸︷︷︸

L

L

T2
T 2

︸ ︷︷ ︸
L

Observe that all the terms have the same dimension, L.

Definition 9.1 (Nondimensional variable). A nondimensional variable is
a variable with null dimensions, i.e. without dimensions. Sometimes it is said
that the variable has dimension one.

Example 9.2 (Nondimensional variable). In the previous example of the uni-
formly accelerated motion, the following nondimensional time can be defined

[τ ] =
[
v0t

x0

]
=

L
TT

L
= 1 = [−]

Consequences.

(a) A combination of nondimensional variables is dimensionless.
(b) A change of units does not affect the value of a dimensionless variable.

9.3 Buckingham’s Π Theorem

This theorem is the cornerstone of dimensional analysis.

Theorem 9.2. Any dimensionally homogeneous equation which links N di-
mensional variables is equivalent to another equation which links N − M
nondimensional variables, with M being equal to or less than the number of
independent dimensions of the problem.

9.3.1 Application Process of the Π Theorem

When applying the Π theorem to solve practical cases, it is convenient to
follow systematically the next steps:

1. Select the relevant variables of the problem χi, i = 1, 2, . . . , N ,

ϕ(χ1, χ2, χ3, . . . , χN ) = 0

One of these variables is precisely that undergoing determination. This
step is one of the most difficult because it requires knowledge of the phys-
ical side of the problem: what happens, how does it happen, and so on.
Therefore experience is required.
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2. Construct the dimensional matrix and determine its range. The range is
equal to M , the number of dimensionally independent variables.

Definition 9.2 (Matrix of dimensions). If the dimensions of the vari-
ables can be expressed as

[χi] = Mαi Lβi Tγi . . . i = 1, 2, . . . , N

the matrix of dimensions is constructed with the exponents of the funda-
mental dimensions in the following way:

M L T · · ·

χ1 α1 β1 γ1

χ2 α2 β2 γ2

...
...

...
...

χN αN βN γN

The range of the dimensional matrix M can be determined by means of
Gauss elimination or by the size of the largest non-null determinant.

3. Select M dimensionally independent variables, which are to be eliminated.
The following criteria should be followed.
(a) The variables to be eliminated should be dimensionally independent.

This means that we can write the dimensions of the remaining variables
as a function of the variables to be eliminated. For example, we cannot
choose at the same time the variables [h] = L and [D] = L because
both possess the same dimension, length.

(b) Simplicity.
(c) The variables that we are interested in evaluating should be main-

tained.
(d) Experience.

4. With the remaining N − M variables, form the dimensionless groups Πi,
i = 1, 2, . . . , N − M . In this way, the function ϕ is transformed into
another function ϕ̃ which depends upon dimensionless variables,

ϕ −→ ϕ̃(Π1, Π2, . . . , ΠN−M ) = 0

5. Verify that the obtained dimensionless numbers Πi do not have dimen-
sions.

Remark 9.1. The Π theorem reduces the number of variables of a problem
or physical phenomenon. The form of the function ϕ̃ remains to be found by
means of equations or experiments.
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Example 9.3 (Resistance force of a sphere immersed in a uniform flow). Get
the dimensionless variables that govern the friction of a sphere in a uniform
flow.
Solution. As previously mentioned, the resistance force FD depends upon the
following variables

FD = f(ρ, U, D, µ)

In total we have N = 5 dimensional variables. We construct the dimensional
matrix

M L T

ρ 1 -3 0

U 0 1 -1

D 0 1 0

µ 1 -1 -1

FD 1 1 -2

whose range is M = 3. The fundamental variables are chosen as ρ, U , D. With
the rest of the variables (µ, FD), N − M = 2 nondimensional parameters are
formed as explained below.

• Πµ requires that the following coefficient be dimensionless,

Πµ =
µ

ραUβDγ

Equating dimensions,

M1L−1T−1 = (ML−3)α (LT−1)β Lγ

which gives the linear system of equations for α, β and γ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 = α

−1 = −3α + β + γ

−1 = −β

and
Πµ =

µ

ρUD
≡ 1

Re

The above number is the inverse of the so-called Reynolds number Re.
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• ΠFD requires that the following coefficient be dimensionless,

ΠFD =
FD

ραUβDγ

Equating dimensions,

M1L1T−2 = (ML−3)α (LT−1)β Lγ

from where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 = α

1 = −3α + β + γ

−2 = −β

Note that the right-hand side is the same for all the dimensionless numbers.
Finally, the result is

ΠFD =
FD

ρU2D2

In practice, instead of using the above nondimensional numbers, the fol-
lowing numbers are used: the Reynolds number

Re =
ρUD

µ
(9.1)

and the drag coefficient

CD =
FD

1
2ρU2A

(9.2)

also referred to as Cf , where A is the projection of the transversal area of the
object with respect to the flow and 1

2ρU2, the kinetic energy per unit volume
of the flow. Note that compared to ΠFD , CD has a dimensionless factor of 1

2 .
Finally, the nondimensional relationship which gives the friction of a sphere

in a uniform flow simply translates into

CD = f̃(Re) (9.3)

The corresponding graphical representation can be seen in Fig. 9.2.

9.4 Applications of Dimensional Analysis

9.4.1 Simplification of Physical Equations

Going back to the example of the flow around a sphere, thanks to dimensional
analysis, the drag, which initially depended upon four variables, became a
function of just one variable,
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Fig. 9.2. Drag coefficient of a sphere and a circular cylinder in a uniform flow. The
Reynolds number is based on the diameter D and the drag coefficient, on A, the
projection of the transversal area.

FD = f(ρ, U, D, µ︸ ︷︷ ︸
4 variables

) −→ CD = f̃( Re︸︷︷︸
1 variable

)

This way, with just one graph as a function of the Reynolds number Re (see
Fig. 9.2), we have the resistance coefficient for any diameter of the sphere, for
any liquid and for any incident free-stream velocity. That’s great, isn’t it?

9.4.2 Experimental Economy

Imagine that we had to determine in an aerodynamic tunnel the resistance
force of a sphere immersed in a uniform flow. If we began the experiment
without any knowledge of dimensional analysis, and supposing that for each
variable we wished to carry out ten experiments, we would need,

FD = f(ρ, U, D, µ︸ ︷︷ ︸
10·10·10·10

)

that is, 104 experiments.
If we use dimensional analysis and dimensionless variables, instead of car-

rying out 104 tests, we would just need to carry out 10,

CD = f( Re︸︷︷︸
10

)

This is an important saving.
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Therefore, obtaining the relevant variables of a physical phenomenon with
dimensional analysis allows us to reduce the number of experiments needed
to be carried out.

9.4.3 Experimentation with Scaled Models. Similarity

On many occasions, the prototype to be tested does not fit into the laboratory.
This is the case for very large chemical reactors, mixers, boats, airplanes, etc.
In these situations, a smaller model must be made to scale, with which it is
feasible to work in the laboratory.

As intuition dictates, the model must comply with a series of rules so that
the results obtained in the laboratory can be extrapolated to the prototype.
These rules are given by dimensional analysis and they require the existence
of similarity between the model and the prototype.

Various kinds of similarity exist. The following are the most important. It
should be noted that each type in the list is a pre-requisite to obtain the next
one, and therefore it is more difficult to attain.

(a) Geometric similarity. This is the easiest type of similarity. The model and
prototype are geometrically similar when, although being of different size,
they present the same shape. This type of similarity implies that the angles
of the model and the prototype are the same and that all respective lengths
between the model and the prototype are in proportion.

(b) Kinematic similarity. This type of similarity occurs when the flow velocity
in the model and prototype are related by a scale factor.

(c) Dynamic similarity. This type of similarity occurs when the forces and
accelerations of the model and prototype are related by a scale factor.

(d) Thermal similarity. When the temperature differences with respect to a
reference temperature in model and prototype follow a scaled reasoning.

(e) Chemical similarity. When the concentrations between the model and pro-
totype follow a scaled reasoning.

The most important type of similarity is however, complete similarity.

Definition 9.3 (Complete similarity). For a problem which depends upon
n nondimensional variables

ϕ̃(Π1, Π2, . . . , Πn) = 0

complete similarity is said to exist between model (m) and prototype (p) if
n − 1 nondimensional variables satisfy

Πi|m = Πi|p
If for example, this occurs for i = 1, 2, . . . , n − 1, then

Πn|m = Πn|p
complies.
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From a physical point of view, complete similarity implies that similarity
exists within all the vital mechanisms of the process.

Remark 9.2. To be able to extrapolate the results from the model to the pro-
totype, complete similarity must exist.

In many situations, it will not be possible to maintain complete similarity
between the model and prototype. It may be possible to maintain only some
of the dimensionless parameters between the model and prototype. In this
case, it is said that partial similarity exists.

Definition 9.4 (Partial similarity). When complete similarity does not ex-
ist between the model and the prototype, then partial similarity is said to exist.

Example 9.4 (Head losses in a pipe). It is desired to circulate 600 l/s of water
through a horizontal 90 cm diameter 100 m long pipe. To determine the loss
of energy, an experiment is carried out in the same pipe, but using air.

(a) Under what conditions should the experiment be carried out?
(b) If the energy loss with air is ∆p∗ = 152.88 Pa, what power would be

required to circulate the desired amount of water?

Solution. The losses in a constant cross-section straight pipe of diameter D are
equal to the variation of the modified pressure p∗ = p + ρgz, with z being the
height with respect to a reference level. For incompressible flows, the losses
are a function of

∆p∗ = f(D, L, ε, U, ρ, µ)

where L is the pipe length, and ρ and µ have the usual meaning. The average
fluid velocity is U = Q/S and the superficial finish is characterized by the
roughness length ε [L]. Thus, there are a total of N = 7 dimensional variables.
To be able to apply the similarity theory, as a first step the nondimensional
numbers of the process must be found. The dimensional matrix is

M L T

ρ 1 -3 0

U 0 1 -1

D 0 1 0

L 0 1 0

ε 0 1 0

µ 1 -1 -1

∆p∗ 1 1 -2
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whose range is M = 3. The chosen fundamental variables are ρ, U , D, which
together with the rest of the variables form N−M = 4 nondimensional groups.
The result is

ΠL = L
D

Πε = ε
D

Πµ = µ
ρUD = Re−1

Π∆p∗ = ∆p∗
1
2 ρU2

The last number has been modified by the nondimensional constant 1
2 . There-

fore,
∆p∗

1
2ρU2

= φ(
L

D
,

ε

D
, Re)

Experimentally it can be seen that the energy losses increase linearly with the
pipe length, implying that the dependence upon L/D is linear,

∆p∗

1
2ρU2

=
L

D
λ(

ε

D
, Re)

This equation is usually modified and presented in the form of the Darcy-
Weisbach equation for the losses in head of fluid hf [m],

hf =
∆p∗

ρg
= λ(

ε

D
, Re)

L

D

U2

2g

The function λ(ε/D, Re) is determined empirically and its values are collected
in correlations or in the Moody diagram (see Table 12.2 and Fig. 12.4).

(a) To determine how we should carry out the experiment, we shall impose
similarity conditions between the model and the prototype.

Prototype Model

Water: Air:
ρp = 1000 kg/m3 ρm = 1.2 kg/m3

µp = 1.0 × 10−3 kg/(m s) µm = 1.81 × 10−5 kg/(m s)

Lp = 100 m Lm = 100 m

Dp = 0.9 m Dm = 0.9 m

Qp = 600 l/s ∆p∗
m = 152.88 Pa

Qm = ?

So that complete similarity may exist,
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L
D

∣∣
p

= L
D

∣∣
m

(pi.1)
ε
D

∣∣
p

= ε
D

∣∣
m

(pi.2)

Re|p = Re|m (pi.3)

which would imply that

∆p∗
1
2 ρU2

∣∣∣
p

= ∆p∗
1
2 ρU2

∣∣∣
m

(pi.4)

Given that the model test is carried out in the same pipe, Dm = Dp, Lm = Lp,
εm = εp, and equalities (pi.1)-(pi.2) are trivially complied with. Eq. (pi.3)
implies

ρpUpDp

∖
µp

=
ρmUmDm

∖
µm

from which we can deduce

Um = Up
ρp

ρm

µm

µp

and by multiplying by the cross-section of the tube,

Qm = Qp
ρp

ρm

µm

µp
= 9 050 l/s

(b) Since the pipe is horizontal, the mechanical energy equation shows that
the power necessary to drive the liquid is equal to the energy lost by friction.
Given that complete similarity exists, (pi.4) is complied with,

∆p∗

1
2ρU2

∣∣∣∣
p

=
∆p∗

1
2ρU2

∣∣∣∣
m

where one can conclude that

∆p∗p = ∆p∗m
ρpU

2
p

ρmU2
m

= 560 Pa

and the power to drive the water would be

Ẇp = Qp∆p∗p = 336 W

whilst the power necessary to carry out the experiment is

Ẇm = Qm∆p∗m = 1 384 W

which is greater than the power necessary to pump water. Does any solution
to reduce the air power occur to you?
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Problems

9.1 Determine the dimensions of force F , stress σ, power Ẇ , dynamic vis-
cosity µ and thermal conductivity κ.

9.2 The variables which control the motion of a boat are the resistance force,
F , speed V , length L, density of the liquid ρ and its viscosity µ, as well as
gravity acceleration g. Obtain an expression for F using dimensional analysis.

9.3 It is believed that the power P of a fan depends upon the density of
the liquid ρ, the volumetric flux Q, the diameter of the propeller D and the
angular speed Ω. Using dimensional analysis, determine the dependence of P
with respect to the other dimensionless variables.

9.4 In fuel injection systems, a jet of liquid breaks, forming small drops
of fuel. The diameter of the resulting drops, d, supposedly depends upon
the density of the liquid, the viscosity, surface tension, [σ] = force/length,
and likewise upon the speed of the stream V and its diameter D. How many
dimensionless parameters are required to characterize the process? Find them.

9.5 A disc spins close to a fixed surface. The radius of the disc is R, and the
space between the disk and the surface is filled with a liquid of viscosity µ.
The distance between the disc and the surface is h and the disc spins at an
angular velocity ω. Determine the functional relationship between the torque
that acts upon the disc, T , and the other variables.

9.6 A triangular weir is made of a vertical plate with an opening in the
shape of a “V” with an angle φ cut in the upper part and transversally placed
in a channel. The liquid contained in the channel is retained by the plate and
obliged to flow through the opening. The discharge flow Q is a function of the
raising of the liquid from the vertex of the opening. Furthermore, Q depends
upon the gravity and speed at which the flow nears the weir V0. Determine the
expression that will calculate Q. What would the previous expression become
if the speed V0 was not relevant to the problem?

H

V0

φ

Problem 9.6. A triangular weir can be set up to measure the volumetric flux in
a channel.
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9.7 The drag force, F , experienced by a submarine that moves at a great
depth from the surface of the water, is a function of the density ρ, viscosity µ,
speed V and the transversal section of the submarine A. An expert suggests
that the nondimensional relationship that allows the calculation of F is:

F

ρV 2A
= f

(
ρV A

µ

)

(a) Is the number of dimensionless parameters in the expression correct? Why?
(b) Are the parameters correct? If not, correct them.
(c) A geometrically similar model to that of the real submarine has been

constructed, so that all the lengths of the model are 1/10 of those corres-
ponding to the submarine. The model is tested in sea water.
(1) The force of the real submarine when it moves at 5 m/s is to be de-

termined.
(2) At which speed should the model be tested?

9.8 An automobile must travel through standard air conditions at a speed
of 100 km/h. To determine the pressure distribution, a model at a scale of
1/5 of the length of the vehicle is tested in water. Find the speed of water to
be used.
µwater = 10−3 kg/(m s), ρwater = 1 000 kg/m3, µair = 1.8 × 10−5 kg/(m s),
ρair = 1.2 kg/m3.

9.9 The depth of the steady central vortex h in a large tank of oil being
stirred by a propeller needs to be predicted. One way is to carry out a study
using a reduced scale model. Determine the conditions under which the ex-
periment should be conducted to be considered a valid predictive tool. Note:
Consider gh a function of gH , D, L and Ω.

H

L

D

h

Ω

Problem 9.9. Stirring a liquid in a tank produces a vortex.
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9.10 A rectangular, thin, flat plate, with dimensions of h (length) and w
(width) is placed perpendicularly to a liquid current. Imagine that the drag
force D which the liquid has upon the plate is a function of w and h, the
density of the liquid ρ and its viscosity µ, as well as the speed V of the liquid
coming towards the plate. Determine the set of dimensionless parameters to
study the problem experimentally.

9.11 The Reynolds number is a very important parameter for studying trans-
port phenomena and fluid mechanics. Estimate the Reynolds number that
would be characteristic of the flow around a car traveling along the highway.

9.12 A thin layer of spherical particles are lying at the bottom of a horizontal
tube, as indicated in the Figure. When an incompressible liquid flows along
the tube, it can be seen that at a certain critical speed the particles move and
are carried along the length of the tube. We wish to study the value of this
critical speed Vc. Suppose that Vc is a function of the diameter of the tube D,
the particle’s diameter Dp, the liquid density ρ, the viscosity of the liquid µ,
the density of the particles ρp and the gravity acceleration g.

(a) Using ρ, D and g as fundamental variables, obtain the dimensionless para-
meters of the problem.

(b) Repeat point (a) using ρ, D and µ as fundamental variables.
(c) A laboratory experiment is carried out with the same liquid and particles

as the real prototype but at half the size. If a critical speed of 1 m/s is
measured, what is the value of the critical speed for the real prototype in
cases (a) and (b)? What is happening?

(d) Consider how this problem can be solved and calculate the critical speed
in the prototype to get the critical speed of 1 m/s for the model. Which
are the properties of the liquid to be used in the experiment?

Vc

Problem 9.12. Many industrial methods are based upon passing a liquid current
over solid spheres.

9.13 During the drying process of a fine layer of liquid on a surface, the
liquid evaporates and the vapor is transported in the air above the surface,
as can been seen in the Figure. We are interested in knowing the dependence
of the drying time t upon the rest of the variables of the problem (length L,
thickness of the layer δ, the liquid’s vapor pressure Pv, air speed U , viscosity
µ and air density ρ).
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(a) Obtain a set of dimensionless variables related to the drying time t with
the rest of the variables.

(b) We wish to set up a laboratory experiment to determine the drying time of
a soccer field where Pv = 2 000 Pa, L = 100 m, δ = 0.01 m and U = 2 m/s.
In the experiment, the viscosity and the density of the air will be the same
as that of the soccer field, but L will be worth 20 m (we don’t have a
larger laboratory available). Calculate the values of U , δ and Pv in the
experiment so that complete similarity exists with the real flow.

(c) If in the experiment the average drying time is t = 10 min, calculate the
drying time of the soccer field.

L

δ
U

Problem 9.13. Drying process of a liquid sheet.



10

Dimensionless Equations and Numbers

The chapter on Dimensional Analysis has shown that the relevant numbers
that govern the character of physical phenomena are not the dimensional
variables, but rather, dimensionless numbers. In the case of partial differential
equations and, in particular, the transport equations, these numbers can also
be derived by making these equations dimensionless. Therefore, following this
technique, this chapter extracts the fundamental dimensionless numbers that
govern transport phenomena. Their physical significance will be also unveiled.

10.1 Nondimensionalization Process

In order to obtain the dimensionless numbers that characterize transport phe-
nomena, we will use the conservation equations in differential form. The same
process could be applied to the integral equations, giving the same results.

The technique to make the equations dimensionless consists of introducing
a simple change of variables,

φ = φ0 φ′ (10.1)

where φ is the original variable with dimensions, φ0 is a dimensional con-
stant (in particular, a reference or characteristic value of the variable) and
consequently, φ′ is a dimensionless variable.

This change of variables is introduced to all the variables and fluid prop-
erties that take part in the equations, including space and time. In particular,

t = t0 t′ x = l0 x′ v = v0 v′

ρ = ρ0 ρ′ ρA = ρA0 ρ′A p = ∆p0 p′

T = ∆T0 T ′ µ = µ0 µ′ κ = κ0 κ′

DA = DA0 D′
A cp = cp0 c′p fm = g f ′

m

ω̇A = ω̇A0 ω̇′
A

(10.2)
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Remark 10.1. For a constant fluid property, it is not necessary to introduce
the change of variables.

When applied to a derivative, this change of variables yields

∂φ

∂t
=

∂φ0φ
′

∂t
= φ0

∂φ′

∂t
(10.3)

∂φ′

∂t
=

∂φ′

∂t′
dt′

dt
=

1
t0

∂φ′

∂t′
(10.4)

Therefore,
∂φ

∂t
=

φ0

t0

∂φ′

∂t′
(10.5)

The nabla operator, being a spatial derivative, transforms in a similar way,

∇ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x
∂

∂y
∂

∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
1
l0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x′

∂

∂y′

∂

∂z′

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
1
l0
∇′ (10.6)

In conclusion

∇φ =
φ0

l0
∇′φ′ (10.7)

10.1.1 Continuity Equation

The mass conservation equation in differential form can be written as

∂ρ

∂t
+ ∇ · (ρ v) = 0 (10.8)

Introducing the above change of variables gives

ρ0

t0

∂ρ′

∂t′
+

ρ0v0

l0
∇′ · (ρ′ v′) = 0 (10.9)

This equation has still dimensions of ρ0/t0 or ρ0v0/l0. In order to make it
dimensionless, one should divide the equation by one of the factors in front of
any term.

However, in fluid dynamics and transport phenomena, by convention the
factor of the convective term is chosen to nondimensionalize the equation. In
this case, this factor is ρ0v0/l0, yielding

l0
v0t0

∂ρ′

∂t′
+ ∇′ · (ρ′ v′) = 0 (10.10)
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Note that the primed terms are dimensionless and, therefore, the factor in
front of the time derivative is also dimensionless. This factor is called the
Strouhal Number

S =
l0

v0t0
Strouhal number

Finally, the dimensionless equation is

S
∂ρ′

∂t′
+ ∇′ · (ρ′ v′) = 0 (10.11)

10.1.2 Momentum Equation

Starting from the differential form of the equation,

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ∇ · τ ′ + ρfm (10.12)

and applying the standard change of variables,

ρ0v0

t0

∂ρ′v′

∂t′
+

ρ0v
2
0

l0
∇′·(ρ′v′v′) = −∆p0

l0
∇′p′+

µ0v0

l20
∇′·(τ ′)′+ρ0gρ′f ′

m (10.13)

Dividing again by the factor pre-multiplying the convective term, ρ0v
2
0/l0,

l0
v0t0

∂ρ′v′

∂t′
+∇′ · (ρ′v′v′) = −∆p0

ρ0v2
0

∇′p′ +
µ0

ρ0v0l0
∇′ · (τ ′)′ +

gl0
v2
0

ρ′f ′
m (10.14)

In conclusion, the additional dimensionless numbers for the momentum
equation are

Eu =
∆p0

ρ0v2
0

Euler number

Re =
ρ0v0l0

µ0
Reynolds number

Fr =
v2
0

gl0
Froude number

Finally, the dimensionless form of the equation is

S
∂ρ′v′

∂t′
+ ∇′ · (ρ′v′v′) = −Eu∇′p′ +

1
Re

∇′ · (τ ′)′ +
1
Fr

ρ′f ′
m (10.15)

Remark 10.2. Sometimes, one can find the Froude number as the square root
of the above number,

Fr =
v0√
gl0
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Another important dimensionless number arises when the friction at a
solid interface τ ′

0 is calculated. Indeed, the dimensionless viscous stress can be
expressed as

(τ ′
0)

′ =
τ ′
0

µ0v0
l0

=
τ ′
0

1
2ρ0v2

0

1
2ρ0v0l0

µ0
=

1
2
CDRe (10.16)

where

CD =
τ ′
0

1
2ρ0v2

0

Drag coefficient

10.1.3 Temperature Equation

In Chapter 8 the following temperature equation was derived for an incom-
pressible fluid with constant heat conductivity and no volumetric heat source,

ρcp∂T

∂t
+ ρcpv · ∇T = κ∇2T + φv (10.17)

The viscous dissipation function contains terms of the form

φv =
∂u

∂y
µ

∂u

∂y
(10.18)

so

φv =
µ0v

2
0

l20
φ′

v (10.19)

Nondimensionalizing the equation,

ρ0cp0∆T0

t0

ρ′c′p∂T ′

∂t′
+

ρ0cp0v0∆T0

l0
ρ′c′pv

′ · ∇′T ′ =
κ0∆T0

l20
κ′(∇′)2T ′ +

µ0v
2
0

l20
φ′

v

(10.20)
and dividing by the factor of the convective term,

l0
v0t0

ρ′c′p∂T ′

∂t′
+ ρ′c′pv

′ · ∇′T ′ =
κ0

ρ0cp0v0l0
κ′(∇′)2T ′ +

µ0v0

ρ0cp0∆T0l0
φ′

v (10.21)

The new dimensionless numbers present are

Pe =
ρ0cp0v0l0

κ0
Péclet number

Ec = Re
µ0v0

ρ0cp0∆T0l0
=

v2
0

cp0∆T0
Eckert number

As a consequence, the dimensionless form of the equation is

S
ρ′c′p∂T ′

∂t′
+ ρ′c′pv

′ · ∇′T ′ =
1
Pe

κ′(∇′)2T ′ +
Ec
Re

φ′
v (10.22)
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Another important nondimensional number for heat transport phenomena
arises when the diffusion heat flux at an interface is calculated. In dimension-
less form, the heat flux is

q′0 =
q0

κ0∆T
l0

= Nu (10.23)

The right-hand side is the dimensionless heat flux, called

Nu =
q0l0

κ0∆T
Nusselt number

10.1.4 Conservation of Chemical Species Equation

Let us take the differential form of the equation,

∂ρA

∂t
+ ∇ · (ρA v) = −∇ · jA + ω̇A (10.24)

Introducing the standard change of variables,

ρA0

t0

∂ρ′A
∂t′

+
ρA0v0

l0
∇′ · (ρ′A v′) = −DA0ρA0

l20
∇′ · j ′

A + ω̇A0ω̇
′
A (10.25)

and dividing by the factor in front of the convective term,

l0
v0t0

∂ρ′A
∂t′

+ ∇′ · (ρ′A v′) = −DA0

v0l0
∇′ · j′

A +
ω̇A0l0
ρA0v0

ω̇′
A (10.26)

The new dimensionless numbers are

PeII =
v0l0
DA0

Péclet II number

DaI =
ω̇A0l0
ρA0v0

Damköhler I number

Thus, the equation in dimensionless form can be written as

S
∂ρ′A
∂t′

+ ∇′ · (ρ′A v′) = − 1
PeII

∇′ · j′
A + DaI ω̇′

A (10.27)

Another important dimensionless number for mass transport appears when
the diffusion mass flux at an interface is desired. In dimensionless form, the
mass flux is

j′A0 =
jA0

DA0∆ρA0
l0

= Num = Sh (10.28)

The right-hand side is the dimensionless heat flux, called the mass Nusselt or
Sherwood number

Num = Sh =
jA0l0

DA0∆ρA0
Mass Nusselt or Sherwood number
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10.2 Other Important Dimensionless Numbers

Besides the parameters presented in the previous sections, some relevant
nondimensional numbers for transport phenomena are defined as ratios of
dimensionless numbers. In particular,

Pr =
Pe
Re

=
µ0cp0

κ0
Prandtl number

Sc =
PeII

Re
=

µ0

ρ0DA0
Schmidt number

Le =
PeII

Pe
=

κ0

ρ0cp0DA0
Lewis number

Note that
Le =

Sc
Pr

(10.29)

Another number, significant when the fluid compressibility effects are im-
portant, is the Mach number, which relates the characteristic fluid velocity v0

with the speed of propagation of the sonic waves in the fluid, c0,

Ma =
v0

c0
Mach number

10.3 Physical Interpretation of the Dimensionless
Numbers

The dimensionless numbers are ratios that indicate the importance of a term of
the equation with respect to the reference term. In particular, if the equation
has been divided by the convective term, the dimensionless numbers indicate
the importance of the various terms with respect to transport by convection.

These numbers can also indicate the importance of a transport phenomena
compared to another. This is the case of Re, Pe, PeII, Pr, Sc and Le.

Strouhal number

For instance, the Strouhal number represents the ratio

S =
temporal variation

convection

=
residence time

characteristic time
If

• S >> 1 then, the temporal term of the equation is important and cannot
be neglected. It is a transient process.

• S << 1 then, the flow is steady and the temporal term can be eliminated.



10.3 Physical Interpretation of the Dimensionless Numbers 179

Reynolds number

The Reynolds number stems from dividing the convective term by the viscous
diffusion term, representing the ratio of inertial to viscous forces,

Re =
convection
diffusion

≈ inertial forces
viscous forces

Thus, if

• Re << 1, the viscous forces (friction) are dominant. The convective term
can be neglected compared to the viscous term.

• Re >> 1, convection (or inertial) forces are dominant. But one should be
really cautious here: in this case, the viscous forces cannot be neglected
everywhere in the flow, only away from interfaces. In particular, in areas
close to interfaces and boundary layers, the viscous forces are of the same
order as the inertial forces, because in the vicinity of interfaces, very strong
gradients may exist.

Euler Number

The Euler number comes from the ratio between pressure forces and inertial
forces,

Eu =
pressure forces
inertial forces

In general this term should be kept in the equations because the pressure
forces typically are of the same order as the largest term in the equation
(with a few exceptions).

Froude Number

Similarly, the Froude number is the ratio

Fr =
inertial forces
body forces

If

• Fr >> 1, the body forces can be neglected.
• Fr << 1, the body forces are significant. This number is important for

flows with a free surface, such as in the dynamics between the waves and
a boat.

Péclet and Péclet II Numbers

The Péclet and Péclet II numbers are analogous to the Reynolds number but
for heat and mass transfer, respectively.

The Péclet number is the ratio,
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Pe =
heat transfer by convection
heat transfer by diffusion

Using the Prandtl number, defined as

Pr =
µ0cp0

κ0
=

viscous diffusion
thermal diffusion

we can write the Péclet number as a function of Reynolds number,

Pe = Re Pr

The Prandtl number indicates the importance of momentum transport by
diffusion compared to heat transport by diffusion.

Likewise, for mass transfer,

PeII =
mass transfer of component A by convection
mass transfer of component A by diffusion

This number compares mass transport phenomena by convection and diffu-
sion.

Other relevant dimensionless numbers are

Sc =
µ0

ρ0D0
=

viscous diffusion
mass diffusion

Le =
κ0

ρ0Cp0D0
=

thermal diffusion
mass diffusion

As a function of these numbers, we can write

PeII = Re Sc

PeII = Pe Le

The numbers Prandtl, Schmidt and Lewis are properties of the fluid. For
instance, for air Pr = 0.7 and for water, about Pr = 5, a value that depends
on temperature (see Table 10.1).

Damköhler Number

The importance of the chemical production of component A compared to the
convective term is given by the Damköhler number,

DaI =
production of component A

convection
If

• DaI << 1, the chemical production can be ignored. The chemical reaction
is slow compared to the convective time.

• DaI >> 1, the chemical production is important. The reaction is fast, and
equilibrium conditions can be assumed.

• DaI ≈ 1, the chemical time is of the same order as the convective time.
For a precise calculation, the chemical kinetics should be modeled.
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Table 10.1. Ranges of Prandtl number, Pr, for various substances [27].

Fluid Pr

Liquid metals 0.004 − 0.03

Gases 0.7 − 1.0

Water 1.7 − 13.7

Light organic liquids 5 − 50

Oils 50 − 10 000

Glycerin 2 000 − 100 000

Problems

10.1 The transport equation that governs the concentration of suspended
sediments S [kg/m3] in a stream of depth h is

∂hS

∂t
+

∂uhS

∂x
+

∂vhS

∂y
=

∂

∂x

(
εh

∂S

∂x

)
+

∂

∂y

(
εh

∂S

∂y

)
+ R − wfS

where h is the water level; u, v velocity components; R the rate of sediment
re-suspension; and wf the sedimentation factor.

(a) Determine the dimensions of ε, R, wf .
(b) Find the dimensionless numbers that characterize the sediment transport.
(c) Identify the dimensionless numbers.

10.2 In the previous exercise, give criteria for:

(a) Steady flow.
(b) Negligible viscous forces.
(c) Important sedimentation rate.
(d) Apply the three above conditions for the case h = 1 m; U = 0.5 m/s;

ε = 0.001; wf = 0.1; characteristic time = 1 day.

10.3 The salt concentration of sea water obeys the following relation:

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
+ w

∂S

∂z
= K

(
∂2S

∂x2
+

∂2S

∂y2
+

∂2S

∂z2

)

where K is the mass diffusion coefficient, of units m2/s and S, the salin-
ity (parts per thousand). Make the equation nondimensional and discuss the
encountered parameters.

10.4 In a porous media, the combination of the continuity equation,

ε
∂ρ

∂t
= ∇ · (ρv)
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and the Darcy law,
v =

γ

µ
(∇p − ρg)

gives rise to the equation

εµ

γ

∂ρ

∂t
= ∇ · [ρ (∇p − ρg)]

where γ is the medium permeability [m2], ε the medium porosity, and the
remaining symbols have the usual meaning.

(a) Determine the dimensions of ε.
(b) Nondimensionalize the equation and obtain the relevant dimensionless

parameters.

10.5 The partial differential equation that governs the energy transport in
a two-dimensional incompressible porous media can be approximated as:

−ρcp
γ

µ

∂p

∂x

∂T

∂x
− ρcp

γ

µ

∂p

∂y

∂T

∂y
= κ

∂2T

∂x2
+ κ

∂2T

∂y2

where γ is a property of the porous medium called permeability. The rest of
the parameters have the usual meaning.

(a) What are the dimensions of γ?
(b) In order to nondimensionalize the equation, besides using the properties

of the medium γ, µ and cp, employ the characteristic scales (l0, v0, ρ0, T0).
Discuss the resulting dimensionless parameters.

10.6 In natural convection flow problems, the variation of density due to
small temperature differences ∆T can be modeled with the Boussinesq ap-
proximation. This approximation incorporates the buoyancy forces into the
momentum equations, resulting in

ρ0
Dv

Dt
= −∇(p + ρ0gz)− ρ0β∆Tg + µ∇2v

where ρ0 is the fluid density at the reference temperature, T0; ∆T = T −T0 is
the temperature difference causing the motion and β, the thermal expansion
coefficient. Find the relevant dimensionless parameters.

10.7 The momentum equation for a rotating frame of reference, with an
angular velocity ω, can be written as follows

ρ
∂v

∂t
+ ρv · ∇v = −∇p + µ∆v − ρ ω × ω × r︸ ︷︷ ︸

centrifugal force

− ρ 2 ω × v︸ ︷︷ ︸
Coriolis

+ρfm

where r is the position vector with respect to the rotation axis; v, the velocity
vector; ∆ represents here the Laplacian, ∆ = ∇ ·∇ = ∇2; and the rest of the
variables have the usual meaning.
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(a) Find the dimensionless numbers that indicate the relevance of the centri-
fugal and Coriolis forces.

(b) Identify the rest of the dimensionless numbers.

10.8 The fluid flow in porous media, such as the flow in soils of sand and
clay, can be described by the Brinkman equation,

−∇p − µ

γ
v + µ∇2v + ρg = 0

where p is the pressure, v the velocity vector, µ the dynamic viscosity, γ the
permeability of the medium, ρ the density and g the vector of gravitational
acceleration.

(a) Determine the dimensions of γ.
(b) Nondimensionalize the equation and obtain the relevant dimensionless

parameters.
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Introduction to the Boundary Layer

Boundary layers are of vital importance for transport phenomena. They are
thin areas within the fluid, with large property gradients, that appear in
solid/fluid and fluid/fluid interfaces. Despite being a small area of the fluid
flow, most of the transport processes of momentum, heat and mass take place
there. Thus, they are decisive in the design of equipment that involves trans-
port phenomena.

11.1 Concept of Boundary Layer

In engineering we are interested in calculating friction, heat and mass transfer
within a fluid. Most of these processes take place at interfaces.

There exist two types of fluid interfaces.

(a) Those in which the fluid is in contact with a solid wall, called solid/fluid
interfaces.

(b) Those where fluids with different properties meet, which are called fluid/fluid
interfaces. These can be of various types, i.e. gas/gas, gas/liquid or li-
quid/liquid.

Definition 11.1 (Boundary layer). The boundary layer is the area around
an interface (solid/fluid, fluid/fluid) where there exist large property gradients
in the direction across the interface, giving rise to the processes of friction,
heat transfer and mass transfer.

For each transport phenomenon there is a specific boundary layer, with dif-
ferent properties, such as its thickness. According to the transported property
involved, boundary layers can be classified as follows.

(a) Viscous boundary layer (for the velocity or momentum), with thickness δ.
(b) Thermal boundary layer (for the temperature or energy), with thickness

δT .
(c) Mass boundary layer (for the chemical concentrations), with thickness δc.
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11.2 Laminar versus Turbulent Boundary Layer

As for the flow field, boundary layers can be laminar or turbulent. It is very
important to distinguish these two types of flows, because transport phenom-
ena at interfaces depend heavily on this trait. For each kind of flow regime,
different correlations are applicable to quantify the transport coefficients.

Laminar flow is typically orderly, predictable and deterministic. Turbulent
flow is always three-dimensional, unsteady and chaotic. In turbulence flow,
there are random fluctuations of the fluid field, which enhance tremendously
the convective transport of properties.

The number that governs the transition from laminar to turbulent flow
is the transition Reynolds number Retr, which depends on the geometry of
the flow among other factors such as the free-stream turbulence and surface
roughness.

11.3 The Prandtl Theory

Taking into account the qualitative structure of the boundary layer, the trans-
port equations can be simplified within interfaces. This is known as Prandtl’s
boundary layer theory (1904), which states that for high Reynolds numbers,
the boundary layer thickness δ at a position x = L from the beginning of the
boundary layer is much smaller than L, i.e.

δ << L (11.1)

Furthermore, inside the boundary layer the convective and diffusion terms are
of the same size.

Ue

δ

L

y

x

Fig. 11.1. Schematic of the viscous boundary layer.
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11.3.1 Estimation of the Boundary Layer Thicknesses for Laminar
Flow

Let us choose the coordinate axis shown in Fig. 11.1. The x axis is aligned
to the boundary layer along the interface; the y axis is set perpendicularly to
the interface.

Viscous Boundary Layer

Due to its structure, inside the boundary layer the x-derivatives are much
smaller than the y derivatives. For example, for the viscous boundary layer,

∣∣∣∣∂u

∂x

∣∣∣∣ <<

∣∣∣∣∂u

∂y

∣∣∣∣ (11.2)
∣∣∣∣∂

2u

∂x2

∣∣∣∣ <<

∣∣∣∣∂
2u

∂y2

∣∣∣∣ (11.3)

This can be verified by approximating the derivatives as Fig. 11.2 shows, which
gives the following orders of magnitude:

∂u

∂x
≈ Ue − 0

L
(11.4)

∂2u

∂x2
≈ Ue − 0

L2
(11.5)

∂u

∂y
≈ Ue − 0

δ
(11.6)

∂2u

∂y2
≈ Ue − 0

δ2
(11.7)

 

y 

x 

Ue
δ

 ∂u 
∂y 

U e U e 

x = L { 

 ∂u 
∂x 

U e 
L ≈ 

δ

Fig. 11.2. Estimating velocity derivatives inside the viscous boundary layer.
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Since within the boundary layer the convective term is of the same order
of magnitude as the viscous term,

u
∂u

∂x
≈ ν

∂2u

∂y2
(11.8)

Approximating the derivatives as above,

Ue
Ue − 0

L
≈ ν

Ue − 0
δ2

(11.9)

and simplifying (
δ

L

)2

≈ ν

UeL

one arrives at
δ

L
≈ 1√

ReL

(11.10)

Note that the Reynolds number is based on the length L, and consequently,
it is denoted as ReL. The Reynolds number is typically based on a character-
istic dimension of the object under analysis. For instance, if we had a uniform
flow around a cylinder, the characteristic length could be taken as the cylinder
diameter D and the Reynolds number, ReD.

Remark 11.1. For a given position x = L, if the Reynolds number increases,
the boundary layer thickness decreases. For instance, for a given free-stream
velocity Ue and length L, the fluid with the smallest kinematic viscosity ν will
have the smallest boundary layer thickness δ.

Pr < 1 Pr > 1

 

y 
u 

y 
T-T 0  

y 
u 

y 
T-T 0 

Fig. 11.3. Velocity and temperature distributions at the same coordinate of the
viscous and thermal boundary layers for Pr < 1 and Pr > 1.
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Thermal Boundary Layer

For the thermal boundary layer, two cases can be distinguished: Pr << 1 and
Pr >> 1 (see Fig. 11.3).

• Pr << 1. In this case, δ << δT and the velocity scale within the thermal
boundary layer can be taken as Ue. Imposing that in the thermal boundary
layer, the convective term is of the same order as the viscous term,

u
∂T

∂x
≈ α

∂2T

∂y2
(11.11)

And approximating the derivatives as above with ∆T the temperature
difference across the thermal boundary layer,

Ue
∆T

L
≈ α

∆T

δ2
T

(11.12)

results in
δT

L
≈ 1√

PeL

(11.13)

 

y 

x 

U e 

 ∂u 
∂y 

U e 
δ≈ 

δT

δ

≈ u δT δT 

Fig. 11.4. Estimating the characteristic velocity for the thermal boundary layer at
Pr >> 1.

• Pr >> 1, which implies δ >> δT . In this case, since the viscous boundary
layer is much thicker than the thermal layer, the characteristic velocity
within the thermal boundary layer can be taken as the velocity at y = δT

(see Fig. 11.4). Assuming a linear near-wall velocity profile in the viscous
boundary layer, the characteristic velocity can be taken as

u(y = δT ) ≈ δT

δ
Ue (11.14)
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Again, considering that thermal convection is as important as thermal
diffusion,

u
∂T

∂x
≈ α

∂2T

∂y2
(11.15)

and substituting the above orders of magnitude

δT

δ
Ue

∆T

L
≈ α

∆T

δ2
T

(11.16)

which simplifies to

δT

L
≈ Re−1/2Pr−1/3 = Pe−1/2Pr1/6 (11.17)

Mass Boundary Layer

For the mass boundary layer, similar conclusions as for the thermal boundary
layer are reached, but substituting PeL by PeIIL and Pr by Sc:

• Sc << 1
δc

L
≈ 1√

PeIIL

(11.18)

• Sc >> 1
δc

L
≈ Re−1/2

L Sc−1/3 = PeII
−1/2
L Sc1/6 (11.19)

Remark 11.2. Laminar boundary layers grow with the square root of the dis-
tance,

δ ≈ L1/2 δT ≈ L1/2 δc ≈ L1/2

11.3.2 Relative Boundary Layer Thicknesses

Combining the above approximations for the boundary layer thicknesses, the
following conclusions are reached.

Pr << 1
δ

δT
≈ Pr−1/2 (11.20)

Pr >> 1
δ

δT
≈ Pr−1/3 (11.21)

Sc << 1
δ

δc
≈ Sc−1/2 (11.22)

Sc >> 1
δ

δc
≈ Sc−1/3 (11.23)
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11.4 Incompressible Boundary Layer Equations

The equations at the boundary layer are derived from the conservation equa-
tions taking into account the physical structure of these layers.

For the sake of simplicity, let us assume that the flow is two-dimensional,
incompressible, steady, with constant fluid properties (ρ, µ, κ, DAB, cp, etc.),
negligible viscous dissipation (small Mach number) and without chemical re-
action (ω̇A = 0). Under the above hypothesis, the equations of continuity,
momentum, temperature and chemical concentration become

∂u

∂x
+

∂v

∂y
= 0 (11.24)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
(11.25)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
(11.26)

u
∂T

∂x
+ v

∂T

∂y
= +α

(
∂2T

∂x2
+

∂2T

∂y2

)
(11.27)

u
∂cA

∂x
+ v

∂cA

∂y
= +DA

(
∂2cA

∂x2
+

∂2cA

∂y2

)
(11.28)

where
ν =

µ

ρ
α =

κ

ρcp

are, respectively, the kinematic viscosity and the thermal diffusivity. Recall
that ν, α and DA have the same dimensions, L2/T.

These transport equations can be simplified studying the orders of mag-
nitude of all the terms, as in (11.9), to finally yield the boundary layer equa-
tions.

11.4.1 Continuity Equation

The continuity equation gives us an estimate of the vertical velocity compon-
ent Ve inside the boundary layer.

The orders of magnitude of the two terms of the continuity equation,
∂u

∂x
+

∂v

∂y
= 0 (11.29)

can be estimated as,
Ue − 0

L
+

Ve − 0
δ

≈ 0 (11.30)

Simplifying, one gets

Ve ≈ δ

L
Ue (11.31)

This equation informs us that inside the boundary layer, the v component of
the velocity is much smaller than the u component.
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11.4.2 x-Momentum Equation

For this equation, the convective terms can be estimated as

u
∂u

∂x
≈ Ue

Ue

L
=

U2
e

L
(11.32)

v
∂u

∂y
≈ Ve

Ue

δ
=

U2
e

L
(11.33)

where the order of magnitude of v derived from the continuity equation has
been used. This result implies that both convective terms are of the same
order and none can be ignored.

The size of the viscous terms can be approximated as

ν
∂2u

∂x2
≈ ν

Ue

L2
(11.34)

ν
∂2u

∂y2
≈ ν

Ue

δ2
(11.35)

As a consequence, inside the boundary layer,

ν
∂2u

∂x2
≈ ν

∂2u

∂y2

(
δ

L

)2

(11.36)

and, therefore,

ν
∂2u

∂x2
<< ν

∂2u

∂y2
(11.37)

so the term on the left-hand side can be ignored compared to the right-hand
side term.

The pressure forces, in principle, cannot be ignored. Thus, they should be
of the same order as the largest term in the x-momentum equation,

1
ρ

∆xp

L
≈ U2

e

L
(11.38)

and, therefore, the x-variation of the pressure must be of the order of

∆xp ≈ ρU2
e (11.39)

11.4.3 y-Momentum Equation

Likewise, the terms in this equation can be estimated as follows,
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u
∂v

∂x
≈ Ue

Ve

L
=

U2
e

L

δ

L
(11.40)

v
∂v

∂y
≈ Ve

Ve

δ
=

U2
e

L

δ

L
(11.41)

ν
∂2v

∂x2
≈ ν

Ve

L2
= ν

Ue

L2

δ

L
(11.42)

ν
∂2v

∂y2
≈ ν

Ve

δ2
= ν

Ue

δ2

δ

L
(11.43)

One can notice that the y-momentum equation is δ/L times smaller than
the x-counterpart. Similarly, the pressure gradient has to be of the same order
as the largest term in this equation,

1
ρ

∆yp

δ
≈ U2

e

L

δ

L
(11.44)

and, therefore,

∆yp ≈ ∆xp

(
δ

L

)2

(11.45)

As a consequence, the vertical pressure gradient can be neglected,

∂p

∂y
≈ ∂p

∂x

δ

L
→ 0 (11.46)

implying that the pressure is constant across the boundary layer and p = p(x).
Finally, the y-momentum equation is replaced by (11.46).

11.4.4 Temperature and Concentration Equations

The analysis above can be repeated for the temperature and concentration
equations. We will do it for a general scalar φ, with equation

u
∂φ

∂x
+ v

∂φ

∂y
= αφ

(
∂2φ

∂x2
+

∂2φ

∂y2

)
(11.47)

We will denote by ∆φ the variation of the scalar across the boundary layer,

∆φ = φ0 − φ∞ (11.48)

where φ0 is the value of the scalar at the solid boundary and φ∞, the value
at the free-stream. For this scalar, the boundary layer thickness is denoted by
δφ.

Then, the size of the the convective terms can be estimated as

u
∂φ

∂x
≈ Ue

∆φ

L
= Ue

∆φ

L
(11.49)

v
∂φ

∂y
≈ Ve

∆φ

δφ
= Ue

δ

δφ

∆φ

L
≈ Ue

∆φ

L
(11.50)
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Above it has been assumed that the thickness of the momentum, energy and
mass are of the same order (but not equal), i.e. δφ ≈ δ. As before, both
convective terms are of the same order and should be retained.

Similarly the viscous terms can be estimated as

αφ
∂2φ

∂x2
≈ αφ

∆φ

L2
(11.51)

αφ
∂2φ

∂y2
≈ αφ

∆φ

δ2
φ

(11.52)

and, therefore,

αφ
∂2φ

∂x2
≈ αφ

∂2φ

∂y2

(
δφ

L

)2

(11.53)

Thus, as for the viscous boundary layer,

αφ
∂2φ

∂x2
<< αφ

∂2φ

∂y2
(11.54)

and the first term can be neglected compared to the second term.

11.4.5 Boundary Layer Equations: Summary

Gathering all the equations derived in the above section, the incompressible,
two-dimensional, steady, constant diffusion coefficient, boundary layer equa-
tions can be expressed as follows.

∂u

∂x
+

∂v

∂y
= 0 (11.55)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂y2

)
(11.56)

0 = −1
ρ

∂p

∂y
(11.57)

u
∂T

∂x
+ v

∂T

∂y
= +α

(
∂2T

∂y2

)
(11.58)

u
∂cA

∂x
+ v

∂cA

∂y
= +DA

(
∂2cA

∂y2

)
(11.59)

For laminar flow and simple geometries, there are semi-analytical solutions
for these equations which must be expressed in tabular and graphical form.
The first solution of the momentum boundary layer for a flat plate is due to
Blasius and was obtained assuming self-similarity for the flow variables inside
the boundary layer (see, for instance [21, 26]).
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11.5 Measures of the Boundary Layer Thickness

The boundary layer is the area in the neighborhood of the interfaces, where the
fluid variables evolve from the interface to the free-stream values. Rigorously
speaking, for the viscous boundary layer, its thickness δ(x) is defined as

u(x, y = δ(x)) = Ue(x) (11.60)

and analogously for the thermal and mass boundary layers,

T (x, y = δT (x)) = Te(x)

cA(x, y = δc(x)) = cAe(x)
(11.61)

However, other definitions for the boundary layer thickness, linked to dif-
ferent physical phenomena, are possible.

Thickness 99%

Sometimes, it might be very difficult to measure or compute where condition
(11.60) is met. In order to facilitate its measurement or computation, this
criterion is relaxed and the boundary layer thickness is defined as the distance
from the interface where the variable reaches the 99% free-stream local value.

Note that this percentage is arbitrary, making it possible to find in practice
other values, (such as 90%), even though 99% is the most usual. To specify
which definition of boundary layer thickness is been used, the percentage is
typed as a subscript of δ.

Thus, the δ99 boundary layer thickness is defined for the viscous boundary
layer as

u(x, y = δ99(x)) = 0.99 Ue (11.62)

and for the thermal and mass boundary layers,

T (x, y = δT99(x)) − T0 = 0.99 (Te − T0)

cA(x, y = δc99(x)) − cA0 = 0.99 (cAe − cA0)
(11.63)

Integral Measures

There are other measures of the boundary layer thickness, like the displace-
ment thickness, momentum thickness, enthalpy thickness and concentration
thickness, that appear in the integral boundary layer equations. These are,
however, out of the scope of this text.

Problems

11.1 Verify the order of magnitude of δ, δT and δc for laminar flow.

11.2 Check the expressions derived for the relative boundary layer thick-
nesses of Section 11.3.2.
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Momentum, Heat and Mass Transport

Most of the transport processes occur near thin interfaces and boundary lay-
ers. Since fluid flow is governed by a coupled nonlinear system of partial
differential equations, the calculation of transport processes in industrial ap-
plications can be quite a costly task. However, in many practical situations,
the calculation of friction or energy losses in conduits, or the heat and mass
transport at interfaces can be greatly simplified by using the so-called trans-
port coefficients. These coefficients, which are based on analytical solutions
or experimental data, are typically gathered as correlations based on dimen-
sionless numbers, ready for use.

12.1 The Concept of Transport Coefficient

Assume it is desired to determine the transport of momentum, heat or mass
at an interface (solid/fluid or fluid/fluid). According to the constitutive equa-
tions, for an interface parallel to the x axis, placed at y = 0, the diffusion
fluxes across the interface are given by

τ ′ = µ
∂u

∂y

∣∣∣∣
y=0

q = −κ
∂T

∂y

∣∣∣∣
y=0

jA = −DA
∂ρA

∂y

∣∣∣∣
y=0

Therefore, to calculate the flux of any transport phenomena at an interface,
it is necessary to determine not only the fluid field, but the derivatives of the
velocity, temperature and chemical concentrations, too. These not only can
be quite costly to obtain, but sometimes, even impossible. On the one side, in
fluid mechanics there are only a few analytical solutions, and always for simple
geometries. On the other side, when the flow is turbulent, reliable numerical
computation of industrial configurations is typically out of reach for today’s
computers.
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The Local Transport Coefficient

Frequently, instead of very accurate values of the transport fluxes, a good
approximation based on empirical correlations can be sufficient. In particular,
instead of using the constitutive equations, the flux of a property across an
interface can be approximated from the algebraic relation

dΓ0 = K (Π0 − Π∞) dA (12.1)

In this expression, Γ0 is the property flux at the interface, being positive when
towards the flow; Π0 is the property value at the interface; Π∞ is the refer-
ence value of the property, generally the free-stream value; dA, the elemental
differential of area; and K, the local transport coefficient.

Therefore, the transport coefficient K relates a characteristic difference of
the variable (Π0 − Π∞) with the flux Γ0, allowing its computation without
knowledge of the derivative in a simple and practical way. Examples of trans-
port coefficients are found in the table below.

Table 12.1. Transport coefficient for various phenomena.

Flux Γ dΓ/dA Π Transport Coefficient

Force F [N] τ ′
0 [Pa] ρV Kτ

Heat/time Q̇ [W] q [W/m2] T h

Mass of A/time JA [kg/s] jA [kg/(m2 s)] ρA hm

The transport coefficient is generally determined from experiments. And,
whereas the constitutive relations are general, the transport coefficient de-
pends on the flow configuration, i.e. the geometrical shape, the boundary
conditions, whether the flow is laminar or turbulent, etc.

Note that, in the definition of the transport coefficient, the derivative of
the variable is estimated from the difference of a fluid variable between the
interface and free-stream values.

Remark 12.1. Sometimes, the reference value Π∞ is taken at some other point
of the flow or takes on a more complex physical definition.

The Global Transport Coefficient

The above introduced transport coefficient is the local transport coefficient
because it applies to an elemental differential of surface, that is, a local zone.

Likewise, it is possible to define a global transport coefficient K, that gives
the flux for the whole area A of interest,
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U T ρ Π

Π 0

Γ

δ
δT

δc

Fig. 12.1. Viscous, thermal and mass boundary layer.

Γ0 = K (Π0 − Π∞) A (12.2)

The relation between the global and local transport coefficients can be
obtained by integrating the elemental flux dΓ0 along the surface A,

Γ0 =
∫

A

dΓ0 =
∫

A

K (Π0 − Π∞) dA

= (Π0 − Π∞)
∫

A

K dA ≡ K (Π0 − Π∞) A
(12.3)

Thus, from the last line,

K =
1
A

∫
A

K dA (12.4)

Many times, the overbar is omitted from the global transport coefficient. In
this case, whether the transport coefficient corresponds to the local or global
parameter should be distinguished from the context.

12.2 Momentum Transport

The momentum transport coefficient is related to other commonly used para-
meters to determine drag or pipe losses, like the drag CD or friction Cf coef-
ficients.

For momentum transport, in the general definition of the transport coef-
ficient we must identify

Γ0 −→ F

Π −→ ρV

K −→ Kτ

(12.5)

For a still interface, V0 = 0, and

dF = Kτ (ρV0 − ρV∞) dA

= −Kτ ρV∞ dA
(12.6)



202 12 Momentum, Heat and Mass Transport

V

Fig. 12.2. Viscous boundary layer along a flat plate.

Relation Between the Transport and Drag Coefficients

Reorganizing and using the shear stress at the solid boundary, τ ′
0,

Kτ = −
dF

dA
ρ V∞

= − −τ ′
0

ρ V∞
=

τ ′
0

ρ V∞
(12.7)

Therefore, the momentum transport coefficient can be calculated from τ ′
0 at

the boundary for the given flow configuration.
The order of magnitude of Kτ is given by

Kτ =

µ
∂u

∂y

∣∣∣∣
y=0

ρ V∞
≈ O

⎛
⎜⎝µ

V∞
δ

ρ V∞

⎞
⎟⎠ = O

(
µ

ρ δ

)
(12.8)

where O(·) denotes order of magnitude. This expression shows the influence
of the boundary layer thickness δ on the transport of momentum. For the
same free-stream velocity and fluid properties, if the boundary layer thickness
decreases, the friction increases.

In order to measure the momentum transport coefficient, or to correlate
the experimental values, we must apply the theory of dimensional analysis.

The momentum transport coefficient for a steady, incompressible, iso-
thermal flow depends on

Kτ = ϕ(ρ, µ, V∞, L) (12.9)

However, since this transport coefficient is related to the wall shear stress, τ ′
0,

it can be reformulated as

τ ′
0 =

dF

dA
= ϕ(ρ, µ, V∞, L) (12.10)

Application of dimensional analysis to the above function (see Chapter 9)
gives

Cf = Cf(Re) (12.11)
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where,

Cf =
τ ′
0

1
2ρV 2

∞
(12.12)

From this expression and that for Kτ (12.7), we have

τ ′
0 = 1

2ρV 2
∞Cf

τ ′
0 = ρV∞Kτ

(12.13)

Dividing both expressions, one can conclude that

Kτ =
1
2
V∞Cf (12.14)

Remark 12.2. The drag and friction coefficients are momentum transport coef-
ficients.

Remark 12.3. The same conclusion applies to the global transport coefficient,
where for this case

Cf =
F

1
2ρV 2

∞A
(12.15)

Example 12.1. A researcher is interested in the aerodynamic resistance FD

of spheres. He conducts several experiments in an aerodynamic tunnel at
atmospheric conditions (ρ = 1.2 kg/m3, µ = 1.8 × 10−5 kg/(m s)) with a
sphere of a diameter D = 10 cm, concluding that

FD = 0.0015 V 1.92

where V is the uniform upstream air velocity.

(a) What is the correct way of presenting the correlation?
(b) Determine the resistance of a D = 2 cm sphere at an air speed of V =

1 m/s.

Solution. (a) As we have shown above, the dimensionless numbers that govern
the resistance of bodies in isothermal low speed conditions are CD and ReD.
Thus, the correlation could be written as

CD = C Rem
D

with C and m constants. Let us find C and m. Expanding the dimensionless
equation,

F
1
2ρV 2D2

= C

(
ρV D

µ

)m
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and writing it out in the form of the given correlation,

F = C
1
2
ρV 2D2

(
ρV D

µ

)m

=
[
C

1
2
ρD2

(
ρD

µ

)m]
V 2+m

Matching the power of V in both equations, 2 + m = 1.92 so m = −0.08.
Matching the constant,

C
1
2
ρD2

(
ρD

µ

)m

= 0.0015

from where
C = 0.306

Thus, the correlation in dimensionless form is

CD = 0.306 Re−0.08
D

(b) For the small sphere, one can calculate that ReD = 1 333 so CD = 0.2846
and

FD =
1
2
ρV 2D2 CD = 6.83 × 10−5 N

Table 12.2. Correlations for the friction factor in circular cross-section pipes [25].

Flow regime Friction factor λ

Laminar ReD < 2 300 64/ReD

Turbulent ReD > 2 300
1

λ1/2
= −2.0 log

(
ε/D

3.7
+

2.51

ReDλ1/2

)

(Colebrook)

Fully rough
ReDλ1/2

ε/D
> 70

1

λ1/2
= −2.0 log

(
ε/D

3.7

)

(Nikuradse)

Smooth pipes
1

λ1/2
= 2.0 log

(
ReDλ1/2

)
− 0.8

(Prandtl)

Head Losses in Fluid-Flow Conduits

Linear Losses in Pipes

In the chapter on Dimensional Analysis, we found that the head losses for a
steady incompressible flow in a constant section pipe could be expressed by
the Darcy-Weisbach equation
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hf =
∆p∗

ρg
= λ(

ε

D
, ReD)

L

D

U2

2g

where D is the pipe diameter, L the pipe length, U the mean velocity and ε the
characteristic length of the roughness. Table 12.2 gathers some correlations
for λ. Also, the Moody Diagram depicts graphically the friction factor as a
function of the Reynolds number based on the pipe diameter and the relative
roughness (see Fig. 12.4).

Pin

u

Pout
τ'0

τ'0

u

L

D

Fig. 12.3. Momentum balance in a horizontal pipe.

A force balance along the pipe axis (see Fig. 12.3) yields that the pressure
forces must be equilibrated by the friction forces,

∆p∗
πD2

4
= τ ′

0 πDL

where p∗ = p+ρgz is the modified pressure, which includes the gravity forces.
Substituting the value of the pressure loss given by the Darcy-Weisbach equa-
tion and τ ′

0 as a function of Cf ,

λ
L

D

1
2
ρU2 πD2

4
= Cf

1
2
ρU2 πDL

leads to

Cf =
λ

4
(12.16)

As a consequence, λ( ε
D , ReD) is a momentum transport coefficient.

Singular Losses in Pipe Components

In industrial plants, besides constant section straight pipes, one can find com-
ponents such as bends, valves, tes, expansions and so on. In these elements,
the viscous dissipation gives rise to energy losses, which are called singular or
local head losses. These can be computed as



206 12 Momentum, Heat and Mass Transport

Fig. 12.4. Moody diagram. The Reynolds number is based on the pipe diameter
D. Reproduced with permission from [9].
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Table 12.3. Guiding values for the local head loss coefficient for several pipe com-
ponents. The flow goes from section 1 to 2.

Element Ks

Outlet off tank into pipe 0.05 - 1.

Inlet to tank from pipe 1.

Sudden expansion
(
1 − A1

A2

)2
Sudden contraction [25]

{
0.42

(
1 − A2

A1

)
D2/D1 ≤ 0.76(

1 − A1
A2

)2
D2/D1 > 0.76

Long radius 90◦ elbow 0.4

Short radius 90◦ elbow 0.9

Valve (fully opened) 0.03 - 14

Gate valve (fully opened) 0.1

Globe valve (fully opened) 8.0

hf =
∆p∗

ρg
= Ks

U2

2g

where Ks is the dimensionless singular head loss coefficient. The constant Ks

depends on the element type and its geometry. Therefore, for each new design,
it has to be experimentally determined. Typically, for high Reynolds numbers,
Ks is considered independent of Re and so, can be taken as a constant. The
reference velocity U can be the upstream or downstream mean velocity. For
some examples, see Table 12.3.

As before, if the flow section is the same at the inlet and the outlet of the
element, it can be deduced that

Cf =
D

L

Ks

4

12.2.1 Basic Momentum Transport Coefficients

The correlations of Table 12.4 are extracted from [16, 10, 3] and are for con-
stant property boundary layers.

12.3 Heat Transport

For the thermal transport coefficient h, we must identify
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Table 12.4. Basic momentum transport coefficients.

Geometry Regime Correlation

flat plate laminar
Rex < 3 × 105

Cfx = 0.664 Re
−1/2
x

flat plate laminar
Rex < 3 × 105

CfL = 1.328 Re
−1/2
L

flat plate turbulent
Rex > 3 × 105

Cfx = 0.0576 Re
−1/5
x

pipe laminar
ReD < 2 300

Cf = 16 Re−1
D

pipe turbulent
3 × 104 < ReD < 106

Cf = 0.046 Re
−1/5
D

Γ0 −→ Q̇

Π −→ T

K −→ h

(12.17)

where Q̇ is the heat flux [W] (not to be confused with the volumetric flow rate
Q). The definition of the transport coefficient leads to

dQ̇ = h (T0 − T∞) dA (12.18)

This expression can be helpful to derive the SI units of the heat transport
coefficient,

[h] = W/(m2 K) (12.19)

An expression for the heat transfer coefficient can be obtained equaling
the heat flux calculated from Fourier’s law and from the transport coefficient
definition,

dQ̇ = −κ
∂T

∂y

∣∣∣∣
y=0

dA = h (T0 − T∞) dA (12.20)

which implies,

h =

κ
∂T

∂y

∣∣∣∣
y=0

T∞ − T0
(12.21)

This expression gives us the order of magnitude of h as a function of κ and
the thermal boundary layer thickness δT ,
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h = O

⎛
⎜⎜⎝

κ
T∞ − T0

δT

T∞ − T0

⎞
⎟⎟⎠ = O

(
κ

δT

)
(12.22)

where the symbol O(·) denotes order of magnitude of (·).
Finally, the global transport coefficient is related to the local coefficient

as,

h =
1
A

∫
A

h dA (12.23)

and
Q̇ = h (T0 − T∞) A (12.24)

Next, we are going to analyze the two main cases of heat transport: forced
convection and natural convection. Between these two cases we may find mixed
convection.

12.3.1 Heat Transfer by Forced Convection

Heat transport is said to be by forced convection when it happens in the
presence of a free-stream velocity field. One of the traits of forced convection
is that the fluid velocity enhances heat transport and, in general, all transport
processes.

For the analysis, let us assume that the heat transport coefficient h about
an interface is desired in a uniform stream of velocity V . Typically, this para-
meter is measured experimentally, so let’s apply dimensional analysis.

For a steady, incompressible flow, the heat transfer coefficient depends
on the free-stream velocity V ; the dynamic properties of the fluid ρ, µ; the
thermal fluid properties cp, κ; the geometry and the dimensions of the body
or interface, represented by the characteristic length L (here we could include
every length and angle of the body, but this is typically implicitly assumed).
Thus,

h = ϕ(ρ, µ, L, V, cp, κ) (12.25)

The dimensional matrix can be written as

M L T Θ

ρ 1 -3 0 0

V 0 1 -1 0

L 0 1 0 0

cp 0 2 -2 -1

κ 1 1 -3 -1

µ 1 -1 -1 0

h 1 0 -3 -1
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whose range is 4. The first four variables ρ, V , L, cp are chosen as dimension-
ally independent variables. The dimensionless groups are as follows.

• Πκ

The requirement that the ratio

Πκ =
κ

ραV βLγcδ
p

be dimensionless implies

M1L1T−3Θ−1 = (ML−3)α (LT−1)β Lγ (L2T−2Θ−1)δ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 = α

1 = −3α + β + γ + 2δ

−3 = −β − 2δ

−1 = −δ

Finally

Πκ =
κ

ρcpV L
=

1
Pe

• Πµ

For µ, one obtains the Reynolds number

Πµ =
µ

ρV L
=

1
Re

• Πh

Similarly,

M1L0T−3Θ−1 = (ML−3)α (LT−1)β Lγ (L2T−2Θ−1)δ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 = α

0 = −3α + β + γ + 2δ

−3 = −β − 2δ

−1 = −δ

from where Πh equals

St =
h

ρV cp
Stanton number (12.26)

The Stanton number is an important dimensionless number in heat trans-
port phenomena.
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Thus, the dimensionless expression for the heat transport coefficient can
be written as

St = ϕ̃(Re, Pe)

This expression can also be found as a function of the Nusselt number,

Nu =
hL

κ
Nusselt number (12.27)

which can be related to the Stanton number,

St =
h

ρV cp
=

hL

κ

κ

ρV cpL
= Nu

1
Pe

(12.28)

Since
Pe = Re Pr

the nondimensional dependency can be rewritten as

Nu = ϕ̃′(Re, Pr) (12.29)

Recall that Nu also represents the dimensionless heat flux at the interface (see
Chapter 9).

Remark 12.4. Correlations for the heat transport coefficient typically appear
in the form

Nu = C Rea Prb

where C, a and b are constants.

U∞
a 

b 

U∞

a 

b 

Fig. 12.5. Cooling down a flat plate with a uniform stream.

Example 12.2. It is desired to cool down a thin flat plate of dimensions a × b
with a << b (see Fig. 12.5). The plate rests horizontally on the ground. When
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a uniform air stream is blown onto the plate, for which orientation will the
plate cool down faster?
Solution. Let us assume the conditions are those of laminar flow. The answer
to the problem would be the same for turbulent flow conditions. For air (Pr =
0.72) at laminar flow conditions, the global Nusselt number for a flat plate is
given by

NuL = 0.664 Re1/2
L Pr1/3

where L is the length of the boundary layer along the streamline direction.
The total heat flux on the plate is given by

Q̇ = h̄ ∆T S

with S = ab, the surface of the plate. Therefore, for a given temperature
difference ∆T the configuration with the highest h̄ will cool down faster.
Thus,

h̄ =
κ NuL

L

= 0.664 κ
L Re1/2

L Pr1/3

= 0.664 κ
(

ρV
µ

)1/2

Pr1/3L−1/2

Note that all the parameters are the same for both configurations except L.
The shorter the L, the larger h̄. Therefore, we want to pick L = a so the
smaller side is oriented in the direction of the flow.

This is so because at the leading edge, the heat transfer rate is largest and
the above plate orientation posseses the longest leading edge.

12.3.2 Heat Transfer by Natural Convection

In this case, the flow around the interface is not forced, but is generated by
buoyancy forces. These are due to the density differences within the fluid,
caused by the thermal gradients between the interface and the free-stream.
This type of heat transport is called natural convection or free convection.

In natural convection, the heat transport cannot depend on the velocity of
the forced free-stream V . Rather, it depends on the dynamic fluid properties,
ρ, µ; its thermal properties, cp and κ; the problem characteristic length L; and
the characteristic buoyant force, a function of the product gβ∆T , where g is
the acceleration of the gravity, β the thermal dilatation coefficient (units 1/K),
and ∆T the characteristic temperature difference of the flow. Summarizing,

h = ϕ(ρ, µ, L, cp, κ, gβ∆T ) (12.30)

The dimensional matrix is given by
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M L T Θ

ρ 1 -3 0 0

L 0 1 0 0

µ 1 -1 -1 0

cp 0 2 -2 -1

κ 1 1 -3 -1

gβ∆T 0 1 -2 0

h 1 0 -3 -1

whose range is 4. The dimensionally independent variables are chosen as ρ,
L, µ and cp. Next, the dimensionless groups are determined.

• Πκ

Requiring the ratio below be nondimensional,

Πκ =
κ

ραLβµγcδ
p

implies

M1L1T−3Θ−1 = (ML−3)α Lβ (ML−1T−1)γ (L2T−2Θ−1)δ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 = α + γ

1 = −3α + β − γ + 2δ

−3 = −γ − 2δ

−1 = −δ

Thus,

Πκ =
κ

µcp
=

1
Pr

• Πβ

From
Πβ =

gβ∆T

ραLβµγcδ
p

one gets

M0L1T−2Θ0 = (ML−3)α Lβ (ML−1T−1)γ (L2T−2Θ−1)δ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 = α + γ

1 = −3α + β − γ + 2δ

−2 = −γ − 2δ

0 = −δ
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Thus Πβ can be written as

Gr =
ρ2gβ∆TL3

µ2
Grashof number (12.31)

The Grashof number indicates the relevance of the buoyancy forces due to
the thermal gradients compared with the viscous forces. Sometimes, it is
replaced by the Rayleigh number, Ra,

Ra = Gr Pr =
ρgβ∆TL3

µα
Rayleigh number (12.32)

• Πh

Similarly,

M1L0T−3Θ−1 = (ML−3)α Lβ (ML−1T−1)γ (L2T−2Θ−1)δ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 = α + γ

0 = −3α + β − γ + 2δ

−3 = −γ − 2δ

−1 = −δ

Πh =
hL

µcp

The dimensionless dependency of the heat transport coefficient can be
finally written as

hL

µcp
= ϕ̃(Pr, Gr) (12.33)

The nondimensional heat transport coefficient can also be expressed as a func-
tion of the Nusselt number,

hL

µcp
=

hL

κ

κ

µcp
= Nu

1
Pr

(12.34)

Thus, for natural convection, the dimensionless heat transport coefficient is a
function of Prandtl and Grashof:

Nu = ϕ̃′(Pr, Gr) (12.35)

or Prandtl and Rayleigh
Nu = ϕ̃′′(Pr, Ra) (12.36)
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12.3.3 Basic Heat Transport Coefficients

The following correlations are extracted from [16, 10, 3] and are for constant
property boundary layers. This assumption is admissible for many heat trans-
port problems.

Table 12.5. Basic heat transport coefficients. Forced convection.

Forced convection

Geometry Regime Correlation

flat plate laminar, isothermal
Pr > 0.6
Rex < 3 × 105

Nux = 0.332 Re
1/2
x Pr1/3

flat plate laminar, isothermal
Pr > 0.6
Rex < 3 × 105

NuL = 0.664 Re
1/2
L Pr1/3

flat plate laminar, isothermal
Pr << 1
Rex < 3 × 105

Nux = 0.565 Re
1/2
x Pr1/2

flat plate laminar, constant heat-flux
Rex < 3 × 105

Nux = 0.453 Re
1/2
x Pr1/3

flat plate turbulent, isothermal
0.5 < Pr < 1
5 × 105 < Rex < 5 × 106

Nux = 0.0287 Re
4/5
x Pr3/5

flat plate turbulent, isothermal
0.6 < Pr < 60
5 × 105 < Rex < 5 × 108

NuL = 0.037 (Re
4/5
L − 871) Pr1/3

flat plate turbulent, isothermal NuL = 0.360 Re
4/5
L Pr1/3

pipe laminar, isothermal, fully
developed T and u

NuD = 3.658

pipe laminar, constant flux, fully
developed T and u

NuD = 4.364

cylinder isothermal Nu = (0.4 Re
1/2
D + 0.06 Re

2/3
D )

× Pr2/5(µ∞
µ0

)1/4

sphere isothermal NuD = 2 + 0.6 Re
1/2
D Pr1/3

packed
bed
of spheres

isothermal
d = spheres diameter
ρV = ṁ/A
A = cross-sectional area

Nud = 1.625 Re
1/2
d Pr1/3
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Table 12.6. Basic heat transport coefficients. Natural convection.

Natural convection

Geometry Regime Correlation

vertical
plate

laminar, isothermal
†

Nux = f(Pr) Gr
1/4
x

vertical
plate

laminar, isothermal
†

NuL = 4
3
f(Pr) Gr

1/4
L

vertical
plate

laminar, isothermal Nux = 0.508
(

Pr2

0.952+Pr

)1/4

Gr
1/4
x

vertical
plate

turbulent, isothermal
109 < GrL < 1012

NuL = 0.15 (GrLPr)1/3

[1+(0.492/Pr)9/16]16/27

vertical
plate

turbulent, constant heat-
flux
109 < GrL

Nux = 0.0942 (GrxPr)1/3

†
See Table 12.7 for f(Pr).

Table 12.7. Function f(Pr) for the heat transfer coefficient Nu on an isothermal
vertical surface due to natural convection [16].

Pr 0.01 0.1 0.72 1.0 10 100 1000

f(Pr) 0.0570 0.164 0.357 0.401 0.827 1.55 2.80

12.4 Mass Transport

The formulation of the mass transport coefficient, hm or Km, is analogous to
that of the heat transfer coefficient. In this case, we identify

Γ0 −→ JA

Π −→ ρA

K −→ hm

(12.37)

where JA is the mass flux (kg/s) of the chemical species A. The definition of
the mass transport coefficient is

dJA = hm (ρA0 − ρA∞) dA (12.38)

The SI units of the mass transport coefficient can be deduced to be

[hm] =
m
s

(12.39)
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Assuming small variations of mixture density, through the Fick’s law the
mass transfer coefficient can be related to the derivative of the concentration
at the interface,

dJA = −DAB
∂ρA

∂y

∣∣∣∣
y=0

dA = hm (ρA0 − ρA∞) dA (12.40)

from where

hm =

DAB
∂ρA

∂y

∣∣∣∣
y=0

ρA∞ − ρA0
(12.41)

This equation shows that the order of magnitude, denoted by O(·), of the
mass transport coefficient is related to the molecular diffusion DAB and the
mass boundary layer thickness δc,

hm = O

⎛
⎝DAB

ρA∞ − ρA0
δc

ρA∞ − ρA0

⎞
⎠ = O

(
DAB

δc

)
(12.42)

Finally, the global mass transfer coefficient can be related to the average
of the local coefficient,

hm =
1
A

∫
A

hm dA (12.43)

for which
JA = hm (ρA0 − ρA∞) A (12.44)

Other Mass Transfer Coefficients

The definition of transport coefficient can be applied to other measures of
concentration, such as mass fraction or molar concentration.

As a function of mass fractions, equation (12.38) can be written as

dJA = hY (YA0 − YA∞) dA (12.45)

from where
hY = ρhm (12.46)

Similarly, a transport coefficient can be defined for the molar flux Jm
A as

a function of the molar concentration or molar fraction,

dJm
A = hc (cA0 − cA∞) dA (12.47)

= chX (XA0 − XA∞) dA (12.48)

from where it can be concluded

hX = c hc (12.49)
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According to Dalton’s law, the molar fraction of a component in a gas XA

can be written as a function of the partial pressure pA. Thus, using the total
pressure of the mixture p,

dJm
A = hX (XA0 − XA∞) dA

= hX
1
p

(pA0 − pA∞) dA

= hp (pA0 − pA∞) dA

(12.50)

where the corresponding mass transfer coefficient is in this case

hp =
hX

p
=

c hc

p
=

hc

RT
(12.51)

where R is the universal gas constant.

12.4.1 Mass Transport by Forced Convection

To study the mass transport coefficient by forced convection, we proceed in
a similar fashion to previous sections. The mass transfer coefficient depends
on the free-stream velocity V ; the fluid dynamic properties ρ, µ; the mass
diffusion coefficient DAB; and a characteristic length scale of the problem L.
Thus,

hm = ϕ(ρ, µ, L, V, DAB) (12.52)

This yields the following dimensional matrix,

M L T

ρ 1 -3 0

V 0 1 -1

L 0 1 0

µ 1 -1 -1

DAB 0 2 -1

hm 0 1 -1

whose range is 3. The first three variables, ρ, V , L, are chosen as the dimen-
sionally independent variables, leading to the following dimensionless vari-
ables,

Πµ =
µ

ρV L
=

1
Re

ΠDAB =
DAB

V L
=

1
PeII

Πhm =
hm

V
= Stm
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The last number is called the mass transfer Stanton number,

Stm =
hm

V
Mass transfer Stanton number (12.53)

Finally, the nondimensional dependency of the mass transfer coefficient is

Stm = ϕ̃(Re, PeII) (12.54)

Likewise, the nondimensional mass transport coefficient can be expressed
as a mass Nusselt or Sherwood number,

Num = Sh =
hmL

DAB
Mass Nusselt or Sherwood number (12.55)

Thus,

Stm =
hm

V
=

hmL

DAB

DAB

V L
= Num

1
PeII

(12.56)

Furthermore,
PeII = Re Sc (12.57)

and another way to write out the nondimensional dependency is

Num = Sh = ϕ̃′(Re, Sc) (12.58)

12.4.2 Mass Transport by Natural Convection

As for heat transport, it is also possible to transfer mass induced by density
variations in a gravity field. In this case, the mass transfer coefficient depends
on the fluid dynamic properties ρ, µ; the mass diffusion coefficient DAB; the
characteristic concentration difference g∆ρA; and a characteristic length scale
of the problem L. Thus,

hm = ϕ(ρ, µ, L, g∆ρA, DAB) (12.59)

In dimensionless form, the functional dependency can be expressed as

Num = Sh = ϕ̃(Grm, Sc) (12.60)

where the concentration Grashof number is

Grm =
ρg∆ρAL3

µ2
concentration Grashof number (12.61)
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ρA∞
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ρA0
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ρA∞
l

Fig. 12.6. Concentration profile of species A across an interface.

12.4.3 Mass Transfer across Fluid/Fluid Interfaces

Assume that there is a liquid/gas interface, like that of Fig. 12.6. The same
procedure can be applied to a general fluid/fluid interface.

At each side of the interface there is a distinct mass transfer coefficient. In
the absence of surface chemical reactions and considering that the interface
cannot store mass, the mass flux of species A across the interface is continuous,

jg
A = jl

A (12.62)

Here the superscripts g and l refer to the gas and liquid phase, respectively.
Applying the definition of the mass transport coefficient at both sides of the
interface,

jA = hg
m(ρg

A0 − ρg
A∞) = hl

m(ρl
A∞ − ρl

A0) (12.63)

where the flux has been taken positive from the liquid towards the gas.
In general, the chemical concentrations are not continuous across the in-

terface, and so, ρg
A0 �= ρl

A0, but these are related by the equilibrium curve and
solubility data,

ρg
A0 = f(ρl

A0) (12.64)

As exceptions where this is not a good approximation we can cite extremely
high reaction rates (typical in near vacuum conditions) and interfaces with
high concentrations of particles or surfactants.

Example 12.3 (Evaporation across a water/air interface). The water evapora-
tion rate is to be obtained for the pool of Fig. 12.7 when the wind blows from
the West at 1 m/s. The size of the pool is given by a = 9 m and b = 6 m.
The ambient conditions are T = 300 K and 40% relative humidity. At these
conditions, the kinematic viscosity of air is ν = 1.57 × 10−5 m2/s and the
molecular diffusivity of water vapor in air, D = 0.26 × 10−4 m2/s.
Solution. The Reynolds number can be calculated as ReL = 2.5 × 105 so
assuming that the boundary layer starts at the pool, the laminar correlation
can be used,
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Fig. 12.7. Evaporation across a water/air interface.

ShL = 0.664 Re1/2
L Sc1/3

where for air, Sc = 0.6. Thus, ShL = 280.0 and h̄m = ShLD/L = 8.1 ×
10−4 m/s.

The mass flux can be calculated from the global transport coefficient,

JH2O = h̄m (ρH2O0 − ρH2O∞)A

The concentration at infinity can be evaluated from the relative humidity
φ = 40/100 = 0.4 and the saturation concentration,

ρH2O∞ = φ ρH2Osat

Then, since the evaporation process is not very fast, we can assume that at
the interface the water vapor is at equilibrium conditions, ρH2O0 = ρH2Osat.
Thus,

JH2O = h̄m (1 − φ)ρH2OsatA

The equilibrium conditions at the interface are obtained from the water-air
saturation curve at 300 K, psat = 3 531 Pa, and because MH2O = 18

ρH2Osat =
psat

RgasT
=

3 531
8 314
18

300
= 0.025 kg/m3

Gathering everything, one obtains,

JH2O = 1.5 × 10−4 kg/s = 13 kg/day

Overall Mass Transfer Coefficient

Sometimes, in order to avoid calculating the equilibrium concentrations at
the interface, we may want to obtain the mass transfer rate from the bulk
concentrations in the fluids.

Let us define the equilibrium concentrations, ρl
Ae and ρg

Ae which corres-
pond, respectively, to ρg

A∞ and ρl
A∞, that is
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ρg
A∞ = f(ρl

Ae) (12.65)
ρg

Ae = f(ρl
A∞) (12.66)

Then, the overall mass transfer coefficients K l
m, Kg

m are defined such that the
same mass transfer rate is obtained from bulk concentrations,

hg
m(ρg

A0 − ρg
A∞) = Kg

m(ρg
Ae − ρg

A∞) (12.67)
hl

m(ρl
A∞ − ρl

A0) = K l
m(ρl

A∞ − ρl
Ae) (12.68)

ρ
Ae 

ρ
A0 

ρ
A∞ 

ρ
A 

ρ
A∞ 

g 

ρ
A0 

g 

ρ
Ae 

g 

ρ
A 

g 

m 

m 

l 

g 

l l l l 

Fig. 12.8. Reference values at the equilibrium phase curve to calculate the overall
mass transfer coefficient across an interface.

Defining the slopes at the equilibrium curve,

ml =
ρg

Ae − ρg
A0

ρl
A∞ − ρl

A0

(12.69)

mg =
ρg

A0 − ρg
A∞

ρl
A0 − ρl

Ae

(12.70)

it can be concluded that

1
K l

m

=
1

hl
m

+
1

mlhg
m

(12.71)

1
Kg

m
=

1
hg

m
+

mg

hl
m

(12.72)

Three cases can be distinguished.
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(a) hl
m

mlhg
m

<< 1. The liquid phase has more resistance than the gas phase and
it is said that the mass transfer at the interface is liquid-phase controlled.
Then K l

m ≈ hl
m.

(b) hl
m

mlhg
m

>> 1. The gas phase has more resistance than the liquid phase and
it is said that the mass transfer at the interface is gas-phase controlled.
Then Kg

m ≈ hg
m.

(c) 0.01 <
hl

m

mlhg
m

< 10. Then both phases present similar resistance to mass
transfer and the interactions between the phases must be accounted for.

12.4.4 Basic Mass Transport Coefficients

The following correlations are extracted from [16, 10, 3] and are for constant
property boundary layers. This assumption may be a rude approximation for
mass transfer problems, mainly when mass transfer rates are high.

Table 12.8. Basic mass transport coefficients.

Forced convection

Geometry Regime Correlation

flat plate laminar, iso-concentration
Sc > 0.6
Re < 3 × 105

Shx = 0.332 Re
1/2
x Sc1/3

flat plate laminar, iso-concentration
Sc > 0.6
Re < 3 × 105

ShL = 0.664 Re
1/2
L Sc1/3

flat plate laminar, constant mass flux
Rex < 3 × 105

Shx = 0.453 Re
1/2
x Sc1/3

sphere iso-concentration ShD = 2 + 0.6 Re
1/2
D Sc1/3

12.5 Analogies

In previous chapters, we have seen that there is a strong similitude among the
mathematical models of transport phenomena for both convection and diffu-
sion. Transport by convection is modeled by the scalar product of the velocity
times a spatial gradient. Chapter 7 showed that the constitutive relations are
similar: the diffusion flux equals a diffusion coefficient times a gradient.

These similarities are not by chance, but are due to the physical transport
mechanisms being the same for all the fluid variables. Furthermore, these sim-
ilarities can be mathematically explained and lead to the so-called analogies
between the various transport phenomena.
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Fig. 12.9. Behavior of the dimensional variables in the neighborhood of a solid
boundary.

12.5.1 Reynolds Analogy

Consider the dimensional velocity, temperature and chemical concentration
around a solid boundary, as Fig. 12.9 depicts. The subscript 0 denotes the
values at the boundary, whereas the infinity, the free-stream values.

Let us define the following dimensionless variables,

x∗ = x
L u∗ =

u

U∞
T ∗ = T − T0

T∞ − T0
ρ∗A = ρA − ρA0

ρA∞ − ρA0

p∗ =
p

ρU2

(12.73)

With this change of variables, all the dimensionless variables obey the same

T *1 ρ*1

y

u *1

* y * y *

A

Fig. 12.10. Behavior of the dimensionless variables in the neighborhood of the solid
boundary.

boundary conditions across the boundary layer. At the solid boundary, y = 0,
u = 0, T = T0, ρA = ρA0 and, therefore,

y = 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∗ = 0

T ∗ = 0

ρ∗A = 0

(12.74)
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Away from the solid boundary, at y = ∞, u = U∞, T = T∞ and ρA = ρA∞
and, therefore,

y → ∞

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∗ = 1

T ∗ = 1

ρ∗A = 1

(12.75)

See Fig. 12.10.
We introduce the above change of variables in the two-dimensional, steady,

constant fluid property flow equations, with negligible viscous dissipation and
no chemical reactions. The dimensionless form of the equations is

u∗ · ∇u∗ = −∇p∗ +
1

Re
∇2u∗ (12.76)

u∗ · ∇T ∗ = +
1

Re Pr
∇2T ∗ (12.77)

u∗ · ∇ρ∗A = +
1

Re Sc
∇2ρ∗A (12.78)

Note that if Pr = Sc, Eq. (12.77) and (12.78) are the same. Furthermore,
in the absence of pressure gradients, ∇p∗ = 0 and for Pr = Sc = 1, the three
equations are equal.

Let us calculate the nondimensional form of the transport coefficients. All
the derivatives are calculated at the wall, y = y∗ = 0.

(a) Momentum

Cf =
τ0

1
2ρU2

∞
=

µ
∂u

∂y

∣∣∣
y=0

1
2ρU2

∞
=

µ
U∞
L

1
2ρU2

∞

∂u∗

∂y∗

∣∣∣
y∗=0

=
2

Re
∂u∗

∂y∗

∣∣∣
y∗=0

(12.79)

(b) Heat

q = −κ
∂T

∂y

∣∣∣
y=0

= −κ
T∞ − T0

L

∂T ∗

∂y∗

∣∣∣
y∗=0

(12.80)

h(T0 − T∞) = κ
T0 − T∞

L

∂T ∗

∂y∗

∣∣∣
y∗=0

(12.81)

Nu =
hL

κ
=

∂T ∗

∂y∗

∣∣∣
y∗=0

(12.82)

(c) Mass

jA = −DAB
∂ρA

∂y

∣∣∣
y=0

= −DAB
ρA∞ − ρA0

L

∂ρ∗A
∂y∗

∣∣∣
y∗=0

(12.83)

hm(ρA0 − ρA∞) = DAB
ρA0 − ρA∞

L

∂ρ∗A
∂y∗

∣∣∣
y∗=0

(12.84)

Sh =
hmL

DAB
=

∂ρ∗A
∂y∗

∣∣∣
y∗=0

(12.85)
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That is, the dimensionless transport coefficients are related to the gradients
of the nondimensional variables.

In the absence of pressure gradients, ∇p∗ = 0 (i.e. at constant pressure)
and if Pr = Sc = 1, then, the three dimensionless equations and boundary
conditions are the same. Thus, the dimensionless solutions must be also the
same for the three fluid variables:

u∗(x∗, y∗) = T ∗(x∗, y∗) = ρ∗A(x∗, y∗) (12.86)

Therefore, the dimensionless derivatives are also equal for the three fields,

∂u∗

∂y∗ =
∂T ∗

∂y∗ =
∂ρ∗A
∂y∗ (12.87)

and one arrives at the Reynolds analogy:

Re
2

Cf = Nu = Sh (12.88)

As a function of Stanton numbers,

1
2

Cf = St = Stm (12.89)

Remark 12.5. The conditions for this analogy to hold are two: Pr = Sc = 1
and ∇p = 0. This second condition limits the application of the analogy to
configurations where all the drag comes from friction, that is, there is no drag
due to pressure or form drag. Therefore, this holds for transport coefficients
in boundary layers along flat walls and pipes. In particular, this analogy is
not applicable for transport coefficients around blunt bodies, like spheres.

12.5.2 Chilton-Colburn Analogy

The Reynolds analogy is quite restrictive because it only can be applied for
Pr = Sc = 1. In practice, it is observed that this relation can be applied for a
wider range of dimensionless numbers if a correction as a function of Pr and
Sc is introduced. In this way, the Chilton-Colburn analogy is obtained,

1
2 Cf = St Pr2/3 0.6 < Pr < 60
1
2 Cf = Stm Sc2/3 0.6 < Sc < 6000

(12.90)

Note that this analogy is only applicable within the specified range.
Within both ranges of Prandtl and Schmidt numbers, one can conclude

Sh = Nu Le1/3

⎧⎨
⎩

0.6 < Pr < 60

0.6 < Sc < 6000
(12.91)
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Remark 12.6. This analogy extends the applicability of the Reynolds analogy
to Prandtl and Schmidt numbers different from 1. But still, the analogy holds
for configurations where all the drag comes from friction, that is, there is no
form drag. Therefore, it holds for transport coefficients in boundary layers
along flat walls and pipes. In particular, this analogy is not applicable for
transport coefficients around blunt bodies, like spheres, but there are ways
around this.

Remark 12.7. Typically, the range of admissible Pr numbers excludes from
the analogy heavy oils and liquid metals.

Remark 12.8. The Chilton-Colburn analogy is presented frequently as a func-
tion of the so-called j-factors,

jH = jD =
1
2
Cf (12.92)

where
jH = St Pr2/3

jD = Stm Sc2/3
(12.93)

Remark 12.9. Other analogies were proposed by Prandtl and von Karman,
but the Chilton-Colburn is preferable from the simplicity standpoint.

Example 12.4 (Chilton-Colburn analogy). The local drag coefficient for a flat
plate of length L in laminar flow can be correlated as

Cfx = 0.664 Re−1/2
x

Determine the local heat transport coefficient for an isothermal plate.
Solution. Since there is no form drag, the Chilton-Colburn analogy can be
applied for 0.6 ≤ Pr ≤ 60,

1
2

Cf = St Pr2/3

Substituting the correlation for the drag coefficient and taking into account
that St = Nu/Pe,

Nux = 0.332 Re1/2
x Pr1/3

For variable fluid properties, the above formula should be applied at the film
temperature

Tf =
1
2
(T0 + T∞)
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Problems

12.1 An oil with a kinematic viscosity of ν = µ/ρ = 10−4 m2/s and a density
of ρ = 800 kg/m3 flows through a horizontal pipe of D = 0.1 m diameter at
a volumetric flow rate of Q = 0.5 l/s. Calculate the pressure loss in 10 m of
length. (Hint: check whether the flow is laminar or turbulent).

12.2 The pressure loss in a pipe is to be determined through experiments
with water (ν = 10−6 m2/s, ρ = 103 kg/m3). If the pressure loss is 130 000 Pa
for a water flow rate of 15 kg/s, what is the pressure loss for 20 kg/s of liquid
oxygen (ρ = 1121 kg/m3)? It will be assumed that the friction factor is the
same for both cases.

12.3 A 280 km oil pipeline connects two pumping stations. It is desired to
pump 0.56 m3/s through a 0.62 m diameter pipe to the exit station which is
250 m below the inlet station. The gage pressure at the exit station must be
maintained at pe = 300 000 Pa. Calculate the power required to pump the oil,
which has a kinematic viscosity of 4.5×10−6 m2/s and a density of 810 kg/m3.
The friction factor can be taken equal to λ = 0.015. The inlet pressure can be
assumed atmospheric.

12.4 A long 20 mm diameter cylinder of naphthalene, used in mothballs to
repel insects, is exposed to an air stream that has a mean mass transport
coefficient of K̄m = 0.05 m/s. The vapor concentration of naphthalene at the
cylinder surface is 6.4 × 10−4 kg/m3. How much naphthalene sublimates per
unit length of the cylinder?

12.5 The chips of an electronic circuit are cooled down by an air stream of
T∞ = 25 ◦C and V = 10 m/s. One of the chips is a square of 4 mm×4 mm and
is placed at 120 mm of the leading edge of the electronic board. Experiments
have shown that the Nusselt number based on the distance to the leading edge
x can be correlated as

Nux = 0.04 Re0.85
x Pr1/3

Nux =
hxx

κ
Rex =

ρUx

µ

Estimate the temperature of the surface of the chip if it dissipates 30 mW.
Data for air: µ = 1.8 × 10−5 kg/(m s), ρ = 1.2 kg/m3, κ = 0.026 W/(m K),
Pr = 0.7.

12.6 A series of experiments about heat transfer on a flat plate with a very
rough surface show that Nux could be correlated as

Nux = 0.04 Re0.9
x Pr1/3

Obtain an expression for the ratio between the global h̄L and local hx heat
transfer coefficients (h̄L/hx).
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x 120 mm

V

Problem 12.5. Cooling of an electronic chip by forced convection.

12.7 The water evaporation rate of a lake can be calculated by measuring
the decrease of the free surface level. Consider a summer day, where the water
and ambient air are at 305 K, and the air relative humidity is 40%. If the lake
water level decreases at a rate of 0.1 mm/h, how much water is evaporating
per unit time and surface? What is the mass transfer coefficient?
Saturation pressure at 305 K: Ps = 3 531 Pa.

12.8 Photosynthesis, which takes place at the leaves and green areas of the
plants, produces a transport of carbon dioxide (CO2) from the atmosphere
to the chloroplasts of the leaves. Therefore, the speed of photosynthesis can
be quantified as a function of the assimilation rate of CO2 by a leaf, which is
strongly influenced by the concentration boundary layer about the leaf. If the
density of CO2 in the air and at the leaf surface is, respectively, 6×10−4 kg/m3

and 5×10−4 kg/m3, and the mass transfer coefficient around a leaf is 10−2 m/s,
calculate the rate of assimilation of CO2 per unit time and surface of the leaf.

12.9 Chemical species A evaporates from a plane surface to the species B.
The concentration profile of A in the boundary layer can be approximated by
CA(y) = Dy2 + Ey + F with D, E and F constants for any position x. The
coordinate y is normal to the surface. Calculate the mass transfer coefficient
Km as a function of the above constants, the concentration of A in fluid B
CA∞, and the mass diffusion coefficient DAB.

12.10 In the boundary layer over a solid surface, the fluid velocity and
temperature profiles can be approximated by

u(y) = Ay + By2 − Cy3 T (y) = D + Ey + Fy2 − Gy3

where y is the axis orthogonal to the surface and the rest of the coefficients
are constants. Obtain an expression for the friction coefficient f and the heat
transport coefficient h as a function of the above constants, U∞, T∞ and the
fluid properties.

12.11 A way to keep a liquid cool at high ambient temperatures consists
of covering its container with a damp cloth, like felt. This principle is ap-
plied, for example, to water bottles. Assume that the container is exposed
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at an atmosphere of dry air at 40 ◦C. The cloth surrounding the container is
moistened with a liquid of 200 kg/kmol molar mass and 100 kJ/kg latent heat
of vaporization. The saturation pressure at those conditions is Ps = 5 000 Pa
and the diffusion coefficient of the vapor in air, D = 0.2 × 10−4 m2/s. What
is the container temperature and that of the liquid that it contains?
Data for air: µ = 1.8×10−5 kg/(m s), cp = 1 007 J/(kg K), κ = 0.026 W/(m K),
ρ = 1.2 kg/m3.

12.12 On a cold day in April a jogger losses 2 000 W due to convective heat
transfer between the jogger’s skin, which is maintained dry at a temperature of
30 ◦C, and the environment, also dry, at a temperature of 10 ◦C. Three months
later, the jogger moves at the same pace but the day is warm and humid, with
a temperature of T∞ = 30 ◦C and a relative humidity of Φ = 60%. The skin
of the jogger is sweating and at a temperature of 35 ◦C. In both cases, the
properties of air can be considered constant and equal to: ν = 1.6×10−5 m2/s,
κ = 0.026 W/(m K), Pr = 0.7, D = 2.3 × 10−5 m2/s (for water vapor in air),
L = 2257 kJ/kg (latent heat of vaporization), Ps = 6221 Pa.

(a) What is the rate of water evaporation on a summer day?
(b) What is the total heat loss per unit time during the summer day?

12.13 Cooling and heating involved in boiling and condensation processes
depend on the fluid properties (ρ, µ, κ, cp), a characteristic length L, a char-
acteristic temperature difference ∆T , on the characteristic buoyance force
between the liquid and gas phases (ρliq − ρvap)g, the latent heat of vaporiz-
ation hlv and the surface tension σ. Determine the dimensionless parameters
that govern the behavior of the dimensionless heat transport coefficient Nu.

12.14 Check the dimensionless expression (12.60) for the natural convection
mass transport coefficient.

12.15 Check the derivation of expression (12.54).
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Self Evaluation Exercises

Problems

13.1 An axle of diameter d turns inside a fixed concentric bearing of diameter
D. The length of the device is L. The space between the axle and the bearing
is filled with an oil of viscosity µ. The axle turns at an angular velocity ω
so that in the steady state the fluid velocity has only a tangential direction
eθ and it is a quadratic function of the radius, with a minimum where the
velocity is zero.

(a) How much is the heat per unit time Q̇ to be eliminated from the device so
the fluid is maintained at constant temperature?

(b) If the device is isolated so Q̇ = 0, assuming the equation of state de =
cvdT , what is the rate of variation of the temperature ?

13.2 Given the two-dimensional velocity field

v =
{

5y2

3y − 3

}

(a) Calculate the divergence ∇ · v.
(b) Is the flow compressible or incompressible? Why?
(c) Determine the viscous dissipation function φv.

13.3 An approximate method to scale cylindrical stirring tanks for liquids
consists of maintaining the power per unit volume pv = P/V constant. It is
considered that the agitation power P is a function of the diameter of the
agitator D, its angular velocity ω and the liquid density ρ.

(a) Determine the dimensionless relation of P with respect to the other di-
mensionless variables.

(b) It is desired to increase the tank volume by 3. What is the scale factor of
the diameter and the agitator?
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(c) What is the power and the angular velocity for the new tank?

Note. Assume that the tanks are geometrically similar and the flow is turbu-
lent.

13.4 Determine the horizontal and vertical forces to fix the elbow of the
Figure.

V1

A1

V A22

P1

60°

P 2

y

x

Problem 13.4. Force to hold a 180◦ elbow.

13.5 The Figure shows the velocity vx and temperature T profiles around a
cylinder. The ambient pressure far from the cylinder can be taken constant and
equal to 0. If the flow is steady and incompressible, determine the following
variables.

(a) The mass flow ṁ across the horizontal surfaces of the control volume.
(b) The force FD necessary to keep the cylinder (of length L) fixed. Calculate

the dimensionless friction coefficient, Cf = τ̄0/(1
2ρU2

0 ), where the mean
stress is defined as τ̄0 = FD/(2πDL).

(c) If de = cvdT and the cylinder is heated at a rate of Q̇ calculate Ts for the
temperature profiles shown in the Figure. Assume that cv is constant.

Uo

Uo

Uo

Uo Uo

Uo

dTo

To

To

6 d 4 d

Ts

T(y)u(y)

Problem 13.5. Non-isothermal incompressible flow about a cylinder.

13.6 Calculate the vertical F1 and horizontal F2 net forces and the point of
application y2 to hold the wall of the tank.
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H

h

a

F

F y

2

21

Problem 13.6. Force to hold a tank wall.

13.7 Let a non-Newtonian fluid have the constitutive equation

τ ′ = µ

∣∣∣∣du

dy

∣∣∣∣
n

n > 1

(a) To what kind of non-Newtonian fluid does it correspond?
(b) If the velocity profile near a solid wall can be expressed as

u(y) = a1y + a2y
2

where y is the coordinate orthogonal to the wall, determine τ ′
0, the viscous

stress at the wall.

13.8 A circular container of 230 mm diameter filled with water at ambient
temperature loses mass at a rate of 1.5 × 10−5 kg/s when the ambient is dry
and at 22 ◦C.

(a) Determine the mass transfer coefficient.
(b) Calculate the total heat (by convection and evaporation) which is lost when

the ambient air has a relative humidity of 50% and the water temperature
is 37 ◦C.
Gas constant: R = 8.314 kJ/(kmol K). Water properties: DAB = 2.3 ×
10−5m2/s; latent heat of vaporization L = 2 257 kJ/kg. Air properties:
ρ = 1.2 kg/m3; µ = 1.82 × 10−5 kg/(m s); κ = 0.026 W/(m K); Pr = 0.7.

13.9 The Figure of the problem shows a common technique to disperse fluid
B into fluid A to form the solution AB. The technique consists of mixing both
substances through concentric pipes.

(a) Calculate uAB
2 and the pressure loss assuming negligible friction forces and

equal densities for all the fluids. Characterize the result for D = 10 cm,
d = 2 cm, ρA = ρB = ρAB = 1 gr/cm3, uA

1 = 1.5 m/s, uB
1 = 4.0 m/s.

(b) Obtain the pressure loss for the case of different densities as a function of
d/D, ρA/ρB, uA

1 /uB
1 and ρAuA

1 /ρBuB
1 .
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1 2

d

D u
1

A

u
1

A
u

1

B

u
2

AB

Problem 13.9. Mixing process through concentric pipes.

(c) What can be concluded from the expression obtained in (b)?

13.10 The conic pivot of the Figure spins at an angular velocity ω and rests
over a thin layer of oil with thickness h. Determine the moment due to viscous
friction as a function of the angle α, the viscosity µ, the angular velocity, the
thickness h and the diameter of the axle D.

�

� �

�

Problem 13.10. Conic bearing to support axial and radial forces.

13.11 From a vertical tube of length L and radius R, a fluid of density ρ and
viscosity µ falls. Assuming that the velocity profile is steady, fully developed
and parabolic,

v(r) =
2Q

πR4
(R2 − r2)

and that the gravity acts downwards, determine the outgoing volumetric flux
Q.
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L

Q

g

Q

R

τ ´ τ ´

v(r)

Problem 13.11. Fall of a fluid in a pipe due to gravity.

13.12 The evolution of small perturbations in a fluid can be modeled by the
Orr-Sommerfeld equation

ν
d4φ(y)

dy4
−
[
ω + 2νk2

] d2φ(y)
dy2

+ k2
[
ω + νk2

]
φ(y) = 0

where φ is the stream function [m2/s], ω the angular velocity of the wave [1/s],
k the wavenumber [1/m] and ν = µ/ρ, the kinematic viscosity. Using ρ, µ, h,
U , make the Orr-Sommerfeld equation dimensionless.

13.13 The time t to discharge a tank depends approximately on its diameter
D, the liquid level h, the diameter of the outlet orifice d, the acceleration of
the gravity g and the fluid density ρ.

(a) Determine the dimensionless relation for the discharge time.
(b) If a tank is made at a scale four times smaller, what is the discharge time?

How much should h be for dimensional analysis to apply?
(c) If the fluid is changed, what is the time of discharge? Justify the answer.
(d) In this section, the viscous effects µ are taken into account. What is the

new dimensionless number that appears in the nondimensional relation?
Is it possible to have complete similarity when both, the geometric scale
of the tank and the fluid are modified? Why?

13.14 A porous cylinder of unknown surface is saturated with water. Dry air
is blown perpendicularly to the cylinder at a pressure of 1 atm and velocity
10 m/s, so the air gets humid. The water evaporation rate is 1.684×10−5 kg/s
and the heat transport coefficient is given by

NuD = C Rem
D Pr1/3 where C = 0.193 and m = 0.618

Calculate the surface of the cylinder assuming that both the water and air
are at 310 K and that the cylinder diameter is 0.045 m.
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h

D

d
Q

g

Problem 13.13. Draining of a tank through an orifice. Dimensional analysis.

Data for air: ρ = 1.2 kg/m3; µ = 1.82×10−5 kg/(m s); Da = 2.3×10−5 m2/s;
Pr = 0.7. Gas constant: R = 8.314 kJ/(kmol K). Water vapor properties:
Ma = 18 kg/kmol

13.15 Given the two-dimensional velocity field

v =
{
−2x2t
6yt

}

determine the equation of the streakline that passes by the point (x0, y0).

13.16 A planet in formation is made of a fluid of constant density ρ. If at
the free surface, located at r = R, there is atmospheric pressure patm and
the radial body forces are fm = − 4πK

3 r, determine the hydrostatic pressure
distribution p(r) inside the planet.

13.17 In a wind tunnel there is a uniform air flow of 7 m/s (kinematic
viscosity ν = µ/ρ = 1.5×10−5 m2/s) at 295 K. Aligned with the flow, there is
a 4 m long rectangular container, filled with water to a height of 1 cm. If the
vapor pressure at the ambient conditions is 2000 Pa and the water is at the
air temperature, calculate the time to evaporate the water in the container.
The global mass transfer coefficient can be approximated by

ShL = 0.664 Re1/2
L Sc1/3

Gas constant: R = 8 314. J/(kmol K). Mass diffusivity of water in air: DA =
2.5 × 10−5m2/s.

13.18 The impulsion power of a hydraulic pump is frequently expressed
as a function of energy head H [m]. It can be shown that gH (with g the
gravity acceleration) depends on the fluid density, ρ [kg/m3], and viscosity
µ [kg/(m s)], the pump angular velocity of rotation N [rad/s], the runner
diameter D [m], the volumetric flow rate Q [m3/s] and the characteristic
roughness length ε [m].



Problems 239

(a) Determine the characteristic curve gH in dimensionless form, using as
fundamental variables ρ, N and D.

(b) Assume that the dissipation effects are negligible, that is, ignore the vari-
ables µ and ε. In this new situation, called partial similarity, what is the
dimensionless relation?

(c) Assume a pump with characteristic curve H(Q) = 20 − 0.1Q2. Assuming
the partial similarity of (b), what would the new characteristic curve of
the pump H ′(Q′) be if the rotation speed was doubled?

(d) Again, neglecting the dissipation effects, what is the new characteristic
curve if only the fluid density is modified?

13.19 The Figure shows a two-dimensional adiabatic mixing tank. If the flow
is steady and incompressible (with density ρ), answer the following questions.

(a) Calculate the exit volumetric flow rate Q3.
(b) Given p1, p2 and p3, employ the mechanical energy equation to determine

the viscous dissipation in the tank Dv.
(c) As a function of the inlet temperatures, T1, T2, and the specific heat at

constant volume cv (which can be assumed constant), calculate the exit
temperature T3.

8 

S 
Q 

1 

 1 

S 
Q 

2 

 2 

S 
Q 

3 

 3 

Ω

ω·

Problem 13.19. Mixing tank.

13.20 A vertical solar panel is L = 1 m tall and w = 2 m wide. The local
Nusselt number follows the correlation

Nux = C

(
Grx

4

)1/4

C = 0.56

where the Grashof number is defined as
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GrL =
βgρ2L3∆T

µ2

with β the expansion coefficient and ∆T the temperature difference between
the panel and the environment. Determine the correlation for the global Nus-
selt number NuL.
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Collection of Formulae

A.1 Integral Equations for a Control Volume

A.1.1 Mass Conservation Equation

d
dt

∫
Vc(t)

ρ dV +
∫

Sc(t)

ρ [(v − vc) · n] dS = 0 (A.1)

A.1.2 Chemical Species Conservation Equation

d
dt

∫
Vc(t)

ρA dV +
∫

Sc(t)

ρA [(v − vc) · n] dS

= −
∫

Sc(t)

ρA(vA − v) · n dS +
∫

Vc(t)

ω̇A dV
(A.2)

A.1.3 Momentum Equation

d
dt

∫
Vc(t)

ρv dV +
∫

Sc(t)

ρv [(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) dS +
∫

Vc(t)

ρfm dV
(A.3)

A.1.4 Angular Momentum Equation

d
dt

∫
Vc(t)

r × ρv dV +
∫

Sc(t)

r × ρv [(v − vc) · n] dS

=
∫

Sc(t)

r × (τ · n) dS +
∫

Vc(t)

r × ρfm dV
(A.4)
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A.1.5 Mechanical Energy Equation

As a Function of Body Forces

d
dt

∫
Vc(t)

ρ
1
2
v2 dV +

∫
Sc(t)

ρ
1
2
v2 [(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS +
∫

Vc(t)

p∇ · v dV

−
∫

Vc(t)

φv dV +
∫

Vc(t)

ρfm · v dV

(A.5)

As a Function of Potential Energy

d
dt

∫
Vc(t)

ρ

(
1
2
v2 + U

)
dV +

∫
Sc(t)

ρ

(
1
2
v2 + U

)
[(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS +
∫

Vc(t)

p∇ · v dV −
∫

Vc(t)

φv dV

U = gz

(A.6)

A.1.6 Total Energy Equation

d
dt

∫
Vc(t)

ρ

(
e +

1
2
v2 + U

)
dV

+
∫

Sc(t)

ρ

(
e +

1
2
v2 + U

)
[(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS −
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

(A.7)

A.1.7 Internal Energy Equation

d
dt

∫
Vc(t)

ρe dV +
∫

Sc(t)

ρe [(v − vc) · n] dS

= −
∫

Sc(t)

p∇ · v dV +
∫

Vc(t)

φv dV

−
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

(A.8)
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A.2 Relevant Dimensionless Numbers

Table A.1. Relevant dimensionless numbers in transport phenomena.

Number Definition Physics Equivalence

Strouhal S = L
vt

residence time
characteristic time

Reynolds Re = ρvL
µ

viscous convection
viscous diffusion

= vL
ν

Péclet Pe =
ρcpvL

κ
thermal convection
thermal diffusion

= vL
α

Péclet II PeII = vL
DAB

mass convection
mass diffusion

= vL
DAB

Damköhler I DaI = ω̇AL
ρAv

chemical generation
mass convection = vL

DAB

Prandtl Pr =
µcp

κ

dynamic diffusion
thermal diffusion

= Pe
Re

= ν
α

Schmidt Sc = µ
ρDAB

dynamic diffusion
mass diffusion

= PeII
Re

= ν
DAB

Lewis Le = κ
ρcpDAB

thermal diffusion
mass diffusion

= Sc
Pr

= α
DAB

Drag coefficient CD =
τ ′
0

1
2 ρv2

friction
dynamic pressure

= Cf

Nusselt Nu = hl
κ

heat transport coeff.

Stanton St = h
ρcpv

heat transport coeff. = Nu
Pe

Sherwood(1) Sh = hml
DAB

mass transport coeff.

Mass Stanton Stm = hm
v

mass transport coeff. = Sh
PeII

Grashof Gr = ρ2gβ∆TL3

µ2
buoyancy forces
viscous forces

Rayleigh Ra = ρgβ∆TL3

µα

buoyancy forces
thermal diffusion

= Gr Pr

Weber We = ρv2L
σ

inertial forces
line forces

(1)
Also Nusselt for mass transfer, Num
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Table A.3. Dimensionless numbers encountered in the transport equations.

Temp./Conv. Conv./Diff. Gen./Conv. Conv./Grav.

Mass cons. S = l/v
t

Momentum S = l/v
t

Re = ρvl
µ

Eu = ∆p
ρv2 Fr = v2

gl

Energy S = l/v
t

Pe =
ρcpvl

κ

Chem. esp. A S = l/v
t

PeII = vl
DA

DaI = lω̇A
ρAv

A.3 Transport Coefficient Analogies

A.3.1 Analogy of Reynolds

Re
2

Cf = Nu = Sh Pr = 1 (A.9)

A.3.2 Analogy of Chilton-Colburn

1
2 Cf = St Pr2/3 0.6 < Pr < 60
1
2 Cf = Stm Sc2/3 0.6 < Sc < 6000

(A.10)

Sh = Nu Le1/3

⎧⎨
⎩

0.6 < Pr < 60

0.6 < Sc < 6000
(A.11)



B

Classification of Fluid Flow

Fluid flow can be classified according to the following criteria.

B.1 Stationary (steady) / non-stationary (transient,
periodic)

The flow is stationary when the fluid variables in the Eulerian description do
not depend on time. That is, for any Eulerian variable the partial derivative
with respect to time is zero,

∂ ·
∂t

= 0 (B.1)

Example B.1. The axial velocity in a circular section, straight pipe of radius
R, when it becomes fully developed, for laminar flow, can be expressed as

v(r) = V0

[
1 −

( r

R

)2
]

Because v(r) does not depend on time t, it is a steady or stationary flow. This
flow is called Hagen-Poiseuille flow.

When this is not the case, the flow is transient or unsteady. This is the
situation when the flow is evolving from the initial state towards the stationary
solution.

Sometimes the long term solution is not steady, but it repeats itself in
time. This flow is called periodic, as the flow around a circular cylinder at
Re = 100.
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B.2 Compressible / incompressible

All substances are compressible to a certain extent, i.e. of variable density.
However, in many practical situations, the density variations are so small
that they can be neglected and the density can be considered constant.

Flows that are modeled assuming constant density are called incompress-
ible, and is typical of liquids. An incompressible flow satisfies

∇ · v = div v = 0 (B.2)

Compressible flows can be classified as subsonic, transonic or supersonic,
depending on the Mach number Ma, ratio between the local fluid velocity and
the local propagation speed of the sound.

The flow in gases can be considered incompressible if Ma < 0.3.

Example B.2. At 20◦C the speed of sound in air is about 340 m/s. The flow
around a vehicle that moves at 100 km/h ≈ 28 m/s has a Ma = 28/340 ≈ 0.08
and the compressibility effects can be ignored.

B.3 One-dimensional / Two-dimensional /
Three-dimensional

The flow is one-, two- or three-dimensional when the fluid variables (such
as density, velocity, temperature, etc.) depend on one, two or three spatial
coordinates.

There are only a few pure one-dimensional flows. Most of them are two-
and three-dimensional.

Plane flow is a two-dimensional flow with respect to Cartesian or polar
coordinates. An axisymmetric flow is a two-dimensional flow in cylindrical
coordinates. A spherically symmetric flow is an example of one-dimensional
flow.

Example B.3 (One-dimensional flow). The incompressible flow out of a sink
is a composition of a radial plus a tangential velocity component and can be
modeled in cylindrical coordinates as

vr(r) = Q
2πr

vθ(r) = Q
2πr tan α

vz(r) = 0

where Q and α are constants. This is a one-dimensional incompressible flow.
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Example B.4 (Two-dimensional flow). In the flow around an infinitely long
cylinder placed orthogonally to the stream, the flow field is the same in all
the planes normal to the cylinder. Thus, this is a plane two-dimensional flow
field.

B.4 Viscous / Ideal

In real fluids, due to the friction between the layers of fluid, there is a resistance
to the motion. This friction is caused by a fluid property called viscosity µ.
Flows where friction is taken into account are termed viscous flows.

In ideal flows this property is neglected, µ = 0, giving rise to frictionless
fluid motions. For this type of fluid, the rest of the diffusion coefficients are
neglected, like thermal conductivity κ = 0 and mass diffusivity DAB = 0.

B.5 Isothermal / Adiabatic

In an isothermal flow, the temperature is constant. The opposite is a non-
isothermal flow.

Adiabatic means that the system is thermally isolated and there is no heat
transport between itself and its surroundings.

B.6 Rotational / Irrotational

A flow is said to be irrotational if the fluid particles along their path translate
without rotation about the particle center. For an irrotational flow

curlv = 0 (B.3)

If along their path the fluid particles translate and rotate about the particle
center, the flow is rotational.

B.7 Laminar / Turbulent

The flow is laminar when the motion of the fluid particles is well-organized,
as if layers of fluid slide over others. It is predictable and deterministic.

However, due to the nonlinearities of the transport equations, a fluid flow
can have a random component, so that the real flow is the sum of an average
motion plus some chaotic fluctuations. This flow is called turbulent and it
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is always three-dimensional and unsteady. Another relevant trait of turbulent
flow compared to laminar flow is that it enhances the transport of momentum,
heat and mass.

Most of the industrial and natural flows are turbulent.
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Substance Properties

C.1 Properties of water

Table C.1. Properties of pure water at atmospheric pressure [15].

T ρ β µ ν α cp Pr

◦C kg/m3 K−1 kg/(m s) m2/s m2/s J/(kg K) ν/α

0 1000 -0.6E-4 1.788E-3 1.788E-6 1.33E-7 4217 13.4

10 1000 0.9E-4 1.307E-3 1.307E-6 1.38E-7 4192 9.5

20 998 2.1E-4 1.003E-3 1.005E-6 1.42E-7 4182 7.1

30 996 3.0E-4 0.799E-3 0.802E-6 1.46E-7 4178 5.5

40 996 3.8E-4 0.657E-3 0.662E-6 1.52E-7 4178 4.3

50 998 4.5E-4 0.548E-3 0.555E-6 1.58E-7 4180 3.5

Latent heat of evaporation at 100 ◦C = 2.257× 106 J/kg
Latent heat of fusion of ice at 0 ◦C = 0.334 × 106 J/kg
Ice density 920 kg/m3

Surface tension between water and air at 20 ◦C = 0.0728 N/m

C.2 Properties of dry air at atmospheric pressure

At 20 ◦C and 1 atm, cp = 1 012 J/(kg K)
At 20 ◦C and 1 atm, cv = 718 J/(kg K)
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Table C.2. Saturation curve of water vapor in air.

Tsat psat

K Pa

295 2 617

300 3 531

310 6 221

320 10 530

325 13 510

Table C.3. Properties of dry air at atmospheric pressure.

T ρ µ ν α Pr

◦C kg/m3 kg/(m s) m2/s m2/s ν/α

0 1.293 1.71E-5 1.33E-5 1.84E-5 0.72

10 1.247 1.76E-5 1.41E-5 1.96E-5 0.72

20 1.200 1.81E-5 1.50E-5 2.08E-5 0.72

30 1.165 1.86E-5 1.60E-5 2.25E-5 0.71

40 1.127 1.90E-5 1.69E-5 2.38E-5 0.71

60 1.060 2.00E-5 1.88E-5 2.65E-5 0.71

80 1.000 2.09E-5 2.09E-5 2.99E-5 0.70

100 0.946 2.18E-5 2.30E-5 3.28E-5 0.70
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A Brief Introduction to Vectors, Tensors and
Differential Operators

D.1 Indicial Notation

Physical quantities are represented by tensors. Tensors are members of a set
of entities that encompasses scalars, vectors and more complicated variables.
The number of indices in a tensor is called the order or rank of the tensor.
Examples of tensors are

(a) A scalar T , a tensor of order 0.
(b) A vector v, a tensor of order 1.
(c) Typically, the word tensor is used to denote a second-order tensor, a tensor

with two indices. Second-order tensors are matrices that transform in a
physical way under changes of coordinate systems.

Since tensors have indices, instead of using tensor notation, it is very con-
venient to use indicial notation, that is, exposing their indices (subscripts
and/or superscripts). This way, the equations take on a more compact form.

Example D.1 (Tensors). In indicial notation a vector v

v =

⎧⎨
⎩

v1

v2

v3

⎫⎬
⎭ (D.1)

is denoted as vi, i = 1, 2, 3. A second-order tensor m,

m =

⎡
⎣m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎦ (D.2)

is denoted as mij , i, j = 1, 2, 3.
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Usually, together with indicial notation, the Einstein summation conven-
tion on repeated indices is employed: In a term, when a index is repeated,
then there is an implied sum on that index.

Example D.2 (Einstein summation convention). The scalar product of two
vectors in Cartesian coordinates is

aibi =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3

On the left-hand side, in the term aibi the index i appears twice. Therefore,
there is an implied summation on i, i = 1, 2, 3.

Example D.3 (Einstein summation convention). The i-th component of the
matrix-vector product ma is

(ma)i =
3∑

j=1

mijaj = mijaj (i = 1, 2, 3)

On the right-hand side, the sum symbol has been eliminated because in mijaj

the index j is repeated, indicating addition on j. The index i is free, indicating
that the product is a first-order tensor, that is, a vector.

Two important tensors are the Kronecker delta, δij , and the cyclic or
permutation tensor εijk.

Definition D.1 (Kronecker delta). The tensor Kronecker delta, δij , is the
unit tensor, which takes the unit value for i = j and zero for i �= j. Thus,

δ =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ (D.3)

Example D.4 (Kronecker delta). Calculate viδijvj where

v =

⎧⎨
⎩

1
2
3

⎫⎬
⎭

Solution. The term to be computed has two indices, i, j, which are repeated
and so, imply summation. Therefore,
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viδijvj =
∑3

i,j=1 viδijvj

= v1δ11v1 + v1δ12v2 + v1δ13v3

+v2δ21v1 + v2δ22v2 + v2δ23v3

+v3δ31v1 + v3δ32v2 + v3δ33v3

= v1δ11v1 + v2δ22v2 + v3δ33v3

Taking into account that δij is non-zero only if i = j, the expression can be
written directly as

3∑
i,j=1

viδijvj =
3∑
i

viδiivi

Furthermore, the diagonal components of the Kronecker delta are the unit, so

viδijvj = viδiivi

= vivi

= v2
1 + v2

2 + v2
3

= 14

Definition D.2 (Permutation tensor). The permutation tensor εijk is a
third-order tensor which takes on the value 1 when the indices are cyclic (ijk =
123, 231, 312), −1 if the indices are anti-cyclic (ijk = 321, 132, 213), and 0
if there is a repeated index.

Example D.5 (Permutation tensor). The vector product can be written with
the permutation tensor:

(a × b)i = εijkajbk (D.4)

For instance, let us take i = 1, the first component of the vector product.
Then, the only non-vanishing components are

ε1jkajbk = ε123a2b3 + ε132a3b2 = (+1)a2b3 + (−1)a3b2

= a2b3 − a3b2

(D.5)

Likewise,
ε2jkajbk = ε231a3b1 + ε213a1b3 = a3b1 − a1b3 (D.6)

and
ε3jkajbk = ε312a1b2 + ε321a2b1 = a1b2 − a2b1 (D.7)

Compare to Definition D.5.
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Definition D.3 (Derivation). In indicial notation, very frequently deriva-
tion with respect to a variable is denoted by the subscript comma followed by
the variable or the index that denotes the variable.

Example D.6 (Derivation). For example, the partial derivative of the temper-
ature T with respect to x can be written as

∂T

∂x
= T,x = T,x1 = T,1

D.2 Elementary Vector Algebra

In transport phenomena, we not only have to deal with scalar fields, such as the
density or temperature, but also with vectors, like the velocity field. Therefore,
let us review some concepts on vector algebra. This section is developed for
an orthonormal vector basis.

Consider two vectors a and b with coordinates

a =

⎧⎨
⎩

a1

a2

a3

⎫⎬
⎭ (D.8)

b =

⎧⎨
⎩

b1

b2

b3

⎫⎬
⎭ (D.9)

Definition D.4 (Scalar product). The scalar product of two vectors equals

a · b = a1b1 + a2b2 + a3b3

= |a||b| cosφ
(D.10)

with φ the angle between the two vectors.

Definition D.5 (Vector product). The vector product of two vectors is
the determinant

a × b = det

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ (D.11)

The vector product of two vectors in the plane (x, y) equals

a × b = |a||b| sin φ k (D.12)

Therefore, the vector product of two vectors is another vector, orthogonal to
both vectors, with modulus |a||b| sinφ where φ is the angle between the two
vectors.
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Example D.7. Let a = (1, 0, 0) and b = (1, 1, 0). Determine their scalar and
vector product.
Solution. The scalar product is

a · b = a1b1 + a2b2 + a3b3

= 1

The vector product could be calculated with a determinant, but since the
vectors are in the (x, y) plane

a × b = |a||b| sinφ k

= 1 ×
√

2 × sin 45◦ k

= 1 k

Example D.8 (Angle between two vectors). Determine the angle formed by the
two vectors of the above example.
Solution. From the scalar product of two vectors, the cosine of the angle
between them is

cosφ =
a · b
|a||b|

=
1

1 ×
√

2
=

1√
2

(D.13)

Thus,
φ = 45◦

Properties.

(a) The scalar product of two perpendicular vectors is zero.
(b) The vector product of two parallel vectors is zero.

D.3 Basic Differential Operators

Continuum mechanics uses differential calculus extensively. In this section,
the nabla operator and other basic differential operators are explained. The
section is developed for Cartesian coordinates (x, y, z) or (x1, x2, x3).

Definition D.6 (Nabla). The differential operator nabla ∇ is the vector
whose components are defined by the spatial partial derivatives
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∇ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂x

∂

∂y

∂

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(D.14)

Definition D.7 (Gradient of a scalar field). The gradient of a scalar field
Φ equals gradΦ = ∇Φ. Therefore,

gradΦ = ∇Φ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Φ

∂x

∂Φ

∂y

∂Φ

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(D.15)

The gradient of a scalar field provides information about the slope of the
function in any spatial direction. For instance, the slope of Φ in direction n is

Φ,n = ∇Φ · n (D.16)

Furthermore the direction of the gradient gives the direction of maximum
derivative of Φ and its modulus, the magnitude of this derivate.

Example D.9. Let h(x, y) be the elevation of the ground as a function of the
horizontal coordinates (x, y). The gradient ∇h gives the direction of the max-
imum slope of the ground and its modulus, the slope. The scalar product
∇h · n reflects the slope in the direction n.

Definition D.8 (Divergence of a vector). The divergence of a vector a
equals div a = ∇ · a, that is,

div a = ∇ · a =
∂a1

∂x1
+

∂a2

∂x2
+

∂a3

∂x3
(D.17)

The divergence represents the net local balance of the flux given by the
vector a per unit volume of an infinitesimal volume.

Example D.10 (Divergence of the velocity field). For the velocity vector v, the
divergence is the variation of volume per unit volume and time of a fluid
particle. If V denotes the volume of a (infinitesimal) fluid particle,

divv =
1
V

dV
dt

(D.18)

Therefore, for an incompressible fluid, ∇ · v = 0.
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Definition D.9 (Curl of a vector). The curl of a vector field a equals the
vector curla = ∇ × a, which is

curla = ∇ × a = det

∣∣∣∣∣∣
i j k
∂

∂x1

∂
∂x2

∂
∂x3

a1 a2 a3

∣∣∣∣∣∣

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂a3
∂x2

− ∂a2
∂x3

∂a1
∂x3

− ∂a3
∂x1

∂a2
∂x1

− ∂a1
∂x2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(D.19)

Example D.11 (Curl of the velocity field). It can be shown that the curl of
the velocity equals twice the angular velocity of rotation of the fluid particles
about their center.

Definition D.10 (Laplacian). The Laplacian of a scalar field Φ equals the
scalar ∆Φ = ∇ · ∇Φ, that is,

∇ · ∇Φ = ∆Φ =
∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

+
∂2Φ

∂x2
3

(D.20)

The Laplacian of a fluid variable is related to transport phenomena by
diffusion.

Example D.12 (Velocity potential). Under certain conditions (steady, ideal,
incompressible and irrotational flow), the fluid field can be extracted from the
gradient of a scalar field Φ, called velocity potential, so that

v = ∇Φ

For a uniform flow, parallel to the x-axis, the velocity potential is Φ = V∞x,
which gives the two-dimensional velocity

v =

⎧⎪⎪⎨
⎪⎪⎩

∂Φ

∂x
∂Φ

∂y

⎫⎪⎪⎬
⎪⎪⎭

=
{

V∞
0

}

For this flow, ∇ · v = 0 and ∇ × v = 0, as expected.
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θ

θ
v =

K

r

v

r

Problem D.20. Tangential velocity in a potential vortex.

Example D.13 (Potential vortex). In polar coordinates a potential vortex has
the following velocity components

vr = 0

vθ =
K

r

with K a constant. In Cartesian coordinates,

vx = −vθ sin θ = −K
y

x2 + y2

vy = vθ cos θ = K
x

x2 + y2

As a consequence,

div v = ∇ · v =
∂vx

∂x
+

∂vy

∂y
= K

(
− −2yx

(x2 + y2)2
+

−2xy

(x2 + y2)2

)
= 0

and the flow is incompressible. For a plane, two-dimensional flow, the curl has
only the z component,

curl zv =
∂vy

∂x
−∂vx

∂y
= K

(
−2x2

(x2 + y2)2
+

1
x2 + y2

+
−2y2

(x2 + y2)2
+

1
x2 + y2

)
= 0

That is, the potential vortex is irrotational.

Example D.14 (Rigid body rotation). In polar coordinates, the rotation of the
fluid as a rigid body corresponds to
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vr = 0

vθ = ωr

Transforming into Cartesian coordinates,

vx = −vr sin θ = −ωy

vy = vr cos θ = ωx

As a consequence,

div v = ∇ · v =
∂vx

∂x
+

∂vy

∂y
= 0 + 0 = 0

and the flow is incompressible. For a plane, two-dimensional flow, the curl has
only the z component,

rotzv =
∂vy

∂x
− ∂vx

∂y
= ω − (−ω) = 2ω

Therefore, the rotation of the flow as a rigid body is a rotational flow, where
the curl equals twice the angular velocity of the fluid particle.

Problems

D.1 Given the velocity vector,

v =

⎧⎨
⎩

2x
3x2

z2

⎫⎬
⎭

calculate

(a)
∂vi

∂xi

(b)
∂vi

∂xj

(c) Is the flow steady or unsteady?
(d) Is the flow compressible or incompressible?

D.2 The pressure field in a fluid flow is given by

p = p∞ + ρ∞v2
∞

(
sin

x

a
sin

y

b
+ 2

x

a

)

Find ∇p and ∆p at the point (a, b) if p∞, v∞, a and b are constants. The
pressure gradient is related to the net pressure-force over the fluid particle.



262 D A Brief Introduction to Vectors, Tensors and Differential Operators

D.3 A scalar field is given by

Φ(x, y) = 3x2y + 4y2

Calculate ∇Φ at (3, 5). Find the component of ∇Φ that forms an angle of 60◦

with the x axis at the point (3, 5). (That is, find the projection of ∇Φ on an
axis that forms 60◦ with the x axis).

D.4 Consider the vectors c and d

c = xyzi + 2j + y2k

d = x2i + y2j + xk

and the scalar field
φ = xy

Calculate (a)c · d ; (b)c × d ; (c)∂c
∂x

; (d)∇φ ; (e)∇ × c ; (f)∇ · d.
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Useful Tools of Calculus

E.1 Taylor Expansion Series

In order to derive differential equations, many times one has to resort to the
application of Taylor series. Taylor series relate the value of a function at a
point x with the value and derivatives of the function at another point x0.

Theorem E.1. Let f(x) be continuous and have continuous derivatives up to
order n + 1 in the interval (x0 − a, x0 + a). Then for each point x in this
interval,

f(x) = f(x0) +
df(x0)

dx
(x − x0) +

1
2

d2f(x0)
dx2

(x − x0)2

+
1
6

d3f(x0)
dx3

(x − x0)3 + · · · + 1
n!

dnf(x0)
dxn

(x − x0)n

+R(x)

(E.1)

where R(x) is the remainder or truncation error,

R(x) =
1

(n + 1)!
dn+1f(x1)

dxn+1
(x − x0)n+1 (E.2)

with x1 a point in the interval (x0, x) for x > x0 or (x, x0) for x < x0.

Note that in order to derive differential equations it is enough to use the
order of the truncation error, which can be approximated by

R(x) ≈ (x − x0)n+1 (E.3)

E.2 Gauss or Divergence Theorem

To manipulate the transport equations in integral form, we will employ the
Gauss or divergence theorem. This theorem relates the domain integral of a
derivative of a function to the boundary integral of a component of its flux.
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Theorem E.2. Let f be a continuous and differentiable function in the open
domain Ω with boundary Γ and exterior normal n. Then,

∫
Ω

∂f

∂xi
dΩ =

∫
Γ

fni dΓ (E.4)

Corollary. Let g be a continuous and differentiable vector field in the open
domain Ω with boundary Γ and exterior normal n. Then,

∫
Ω

∇ · g dΩ =
∫

Γ

g · n dΓ (E.5)



F

Coordinate Systems
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Fig. F.1. Coordinates of the point P for various orthogonal coordinate systems.

There are three main systems of orthogonal coordinates: Cartesian co-
ordinates, cylindrical coordinates (called polar coordinates in 2D) and spher-
ical coordinates. These are represented in Fig. F.1.

F.1 Cartesian Coordinates

They are frequently denoted by (x, y, z) or (x1, x2, x3). The unit vectors in
the coordinate axis are, respectively, i, j, k or ex, ey, ez.

F.2 Cylindrical Coordinates

In this system of coordinates, the position of a point is given by the radius r
with respect to the axis z, the angle θ to position the radius with respect to
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a reference direction and the height z. Thus, the coordinates are given by the
set (r, θ, z) and the unit vectors along the axis by er, eθ, ez .

Note that in this coordinate system, the unit vectors er and eθ change
with the point in space.

As a particular case in two dimensions we can find polar coordinates, sim-
ilar to cylindrical coordinates, but without the z axis. Therefore, polar co-
ordinates constitute a plane coordinate system.

Cylindrical (and polar) and Cartesian coordinates are related by

x = r cos θ

y = r sin θ

z = z

(F.1)

whereas the inverse transformation is

r =
√

x2 + y2

θ = arctan y
x

z = z

(F.2)

F.3 Spherical Coordinates

The spherical coordinates of a spatial point are given by the set (r, θ, φ) and
the unit vectors along the axis by er, eθ, eφ. The coordinate r is the radius
of the point with respect to the origin of coordinates. The angles θ and φ are
used to direct the radius in space (see Fig. F.1).

As for cylindrical coordinates, all the unit vectors vary with the position
of the point.

Spherical and Cartesian coordinates are related by

x = r sin φ cos θ

y = r sin φ sin θ

z = r cosφ

(F.3)

The inverse transformation is given by

r =
√

x2 + y2 + z2

θ = arctan y
x

φ = arctan
√

x2+y2

z

(F.4)
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Reference Systems

G.1 Definitions

Some fluid variables, like velocity, depend on the observer. The position and
motion of the observer constitutes the system of reference. Systems of reference
can be classified as inertial and non-inertial.

Definition G.1 (Inertial system of reference). A system of reference is
inertial, Galilean or absolute when it moves at a constant velocity. Therefore,
there is no rotation nor acceleration of the observer. The case of a fixed (mo-
tionless) reference belongs to this type of reference. The fluid velocity with
respect to this reference system is called absolute velocity.

Definition G.2 (Non-inertial system of reference). A system of refer-
ence is non-inertial when it is subjected to any acceleration (linear, angular
or centripetal). The fluid velocity with respect to this system of reference is
called relative velocity.

G.2 Velocity Triangle

The velocity triangle is an important tool when relative systems of reference
are employed. These find application in the analysis of moving or rotating
objects, like the runner of a pump. In particular, the triangle of velocities
relates the velocity vector expressed in inertial and non-inertial references.

Consider an absolute and a relative system of reference. The relative sys-
tem moves at a velocity of vref with respect to the absolute system. Then, the
absolute fluid velocity vabs is related to the relative fluid velocity vrel by the
vector expression

vabs = vrel + vref (G.1)

which is frequently called a velocity triangle.
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Fig. G.1. Composition of velocities in a rotating system of reference.

Example G.1 (Rotating system of reference). Consider a (non-inertial) rotat-
ing system of reference with angular velocity Ω = Ω ez. If the relative velocity
of a particle with respect to this system of reference in cylindrical coordinates
is

w =

⎧⎨
⎩

wr

wθ

wz

⎫⎬
⎭ = w

⎧⎨
⎩

cos θ
sin θ

0

⎫⎬
⎭

determine the particle absolute velocity v.
Solution. In cylindrical coordinates, the velocity of the system of reference is

vref =

⎧⎨
⎩

vref
r

vref
θ

vref
z

⎫⎬
⎭ = Ω × r

=

⎧⎨
⎩

0
0
Ω

⎫⎬
⎭×

⎧⎨
⎩

r
0
0

⎫⎬
⎭

=

⎧⎨
⎩

0
Ω r
0

⎫⎬
⎭

Using the velocity triangle,

vabs = vrel + vref

= w

⎧⎨
⎩

cos θ
sin θ

0

⎫⎬
⎭+

⎧⎨
⎩

0
Ω r
0

⎫⎬
⎭

=

⎧⎨
⎩

w cos θ
w sin θ + Ω r

0

⎫⎬
⎭
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G.3 Conservation Equations for Non-Inertial Systems of
Reference

The transport equations presented in Chapters 6 and 8 are applicable in prin-
ciple to inertial systems of reference, where the fluid velocities are absolute
velocities.

But they can also be applied to relative systems of reference. In this case
v denotes the relative velocity with respect to the non-inertial system of ref-
erence vrel and the body force needs to account for the inertial forces given
by the acceleration of the system of reference. In doing so, we are indirectly
accounting for the real particle acceleration. In particular,

f rel
m = fm − (a0 + Ω̇ × r + Ω × (Ω × r) + 2Ω × v) (G.2)

where a0 is the acceleration of the origin of the relative system, Ω is the
angular velocity of the reference system, Ω̇, its angular acceleration, r the
position vector and v the fluid velocity with respect to the relative system of
reference.

Problems

G.1 Repeat the example of the rotating frame of reference for a position
vector with a non-vanishing coordinate z.
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Equations of State

In this Appendix a few concepts and examples of equations of state are re-
viewed.

H.1 Introduction

Definition H.1 (Equation of state). Equations of state are functions that
relate thermodynamic variables.

For a simple compressible substance (a pure substance with only the re-
versible work mode of compression), the thermodynamic state is determined
by two independent thermodynamic variables. For instance,

ρ = ρ(p, T )

e = e(p, T )

For multicomponent systems or systems with additional reversible modes
of work, the state is determined by more variables. For example, the density of
sea water with dissolved salt is a function of salt concentration, temperature
and pressure.

Enthalpy

A very important equation of state is that of enthalpy. The specific enthalpy
is defined as

h = e +
p

ρ
(H.1)

where e is the specific internal energy, p the pressure and ρ the density. Very
frequently, this equation is expressed as a function of the specific volume
v = 1/ρ instead of the density.
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Entropy

The definition of the entropy depends on the number of reversible modes of
work and the number of components in the mixture.

H.2 Simple Compressible Substance

For a simple compressible substance the thermodynamic state is determined
by two independent thermodynamic variables, like p-T or ρ-T .

The specific entropy s can be calculated from the Gibbs relation,

Tds = de + pd
1
ρ

= dh − 1
ρ
dp

(H.2)

The specific heats at constant volume and constant pressure are defined,
respectively, as

cv =
(

∂e

∂T

)
ρ

cp =
(

∂h

∂T

)
p

(H.3)

Another important parameter is the specific heat ratio,

γ =
cp

cv
(H.4)

For air, γ = 1.4.

Thermally Perfect Substance

For a thermally perfect substance, the specific internal energy e is only a
function of the temperature,

e(p, T ) = e(T )

For a thermally perfect gas,

h(p, T ) = h(T )

But note that for a thermally perfect liquid, h(p, T ) �= h(T ) (see remark H.1).

Calorically Perfect Substance

For a calorically perfect substance,

de(T ) = cvdT

with cv, the specific heat at constant volume, a constant. For a calorically
perfect gas,

dh(T ) = cpdT

where the specific heat at constant pressure is constant.
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Perfect Gas

The equation of state of a perfect gas can be given by

p = ρRgasT

where p is the thermodynamic pressure, ρ the density, T the temperature and
Rgas the gas constant, which can be calculated as

Rgas =
R

Mgas

with R = 8 314.36 J/(kmol K) the universal gas constant in the SI system
and Mgas the molar mass of the gas.

For a perfect gas,
Rgas = cp − cv (H.5)

from where, using the specific heat ratio γ,

cv =
Rgas

γ − 1

cp =
γRgas

γ − 1

(H.6)

Integrating the Gibbs equation, the entropy of a perfect gas can be ex-
pressed as

s2 − s1 = cp ln
T2

T1
− Rgas ln

p2

p1
(H.7)

Liquid

The equation of state for a liquid is simply

ρ = const

For a liquid, the specific heats are equal and γ = 1.
Even for a calorically perfect liquid, the enthalpy depends on the pressure,

h = cv(T − T0) + e0 + p/ρ (H.8)

where T0 is a reference temperature for the internal energy e0.

Remark H.1. For a liquid, the pressure is not a thermodynamic variable, but
a mechanical variable. Therefore, the enthalpy is a combination of thermo-
dynamic and mechanical variables [20]. This is especially important when
deriving transport equations for thermodynamic variables of liquids.
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From the Gibbs equation, since the density is constant dρ = 0,

Tds = de

= cv(T ) dT
(H.9)

For a calorically perfect liquid, the specific entropy can be written as

s2 − s1 = cv ln
T2

T1
(H.10)

H.3 Mixtures of Independent Substances

Let us assume that we have a mixture of ncomp constituents. If there are vari-
ous phases, each chemical species at each phase may constitute a composition
variable and, therefore, a constituent.

If the state of a constituent in the mixture can be evaluated independ-
ently of the other constituents, then the mixture is said to be of independent
substances. For such a mixture and for one reversible mode of work, the ther-
modynamic state depends on two independent thermodynamic variables and
the composition.

For such a mixture, all the constituents are at the same temperature T , and
the internal energy, enthalpy, entropy and pressure can be calculated from the
sum of those of the constituents evaluated at T and the corresponding partial
pressure pA,

e =
∑ncomp

A=1 YA eA(T, pA)

h =
∑ncomp

A=1 YA hA(T, pA)

s =
∑ncomp

A=1 YA sA(T, pA)

p =
∑ncomp

A=1 pA

(H.11)

The Gibbs function may be written as

Tds = de + p d
1
ρ

+
ncomp∑
A=1

µchem
A dYA (H.12)

with µchem
A the specific electrochemical potential.

Note that in the presence of chemical reactions and interfaces, not all the
compositions may be independent variables.

Mixture of Perfect Gases

For a mixture of ncomp perfect gases, the partial pressure is the pressure that
each constituent would have if it occupied the whole volume,
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pA = ρYA
R

MA
T (H.13)

Indeed, ∑ncomp
A=1 pA =

∑ncomp
A=1 ρYA

R
MA

T

= ρ
(∑ncomp

A=1
R

MA/YA

)
T

= ρ
(∑ncomp

A=1
R
M

)
T

= p

(H.14)

Since YA = XAMA/M , the above equation can be written as

pA = XAp (H.15)

which is known as the law of Dalton.
Furthermore, the mixture’s specific heats are

cv =
∑ncomp

A=1 YA cvA

cp =
∑ncomp

A=1 YA cpA

(H.16)

The entropy of a mixture of perfect gases depends on the initial and final
states of the components. For an isothermal and isobaric mixing process, the
entropy change can be expressed as

s2 − s1 = −
ncomp∑
A=1

YARA ln XA (H.17)

and it is due to the entropy production involved in the mixing process.
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Multicomponent Reacting Systems

In Chapters 6 and 8 the transport equations for multicomponent systems
with the same body force for all the components have been presented. In this
appendix, these equations are extended for the case when the chemical species
may be subject to different body forces. For example, this can take place in
fluids with electrically charged substances [28, 18].

I.1 Mass Conservation

Since the body force does not enter this equation, it remains unmodified. For
a control volume,

d
dt

∫
Vc(t)

ρ dV +
∫

Sc(t)

ρ [(v − vc) · n] dS = 0 (I.1)

The differential counterpart reads

∂ρ

∂t
+ ∇ · (ρ v) = 0 (I.2)

I.2 Momentum Equation

Assume that the species A is subject to a body force fmA [m2/s]. Take an
infinitesimal fluid volume dV . The mass of species A inside this volume is
ρAdV and, therefore, the force acting on that species is (see Chapter 3)

dF vA = fmA ρAdV (I.3)

Then, the total force over the infinitesimal volume can be written as
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dF v =
nesp∑
A=1

ρAfmA dV (I.4)

which, integrated over a fluid volume, gives

F v =
nesp∑
A=1

∫
Vf (t)

ρAfmA dV (I.5)

Thus, the integral equation for a control volume is

d
dt

∫
Vc(t)

ρv dV +
∫

Sc(t)

ρv [(v − vc) · n] dS =
∫

Sc(t)

τn dS

+
nesp∑
A=1

∫
Vc(t)

ρAfmA dV

(I.6)
and the differential form, substituting ρA = ρYA,

∂ρv

∂t
+ ∇ · (ρvv) = −∇p + ∇ · τ ′ + ρ

nesp∑
A=1

YAfmA (I.7)

I.3 Total Energy Conservation

For this equation, we have to reformulate the power generated by the body
forces. Taking into account that the species A moves at the speed vA, the
power transmitted to the species A in the fluid volume dV can be written as

dẆvA = dF vA · vA = ρAfmA · vA dV (I.8)

The power over the fluid volume dV will be

dẆv =
nesp∑
A=1

ρAfmA · vA dV (I.9)

and integrating in the fluid volume

Ẇv =
nesp∑
A=1

∫
Vf (t)

ρAfmA · vA dV (I.10)

Thus the total energy integral and differential equations become, respectively,
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d
dt

∫
Vc(t)

ρ

(
e +

1
2
v2

)
dV +

∫
Sc(t)

ρ

(
e +

1
2
v2

)
[(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′n) · v dS

+
nesp∑
A=1

∫
Vc(t)

ρAfmA · vA dV

−
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

(I.11)
and

∂ρ(e + 1
2v2)

∂t
+ ∇ ·

(
ρ(e +

1
2
v2)v

)
= ∇ · (τv) + ρ

∑nesp
A=1 YAfmA · vA

−∇ · q + q̇v

(I.12)
Recall that, as a function of the mass fluxes, the species velocity can be

expressed as
vA = v + jA/ρA (I.13)

I.3.1 Mechanical Energy Equation

The mechanical energy equation is recovered with the dot product of the
velocity times the momentum equation. The result is

d
dt

∫
Vc(t)

ρ 1
2v2 dV +

∫
Sc(t)

ρ
1
2
v2 [(v − vc) · n] dS

=
∫

Sc(t)

(−pn + τ ′ · n) · v dS +
∫

Vc(t)

p∇ · v dV

−
∫

Vc(t)

φv dV +
nesp∑
A=1

∫
Vc(t)

ρAfmA · v dV

(I.14)

In differential form,

∂ρ 1
2v2

∂t
+ ∇ ·

(
ρ
1
2
v2v

)
= ∇ · (τv) + p∇ · v − φv + ρv ·

nesp∑
A=1

YAfmA (I.15)

I.3.2 Internal Energy Equation

The internal energy equation is obtained by subtracting the mechanical energy
equation from the total energy equation. For a control volume, the result is
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d
dt

∫
Vc(t)

ρe dV +
∫

Sc(t)

ρe [(v − vc) · n] dS

= −
∫

Sc(t)

p∇ · v dV +
∫

Vc(t)

φv dV −
∫

Sc(t)

q · n dS +
∫

Vc(t)

q̇v dV

+
nesp∑
A=1

∫
Vc(t)

fmA · jA dV

(I.16)
and the differential form,

∂ρe

∂t
+ ∇ · (ρev) = −p∇ · v + φv − ∇ · q + q̇v +

nesp∑
A=1

fmA · jA (I.17)

I.4 Conservation of Chemical Species

This equation remains unmodified. Thus, the integral equation reads

d
dt

∫
Vc(t)

ρA dV +
∫

Sc(t)

ρA [(v − vc) · n] dS = −
∫

Sc(t)

ρA(vA − v) · n dS

+
∫

Vc(t)

ω̇A dV

(I.18)
and the differential form,

∂ρA

∂t
+ ∇ · (ρA v) = −∇ · jA + ω̇A (I.19)

I.5 Generalized Fourier’s and Fick’s laws

The laws of Fourier and Fick presented in Chapter 7 are simplified versions
of the complete constitutive equations. Thermal and mass diffusion can be
caused by more physical phenomena. For instance, concentration gradients
can induce heat transport and, vice versa, temperature gradients can cause
mass transport. For further details see [12, 3, 28, 18].

I.5.1 Heat Transport

Heat transport by diffusion can be caused by three effects: temperature gradi-
ents, mass diffusion and concentration gradients,

q = qT + qm + qDufour (I.20)
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The first term, qT, due to temperature gradients, is given by Fourier’s con-
duction model

qT = −κ∇T (I.21)

The second term, qm, is the heat transport due to mass diffusion, and it is
modeled as

qm =
nesp∑
A=1

hAjA (I.22)

where hA is the specific enthalpy of the species A. This contribution stems
from the introduction of the average fluid velocity v, whereas each species
presents its own velocity vA.

Finally, the Dufour or diffusion-thermo effect, which can be neglected in
many engineering applications, is caused by differences of species velocity vA.
Sometimes, it is thought of as thermal diffusion generated by concentration
gradients. In the case of a multicomponent gas it can be modeled by [18]

qDufour = RT

nesp∑
A=1

nesp∑
B=1

XBDT
A

MADAB

(
jA

ρA
− jB

ρB

)
(I.23)

where R is the universal gas constant; DT
A are the thermal diffusion coeffi-

cients; and DAB, the binary diffusivities.

Radiation

Still, in high temperature applications, the heat transport by radiation may
play an important role. This effect can be added to the constitutive equa-
tion of q by adding the term qR, which is a highly nonlinear function of the
temperature and the geometry of the problem.

I.5.2 Mass Transport

Mass transport by diffusion can be produced by concentration gradients, tem-
perature gradients, pressure gradients and existence of different body forces
for each chemical species,

jA = jm
A + jT

A + jp
A + jfm

A (I.24)

Typically, it is formulated as an implicit equation [18, 3] for jA,

∇XA =
nesp∑
B=1

XAXB

DAB

(
jA

ρA
− jB

ρB

)

+ (YA − XA) ∇(ln p)

+
ρ

p

nesp∑
B=1

YAYB (fmA − fmB)

+
nesp∑
B=1

XAXB

ρDAB

(
DT

B

YB
− DT

A

YA

)
∇(lnT )

(I.25)
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where DT
A are the thermal diffusion coefficients; and DAB, the binary diffus-

ivities.
Temperature gradients can induce mass diffusion. This is called the thermal

diffusion or Soret effect and is modeled as

jT
A = −DT

A∇(ln T ) (I.26)

where DT
A is the thermal diffusion coefficient.

When the body force acting upon all the species is the same, diffusion by
body forces cancels out.

Binary Systems

For binary systems (1 ≤ A, B ≤ 2), mass transport can be simplified to [10]

jA = −ρDAB∇YA − DT
A∇(lnT ) +

MAMBDABYA

p
∇p

+
ρMAMBDABYAYB

p
(fmA − fmB)

(I.27)

I.6 Chemical Production

In this section we hint how to calculate the species production term ω̇A that
appears in the chemical species transport equation.

Assume that the reactions in a system can be modeled by K multistep
reversible reactions, which are represented by

nesp∑
i=1

ν′
A,kMA ⇀↽

nesp∑
i=1

ν′′
A,kMA k = 1, 2, . . . , K (I.28)

where MA is the chemical symbol of species A, and νA,k the corresponding
molar concentration coefficients.

The generalized law of mass action states that the characteristic molar
production per unit volume per second for each reaction is modeled as

ω̂′
k = kk,f

nesp∏
A=1

c
ν′

A,k

A − kk,b

nesp∏
A=1

c
ν′′

A,k

A (I.29)

where kk,f and kk,b are the reaction rate for the forward and backward re-
actions, respectively. These are temperature dependent and can be modeled
with the Arrhenius or modified Arrhenius law [18].

Encompassing all the equations, the molar production of species A is

ω̇′
A =

K∑
k=1

(ν′′
A,k − ν′

A,k)ω̂′
k (I.30)

which is equivalent to the mass production per unit volume per unit time

ω̇A = MAω̇′
A (I.31)
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Solutions for Chapter 1

1.1 σ = 37.1 MPa, τ = 1.8 MPa

Solutions for Chapter 2

2.1 a = (3, 3tz + txy2, y2 + 2xyzt)

2.2 streamline:
y

y0
=
(

x

x0

)n

, n =
1 + t

1 + 2t
;

trajectory:
y

y0
=
(

2
x

x0
− 1

)1/2

;

streakline:
y

y0
=

(
1 + 2t

1 + 2
(
(1 + t)x0

x − 1
)
)1/2

.

2.3 r = C exp(−a
b θ)

2.4 (a)
x(t)
x0

= exp 5t(1 + t/2),
y(t)
y0

= exp 5t(−1 + t/2). Eulerian description.

(b)
(

x

x0

)−1+t

=
(

y

y0

)1+t

(c)
x

x0
=

exp 5t(1 + t/2)
exp 5ξ(1 + ξ/2)

,
y

y0
=

exp 5t(−1 + t/2)
exp 5ξ(−1 + ξ/2)

, ξ < t, where ξ is the

equation parameter.

2.5 xy = C, a = (a2x, a2y)

2.6 x2 + y2 = C

2.7 r = C
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2.8 Q = 4
3bw sin 60◦ v0, ṁ = 4

3ρbw sin 60◦ v0

2.9 (ρl−ρv)gδ3

3µ

2.10
∫

S
(ρ 1

2v2)v · n dS

Solutions for Chapter 3

3.1 5.23 kgf/cm2

3.2 Smaller values of pgag would imply negative absolute pressure.

3.3 σ = F
2πD

Solutions for Chapter 4

4.1 (a) p = 49.05 MPa, (b) p = 49.66 MPa

4.2 F = 294 i − 509 j kN

4.3 T = 1
2ρgR2

0

4.4 h = 1 +
√

3 · 0.2 m

4.5 h = 0.33 m

4.6 (a) M = 623.7 kg
(b) FN = 0

4.7 F = −pcg A n, hcp = hcg + sin2
θIηη

hcgA

4.8 p = ρgl sin θ

4.9 ∆p = (ρHg − ρH2O)gh

Solutions for Chapter 6

6.1 (a) Vs = V R
2b

; Q = πR2V

(b) Vmax = V 3R
4b

; Q = πR2V

6.2 Vs = V

(
D

d

)2

; Q =
πD2

4
V =

πd2Vs

4
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6.3
(

∂ρ

∂t

)
t=0

= −2.48 kg/m3s

6.4 dM/dt = −0.43 kg/s

6.5 Fx = −370.5 N

6.6 V =
√

4W
ρπD2

0

6.7 W = 2 566 W

6.8 Fx = 105 N, Fy = −0.25 tan θ − 20 400 N

6.9 (a) P = ρSe(V − Vc)2(1 − cos θ)Vc

(b) P = ρSeV (V − Vc)(1 − cos θ)Vc

6.10 θ = 0◦ Ω = 43.3 rad/s
θ = 40◦ Ω = 33.2 rad/s

6.11 vc = 1.84 m/s, ρc = 953.8 kg/m3

6.12 vc = 1.91 m/s, ρc = 953.8 kg/m3

6.13
dh

dt

∣∣∣
h=1 m

= 2.7 × 10−3 m/s, t = 82.1 s

6.14 hpA = 1.191 m

6.15 p3 = 71 atm

6.16 (a) V2 = A1V1/A2

(b) ∆p/ρ = V 2
1

(
1 − A1

A2

)
A1
A2

(c) Dv = 1
2ρA1

(
1 − A1

A2

)2

V 3
1

(d) Ks =
(
1 − A1

A2

)2

6.17 Q̇ = M ω

6.18 t =
1
5

(
z0

z2

)2√2z0

g

6.19 ρs(t) = ρs0 e−
Q
V t

6.20 (a) Rate of consumption −100 c(t) mol/s
(b) c(t) = e−0.1t mol/l

(c) Heat generation
dQ

dt
= 500 c(t) cal/s

6.21 T (t) = T0 + 5.0
ρcp

(1 − exp(−0.1t))

6.22 (a) u3 = 1.79 m/s
(b) c = 8 × 10−2gr/cm3

(c) Q̇ = 48 W
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Solutions for Chapter 7

7.1 P = 2034 W

7.2 4 times

7.3 κ = 0.015 W/(m K)

7.4 F = 1.08 N

7.5 δ = 0.026 m

7.6 V =
mgh sin θ

µA

Solutions for Chapter 9

9.1 [F ] = M1L1T−2, [σ] = M1L−1T−2, [Ẇ ] = M1L2T−3, [µ] = M1L−1T−1,
[κ] = M1L1T−3Θ−1.

9.2
F

ρV 2L2
= φ(

ρV L

µ
,
U2

gL
)

9.3
P

ρD5Ω3
= f

(
Q

D3Ω

)

9.4 3 parameters:
σ

ρDV 2
,

µ

ρV D
,

d

D

9.5
T

µR3w
= f

(
h

R

)

9.6 Q
VoH2 = f

(
Vo√
gH

, φ

)
; Q√

gHH2
= f ′ (φ).

9.7 (a) 2
(b) No
(c) Fp = Fm, Vm = 50 m/s

9.8 V = 9.58 m/s

9.9 The nondimensional numbers must be maintained both for the model and
prototype, gh

D2Ω2 = f
(

gH
D2Ω2 , L

D

)

9.10 D
ρV 2h2 = f

(
ρV h

µ , w
h

)

9.11 Re ≈ 9 × 106
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9.12 (a) Con
Vc

D1/2g1/2
= f

(
Dp

D
,
ρp

ρ
,

µ

ρD3/2g1/2

)
, Vc = 1.414 m/s

(b) Con
ρVcD

µ
= f

(
Dp

D
,
ρp

ρ
,
ρ2D3g

µ2

)
, Vc = 0.5 m/s

(c) One is working under conditions of partial similarity and the results depend
upon the dimensionless numbers chosen.
(d) The solution is to carry out the experiment under complete similarity
conditions, with a liquid of kinematic viscosity νm = νp/

√
8. In this case

Vc = 1.414 m/s

9.13 (a) tU
L = ϕ( δ

L , Pv

ρU2 , µ
ρUL )

(b) δm = 0.002 m, Um = 10 m/s, Pvm = 50 000 Pa
(c) tp = 250 min

Solutions for Chapter 10

10.1 (a) [ε] = L2T−1, [R] = ML−2T−1, [ωf ] = L1T−1.

(b) Πt = l0/t0
u0

, Πε =
ε0

u0l0
, ΠR =

Rl0
u0h0S0

, Πω =
ωf0l0
u0h0

.

(c) Πt = S, Πε = 1/PeII, ΠR = DaI.

10.2 (a) Πt =
l0/t0
u0

<< 1

(b) Πε =
ε0

u0l0
<< 1

(c) Πω =
ωf0l0
u0h0

>> 1

(d) It is steady flow, with small viscous forces and sedimentation of the order
of convection.

10.3 S =
l0/v0

t0
, PeII =

v0l0
κ0

10.4 (a) [ε] = 1
(b) Πt = εµl20

γt0∆p0
, Πg = ρ0gl0

∆p0

10.5 (a) [γ] = m2

(b) Π =
κµ

ρ0cpγ∆p0
with ∆p0 = ρ0v

2
0

10.6 Πt =
l0/t0
v0

, Π∆p =
∆p

ρ0v2
0

, Πµ =
µ

ρ0v0l0
, Πg =

gl0
v2
0

, Πβ =
β∆T0gl0

v2
0

.

10.7 (a) Centrifugal force:
ω2

0l
2
0

v2
0

, Coriolis force:
ω0l0
v0

(b) S, Eu, Re, Fr.

10.8 (a) [γ] = L2

(b) Πp = γp0
µv0l0

, Πγ = γ
l20

, Πg = ρgγ
µv0
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Solutions for Chapter 12

12.1 164 Pa

12.2 206 165 Pa

12.3 4.37 MW

12.4 2.0 × 10−6 kg/(m s)

12.5 41.5 ◦C

12.6
h̄L

hx
=

1
0.9

( x

L

)0.1

12.7 hm = 1.85 × 10−3 m/s

12.8 jCO2 = −1.0 × 10−6 kg/(m2 s)

12.9 hm =
DABE

CA∞ − F

12.10 Cf = 2µA
ρU2

∞
, h = κE

T∞−D

12.11 5.9 ◦C

12.12 (a) J = 1.429 × 10−3 kg/s
(b) Q̇ = 3725 W

12.13 Nu = φ(Gr, Ja, Pr, Bo), where Gr = ρg(ρliq−ρvap)L3

µ2 , Ja = cp∆T
hlv

(Jakob

number) and Bo = (ρliq−ρvap)gL2

σ (Bond number).

Solutions for Chapter 13

13.1 (a) Q̇ = πµ
ω2d3L

D − d

(b)
dT

dt
=

4µω2d3

ρcv(D − d)2(D + d)

13.2 (a) ∇ · v = 3
(b) Compressible, because ∇ · v �= 0
(c) φv = µ(100y2 + 18) + λ9

13.3 (a)
P

ρD5ω3
= const

(b)
Lm

Lp
= 3

√
3

(c) Pm = 3Pp; ωm = 3−2/9ωp
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13.4 Fx = −(p1 cos 30A1 + p2A2) − ρ(V 2
1 A1 cos 30 + V 2

2 A2)
Fy = ρgV − (p1 sin 30A1)

13.5 (a) ṁ = 3
2ρU0dL

(b) FD = ρU2
0 dL; Cf =

2
π

(c) Ts = T0 + 3
4

Q̇ + 3
4ρU3

0 dL

ρcvU0dL

13.6 F1 = ρg(H − h)a ; F2 = 1
2ρgH2 ; y2 = H

3 + (H − h)
(

a
H

)2
13.7 (a) Dilatant
(b) τ ′

0 = µan
1

13.8 (a) hm = 0.0188 m/s
(b) Q̇total = 51.81 W

13.9 (a) If ρA = ρB = ρAB, uAB
2 = 1.6 m/s, ∆p = 240 Pa.

∆p

ρA(uA
1 )2

=

{
1 +

(
uB

1

uA
1

)2

− 2
uB

1

uA
1

}(
d

D

)2
[
1 −

(
d

D

)2
]

(b)
∆p

ρA(uA
1 )2

=

{
1 +

ρB

ρA

(
uB

1

uA
1

)2

−
(

1 +
ρB

ρA

)
uB

1

uA
1

}(
d

D

)2
[
1 −

(
d

D

)2
]

(c) It can be observed that (a) is a particular case of (b). Furthermore, reor-
ganizing (b) as

∆p

ρA(uA
1 )2

=
{

1 +
ρB

ρA

uB
1

uA
1

(
uB

1

uA
1

− 1
)
− uB

1

uA
1

}(
d

D

)2
[
1 −

(
d

D

)2
]

for uB
1 > uA

1 , if ρB > ρA then ∆p > ∆pρ=const and if ρB < ρA then ∆p <
∆pρ=const. And for uA

1 > uB
1 , if ρA > ρB then ∆p > ∆pρ=const if if ρA < ρB

then ∆p < ∆pρ=const.

13.10 M =
π

32
µωD4

h sin α

13.11 Q =
ρgπR4

8µ

13.12
1

Re
d4φ′(y′)
d(y′)4

−
[
ω′ +

2
Re

(k′)2
]

d2φ′(y′)
d(y′)2

+(k′)2
[
ω′ +

1
Re

(k′)2
]

φ′(y′) =

0

13.13 (a) t

√
g

d
= f

(
D

d
,
h

d

)

(b) h′ = 4h; t′ = 2t
(c) The same
(d) Πµ =

µ

ρd3/2g1/2
; there will be complete similitude only if µ′/ρ′ = µ/ρ.
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13.14 A = 7.9 × 10−3m2

13.15
y

y0
= e

3
(

1
x− 1

x0

)

13.16 p(r) = patm +
2πK

3
(
R2 − r2

)
13.17 t = 128, 45 hours

13.18 (a)
gH

N2D2
= f

(
Q

ND3
, Re,

ε

D

)

(b)
gH

N2D2
= f

(
Q

ND3

)

(c) H ′(Q′) = 80 − 0.1(Q′)2

(d) The same.

13.19 (a) Q3 = Q1 + Q2

(b) Dv =
[

1
2ρ
(

Q3
1

S2
1

+ Q3
2

S2
2

)
+ (p1Q1 + p2Q2)

]
−
[

1
2ρ

Q3
3

S2
3

+ p3Q3

]
+ Ẇ

(c) T3 = T1Q1+T2Q2
T3Q3

+ Dv

ρcvQ3

13.20 (a) NuL = 4
3C

(
GrL

4

)1/4

Solutions for Appendix D

D.1 (a) 2(1 + z)

(b)

⎛
⎝ 2 0 0

6x 0 0
0 0 2z

⎞
⎠

(c) Steady
(d) Compressible

D.2 ∇p = ρ∞v2
∞ { 2

a + 1
a cos x

a sin y
b

1
b sin x

a cos y
b }

∆p = −ρ∞v2
∞
(

1
a2 + 1

b2

)
sin x

a sin y
b

D.3 ∇φ = (90, 67); the projection is 103.02.

D.4 (a) x3yz + 2y2 + xy2

(b) (2x − y4, x2y2 − x2yz, xy3z − 2x2)
(c) yzi
(d) yi + xj
(e) (2y, xy,−xz)
(f) 2x + 2y

Solutions for Appendix G

G.1 The result is the same.



References

1. Batchelor GK (1967) An Introduction to Fluid Mechanics. Cambridge Univer-
sity Press, Cambridge.

2. Bejan A (2004) Convection Heat Transfer. Wiley.
3. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. John Wiley

& Sons, New York.
4. Brodkey RS, Hershey HC (2003) Transport Phenomena: A Unified Aproach.

Brodkey Publishing.
5. Bureau International des Poids et Mesures (2006) The International System of

Units (SI). Organisation Intergouvernementale de la Convention du Mètre.
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Index

adiabatic flow, 249
analogy of transport coefficients, 223

Chilton-Colburn, 226
Reynolds, 224

angular momentum
integral equation, 82

apparent viscosity, 126
arbitrary Lagrangian-Eulerian descrip-

tion, 15, 19
Archimedes’ principle, 61
Arrhenius, 282
average fluid velocity

mass average, 98
molar average, 98

axisymmetric flow, 248

Bernoulli equation, 94
Boltzmann equation, 10
boundary conditions, 107
boundary layer, 187

incompressible equations for, 193
thickness, 192, 197

Brinkman equation, 183
Buckingham’s Π theorem , 160
bulk viscosity, 122

center of pressure, 53
chemical species conservation

differential equation, 149, 280
integral equation, 96, 280

compressible flow, 248
constitutive equations, 120
contact

angle, 43

line, 43
continuity equation, 142

dimensionless form, 174
continuum hypothesis, 8
control volume, 69
convective term, 17
coordinate system

Cartesian, 265
cylindrical, 265
spherical, 266

curl, 259

Damköhler number, 177
Darcy law, 182
Darcy-Weisbach equation, 167
Deborah number, 128
deformation rate, 124
diffusion velocity, 100
dimension

derived, 159
fundamental, 159

dimensional analysis, 157
dimensional homogeneity principle, 158
dimensional matrix, 161
dimensionless number, 161
dimensionless variable, 160, 173
divergence, 258
drag coefficient, 163, 203
Dufour effect, 281

Eckert number, 176
Einstein summation convention, 254
Ellis law, 128
energy
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internal, 85
kinetic, 85
potential, 87, 146
total, 85

enthalpy, 271
enthalpy equation

differential equation, 148
entropy, 272
entropy equation

differential equation, 149
equations of state, 120, 271
Euler number, 175

physical interpretation, 179
Eulerian description, 13
experiments with scaled models, 165

Fick’s law, 133
film temperature, 227
flow

laminar, 188
turbulent, 188

fluency threshold, 128
fluid

definition, 7
ideal, 80, 89
incompressible, 143
Newtonian, 125
non-Newtonian, 125

Bingham, 125
dilatant, 125
ideal plastic, 125
pseudoplastic, 125
rheopectic, 127
shear-thickening, see dilatant

non-Newtonian fluid
shear-thinning, see pseudoplastic

non-Newtonian fluid
thixotropic, 127
viscoelastic, 127
viscoplastic, 127

real, 80
fluid interfaces, 187
fluid statics, 47

fundamental equation, 47
fluid volume, 69
flux, 26, 29

convection, 29
heat, 30, 86
mass flow rate, 27

volumetric flow rate, 26
force

body, 34
capillary, 44
gravity, 34
inertial, 34
line, surface tension, 43
over submerged surfaces, 52, 56, 58,

60
surface, 35

forced convection, 209, 218
Fourier’s law, 130
free convection, see natural convection
free surface, 8
friction, 35, 80
Froude number, 175

physical interpretation, 179

Gauss theorem, 263
Gibbs relation, 272
gradient, 258
Grashof number, 214

concentration, 219

Hagen-Poiseauille flow, 28
head losses

in a pipe, 166, 204
local, see singular head losses
singular, 205

heat transport coefficient, 207
forced convection, 209
natural convection, 212

hydrostatic pressure distribution
isothermal perfect gas, 51
liquid, 49, 50
rigid body motion, 48

hydrostatics, 49

ideal flow, 89, 249
incompressible flow, 248
indicial notation, 253
initial conditions, 107
inmiscible liquids, 103
internal energy equation

differential equation, 146, 279
integral equation, 95, 279

irrotational flow, 249
isothermal flow, 249

j-factors, 227
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kinematics, 11
Knudsen number, 10

Lagrangian description, 11
laminar flow, 249
Laplacian, 259
Lewis number, 178

physical interpretation, 179
liquid, 143

Mach number, 178
manometer, 51
mass action law, 282
mass concentration, 96
mass conservation, see continuity

equation
differential equation, 142, 277
integral equation, 75, 277

mass flow rate, 27
mass fraction, 97
mass transport coefficient, 216

forced convection, 218
natural convection, 219

material derivative, see substantial
derivative

mean free path, 10
mean velocity, 28
mechanical energy equation

differential equation, 145, 279
integral equation, 89, 279

mixing, 104
molar concentration, 97
molar fraction, 97
molecular diffusivity, 133
moment

over submerged surfaces, 52
momentum equation

differential equation, 143, 277
dimensionless form, 175
integral equation, 78, 277

momentum transport coefficient, 201
Moody diagram, 167, 205, 206
multistep reaction, 282

nabla operator, 257
natural convection, 212, 219
Navier-Poisson law, 122
Newton’s law of friction, 121
no-slip boundary condition, 108

non-conservative form, 144
nondimensional number, see dimension-

less number
normal vector, 26
Nusselt number, 177, 211, 214

mass, 177

Oldroyd model, 128
one-dimensional flow, 248

Péclet II number, 177
physical interpretation, 179

Péclet number, 176
physical interpretation, 179

periodic flow, 247
plane flow, 248
Poiseuille flow, 123
potential vortex, 260
power law, 127
Prandtl number, 178

physical interpretation, 179
Prandtl theory, 188
pressure, 35, 40

absolute, 43
gage, 43
jump across a bubble, 44
modified, 166

Rayleigh number, 214
resistance force, 162
Reynolds number, 163, 175

physical interpretation, 179
transition, 188

rheology, 124
rotational flow, 249

scalar product, 256
Schmidt number, 178

physical interpretation, 179
Sherwood number, 177, 219
similarity, 165

chemical, 165
complete, 165
dynamic, 165
geometric, 165
kinematic, 165
partial, 166
thermal, 165

simple compressible substance, 272
slip boundary condition, 107
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Soret effect, 282
specific heat, 272
Stanton number

heat transfer, 210
mass transfer, 219

stationary flow, 17, 247
steady flow, see stationary flow
Stokes hypothesis, 122
strain rate, see deformation rate
streakline, 21

calculation of, 25
streamline, 20

calculation of, 22
stress, 35

compression, 41
normal, 5, 37
shear, 5, 37
tangential, see shear stress

stress tensor, 35, 47, 79
symmetry, 39
viscous, 80, 121

Strouhal number, 175
physical interpretation, 178

substantial derivative, 14, 15
applied to a vector, 17

surface tension, 43
system of reference, 267

inertial, 267
non-inertial, 34, 267
relative, see non-inertial system of

reference

Taylor series, 263
temperature equation

dimensionless form, 176
temporal term, 17
tensor, 253

isotropic, 41
thermal conductivity, 130
thermal diffusivity, 131
thermodynamic equilibrium, 10
three-dimensional flow, 248
total energy equation

differential equation, 144, 278

integral equation, 85, 278
trajectory, 21

calculation of, 24
transfer coefficient, see transport

coefficient
transient flow, 18, 247
transport

by convection, 17, 19, 152
by diffusion, 19, 136

heat, 129
mass, 132
momentum, 120

transport coefficient
analogy, see analogy of transport

coefficients
global, 200
heat, see heat transport coefficient
local, 200
mass, see mass transport coefficient
momentum, see momentum transport

coefficient
transport theorems, 70
turbulent flow, 249
two-dimensional flow, 248

universal gas constant, 273

vector product, 256
velocity triangle, 267
Venturi, 92, 94
viscosity, 80, 120

dynamic, 121
kinematic, 123

viscous dissipation, 96
viscous dissipation function, 90, 145
viscous flow, 249
volume conservation equation

integral equation, 103
volumetric flow rate, 26

Weber number, 43
Weissenberg number, 128

Young-Laplace equation, 44, 109
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