

Learning Python Network
Programming

Utilize Python 3 to get network applications up and
running quickly and easily

Dr. M. O. Faruque Sarker

Sam Washington

BIRMINGHAM - MUMBAI

Learning Python Network Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1100615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-600-8

www.packtpub.com

www.packtpub.com

Credits

Authors
Dr. M. O. Faruque Sarker

Sam Washington

Reviewers
Konstantin Manchev Manchev

Vishrut Mehta

Anhad Jai Singh

Ben Tasker

Ilja Zegars

Commissioning Editor
Kunal Parikh

Acquisition Editor
Kevin Colaco

Content Development Editor
Rohit Singh

Technical Editor
Saurabh Malhotra

Copy Editors
Ameesha Green

Rashmi Sawant

Trishla Singh

Project Coordinator
Izzat Contractor

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Dr. M. O. Faruque Sarker is a software architect based in London, UK, where
he has been shaping various Linux and open source software solutions, mainly on
cloud computing platforms, for commercial companies, educational institutions, and
multinational consultancies. Over the past 10 years, he has been leading a number
of Python software development and cloud infrastructure automation projects. In
2009, he started using Python, where he was responsible for shepherding a fleet of
miniature E-puck robots at the University of South Wales, Newport, UK. Later, he
honed his Python skills, and he was invited to work on the Google Summer of Code
(2009/2010) programs for contributing to the BlueZ and Tahoe-LAFS open source
projects. He is the author of Python Network Programming Cookbook, Packt Publishing.

He received his PhD in multirobot systems from the University of South Wales. He is
currently working at University College London. He takes an active interest in cloud
computing, software security, intelligent systems, and child-centric education. He
lives in East London with his wife, Shahinur, and daughter, Ayesha.

All praises and thanks to Allah, the God who is the Merciful and the
Beneficent. I would not be able to finish this book without the help
of God. I would like to thank Packt Publishing's entire team and my
coauthor, Sam, who were very friendly and cooperative in this long
journey. I would also like to thank my family and friends for their
sacrifice of time, encouraging words, and smiles.

Sam Washington currently works at University College London as a member
of its Learning and Teaching Applications team, developing and supporting the
University's Moodle virtual learning environment, its wikis and blogs, and its
online media services. Prior to this, he was a system administrator for UCL's several
museums. He has working experience of managing the demands of varied web
applications, and deploying and supporting Windows, Linux, and TCP/IP networks.
He has been using Python for professional and personal projects for over 7 years.

I would like to thank the team at Packt for their encouragement and
input throughout this project, especially Rebecca, Rohit, Saurabh,
Trishla, and Akshay. I would also like to thank the reviewers for
all their insights and corrections, Anhad Jai Singh, Ben Tasker,
Grzegorz Gwóźdź, Ilja Zegars, Tom Stephens, Vishrut Mehta,
Konstantin Manchev, and Andrew Armitage. I would like to express
my immense respect and gratitude to the entire Python community
for creating such a great programming language and ecosystem, and
thanks to Faruque for giving me this opportunity to give a little in
return. And Christina, thank you for still being here. You can have
me back now.

About the Reviewers

Konstantin Manchev Manchev is a technical support professional, who has
more than 15 years of experience in a wide range of operating systems, database
services, scripting, networking, and security in the mobile telecommunication
systems. He actively participates in the adaption of various vendor equipment
projects to live mobile operator networks.

He has worked on the following technologies:

• Mobile systems such as GSM, UMTS, 3G, and WiFi
• Vendors such as Cisco, ALU, NSN, RedHat, and Canonical
• Network elements such as MSC, VLR, HLR, MSCS, OCS, NGIN, and PCRF
• Network protocol suites such as SS#7 and TCP/IP
• Webpage technologies such as HTTP, XML, HTML, SOAP, and REST
• Operating systems such as Linux (Debian, Ubuntu, RHEL, and CentOS),

Windows, and Unix
• Virtualisation and Cloud technologies such as EC2, OpenStack, VMware,

VirtualBox, and so on
• Programming languages such as Perl, Python, awk, bash, C, Delphi, Java,

and so on
• Databases such as MongoDB, InfluxDB, MySQL, MS SQL, Oracle, and so on
• Monitoring systems such as Nagios, Grafana, Zabbix, and so on

He specializes in IT and Telecom services support, installation, configuration,
maintenance, and implementation of the latest market technology solutions.
He is a Linux enthusiast.

I would like to thank my wife, Nadya Valcheva-Mancheva, my kids,
Elena Mancheva and Daniel Manchev, and colleagues, Attila Sovak,
Ketan Delhiwala, Jerzy Sczudlowski, Aneesh Kannankara, Devrim
Kucuk, Peter De Vriendt, Peyo Chernev, Andrey Royatchki, Tzvetan
Balabanov, Vasil Zgurev, Ludmil Panov, Plamen Georgiev, Ivailo
Pavlov, Mitko Bagrev, and Milen Cholakov for their support.

Vishrut Mehta is a student of IIIT Hyderabad, who is pursuing his masters in the
field of cloud computing and software-defined networks. He has participated in the
Google Summer of Code 2013 program under Sahana Software Foundation, and he
was also the administrator for Google Code-In. He also did his research internship at
INRIA, France, for 3 months under Dr. Nikos Parlavantzas in the field of automating
multi-cloud applications.

He has worked on Untangle Network Security and Python Network Programming
Cookbook, both by Packt Publishing.

I would like to thank my advisors, Dr. Vasudeva Varma and
Dr. Reddy Raja, for helping me in my work and constantly
supporting me with my research.

Anhad Jai Singh is a computer science graduate from IIIT Hyderabad. He's a part-
time system administrator and has worked as a Python developer in the past. He's a
two-time release engineering intern at Mozilla, as well as a Google Summer of Code
participant. In his free time, he plays with networks and distributed systems. You
can find him lurking around IRC networks under the alias of "ffledgling."

Ben Tasker is a Linux systems administrator, penetration tester, and software
developer based in Suffolk, UK.

Having initially interacted with Linux at an early age, he's been configuring,
scripting, and managing systems ever since. He maintains a blog and documentation
archive (www.bentasker.co.uk) that attempts to cater to both technical and
nontechnical audiences. He is currently active on a number of varied projects
and loves every challenge they bring.

Thanks to Claire, my love, for not mentioning the time I've dedicated
to this and other projects. I would also like to thank my son, Toby,
who's similarly had to share me. The Sanity checks provided by Ben,
Dean, and Neil were also very greatly appreciated.

Ilja Zegars is a networking specialist with over 7 years of experience in the
networking field. He became a professional Python programmer and Python
programming teacher, while studying for his bachelor's degree. Over the years,
he mastered his skills in coding and networking. Currently, he is working
as a networking specialist and data analyst at AD-net Technology and
FiberBit Technology.

He is the author of the book Colour Measurement Using Mobile Phone Camera.

I want to thank my dear, Danhua, for supporting and believing
in me.

www.bentasker.co.uk

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface vii
Chapter 1: Network Programming and Python 1

An introduction to TCP/IP networks 2
IP addresses 2
Network interfaces 3
Assigning IP addresses 4
IP addresses on the Internet 4
Packets 5
Networks 7
Routing with IP 9
DNS 10
The protocol stack or why the Internet is like a cake 11
Layer 4 – TCP and UDP 13

Network ports 13
UDP 14
TCP 15
UDP versus TCP 16

Layer 5 – The application layer 16
On to Python! 17

Network programming with Python 17
Breaking a few eggs 17

Taking it from the top 19
Downloading an RFC 20
Looking deeper 21
Programming for TCP/IP networks 24

Firewalls 24
Network Address Translation 25
IPv6 26

Summary 28

Table of Contents

[ii]

Chapter 2: HTTP and Working with the Web 29
Request and response 30
Requests with urllib 31
Response objects 31
Status codes 32
Handling problems 33
HTTP headers 34
Customizing requests 36

Content compression 38
Multiple values 39

Content negotiation 40
Content types 40

User agents 42
Cookies 43

Cookie handling 44
Know your cookies 45

Redirects 47
URLs 48

Paths and relative URLs 49
Query strings 51
URL encoding 52
URLs in summary 54

HTTP methods 55
The HEAD method 55
The POST method 55

Formal inspection 56
HTTPS 58
The Requests library 59

Handling errors with Requests 63
Summary 64

Chapter 3: APIs in Action 65
Getting started with XML 66

The XML APIs 66
The basics of ElementTree 67

Pretty printing 68
Element attributes 69
Converting to text 70

The Amazon S3 API 70
Registering with AWS 71
Authentication 71

Setting up an AWS user 72

Table of Contents

[iii]

Regions 73
S3 buckets and objects 74
An S3 command-line client 74

Creating a bucket with the API 76
Uploading a file 78
Retrieving an uploaded file through a web browser 79
Displaying an uploaded file in a web browser 80
Downloading a file with the API 81

Parsing XML and handling errors 82
Parsing XML 82
Finding elements 83
Handling errors 84

Further enhancements 84
The Boto package 85
Wrapping up with S3 87

JSON 87
Encoding and decoding 88
Using dicts with JSON 88
Other object types 89

The Twitter API 90
A Twitter world clock 91
Authentication for Twitter 91

Registering your application for the Twitter API 91
Authenticating requests 92
A Twitter client 92

Polling for Tweets 94
Processing the Tweets 95
Rate limits 96
Sending a reply 97
Final touches 98
Taking it further 99

Polling and the Twitter streaming APIs 99
Alternative oAuth flows 99

HTML and screen scraping 100
HTML parsers 101
Show me the data 102
Parsing HTML with lxml 102
Zeroing in 103
Searching with XPath 104

XPath conditions 105
Pulling it together 106

With great power... 107
Choosing a User Agent 108

Table of Contents

[iv]

The Robots.txt file 108
Summary 109

Chapter 4: Engaging with E-mails 111
E-mail terminologies 111
Sending e-mails with SMTP 112

Composing an e-mail message 113
Sending an e-mail message 114

Sending e-mails securely with TLS 117
Retrieving e-mails by using POP3 with poplib 121
Retrieving e-mails by using IMAP with imaplib 123
Sending e-mail attachments 126
Sending e-mails via the logging module 128
Summary 131

Chapter 5: Interacting with Remote Systems 133
Secure shell – access using Python 134

Inspecting the SSH packets 137
Transferring files through SFTP 139
Transferring files with FTP 140

Inspecting FTP packets 142
Fetching Simple Network Management Protocol data 143

Inspecting SNMP packets 146
Reading Light-weight Directory Access Protocol data 147

Inspecting LDAP packets 151
Sharing files with SAMBA 153

Inspecting SAMBA packets 156
Summary 158

Chapter 6: IP and DNS 159
Retrieving the network configuration of a local machine 159
Manipulating IP addresses 161

IP network objects 162
Network interface objects 163
The IP address objects 164
Planning IP addresses for your local area network 165

GeoIP look-ups 167
DNS look-ups 168
Inspecting DNS client/server communication 170

NTP clients 172
Inspecting the NTP client/server communication 174

Summary 175

Table of Contents

[v]

Chapter 7: Programming with Sockets 177
Basics of sockets 177
Working with TCP sockets 179

Inspecting the client/server communication 182
TCP servers 185
Inspecting client/server interaction 187

Working with UDP sockets 188
TCP port forwarding 190
A non-blocking socket I/O 193
Securing sockets with TLS/SSL 193

Inspecting standard SSL client/server communication 197
Creating a custom SSL client/server 201

Inspecting interaction between a custom SSL client/server 204
Summary 208

Chapter 8: Client and Server Applications 209
Client and server 210
An echo protocol 210

Framing 211
A simple echo server 213

Handling the received data 214
The server itself 215

A simple echo client 216
Concurrent I/O 218
Multithreading and multiprocessing 219

Threading and the GIL 220
A multithreaded echo server 222
Designing a chat server 223
A chat protocol 224
Handling data on persistent connections 225
A multithreaded chat server 227

Queues 229
Locks 230

A multithreaded chat client 231
Event-driven servers 233
A low-level event-driven chat server 235
Frameworks 238
An eventlet-based chat server 239
An asyncio-based chat server 241

Table of Contents

[vi]

More on frameworks 244
Taking our servers forward 244
Summary 245

Chapter 9: Applications for the Web 247
What's in a web server? 248
Python and the Web 250

Web frameworks 251
Flask – a microframework 252

Templating 255
Other templating engines 257
Adding some style 258
A note on security 259

XSS 259
CSRF 260

Finishing up with frameworks 261
Hosting Python web applications 262

CGI 263
Recycling for a better world 264
Event-driven servers 267
WSGI 267

Hosting in practice 268
Summary 270

Appendix: Working with Wireshark 271
Packet sniffers 271
Wireshark 272

Installation 272
Capturing some packets 272
Filtering 276
Inspecting packets 279
A versatile tool 281

Index 283

[vii]

Preface
Welcome to the world of network programming with Python. Python is a
full-featured object-oriented programming language with a standard library that
includes everything needed to rapidly build powerful network applications. In
addition, it has a multitude of third-party libraries and packages that extend Python
to every sphere of network programming. Combined with the fun of using Python,
with this book, we hope to get you started on your journey so that you master these
tools and produce some great networking code.

In this book, we are squarely targeting Python 3. Although Python 3 is still
establishing itself as the successor to Python 2, version 3 is the future of the language,
and we want to demonstrate that it is ready for network programming prime time.
It offers many improvements over the previous version, many of which improve the
network programming experience, with enhanced standard library modules and
new additions.

We hope you enjoy this introduction to network programming with Python.

What this book covers
Chapter 1, Network Programming and Python, introduces core networking concepts for
readers that are new to networking, and also covers how network programming is
approached in Python.

Chapter 2, HTTP and Working with the Web, introduces you to the HTTP protocol
and covers how we can retrieve and manipulate web content using Python as an
HTTP client. We also take a look at the standard library urllib and third-party
Requests modules.

Preface

[viii]

Chapter 3, APIs in Action, introduces you to working with web APIs using HTTP.
We also cover the XML and JSON data formats, and walk you through developing
applications using the Amazon Web Services Simple Storage Service (S3) and
Twitter APIs.

Chapter 4, Engaging with E-mails, covers the principle protocols used in sending and
receiving e-mails, such as SMTP, POP3, and IMAP, and how to work with them
in Python 3.

Chapter 5, Interacting with Remote Systems, guides you through the ways of using
Python to connect to servers and performing common administrative tasks,
including the execution of shell commands through SSH, file transfers with FTP
and SMB, authentication with LDAP, and to monitor systems with SNMP.

Chapter 6, IP and DNS, discusses the details of the Internet Protocol (IP), ways of
working with IP in Python, and how to use DNS to resolve hostnames.

Chapter 7, Programming with Sockets, covers using TCP and UDP sockets from Python
for writing low-level network applications. We also cover HTTPS and TLS for secure
data transport.

Chapter 8, Client and Server Applications, looks at writing client and server programs
for socket-based communication. By writing an echo application and a chat
application we look at developing basic protocols, framing network data, and
compare the multithreading and event-based server architectures.

Chapter 9, Applications for the Web, introduces you to writing web applications
in Python. We cover the main approaches, methods of hosting Python web
applications, and develop an example application in the Flask microframework.

Appendix, Working with Wireshark, covers packet sniffers, the installation of
Wireshark, and how to capture and filter packets using the Wireshark application.

What you need for this book
This book is aimed at Python 3. While many of the examples will work in Python
2, you'll get the best experience working through this book with a recent version of
Python 3. At the time of writing, the latest version is 3.4.3, and the examples were
tested against this.

Preface

[ix]

Though Python 3.4 is the preferred version, all the examples should run on
Python 3.1 or later, except for the following:

• The asyncio example in Chapter 8, Client and Server Applications, as the
asyncio module was only included in Version 3.4

• The Flask example in Chapter 9, Applications for the Web, which requires
Python 3.3 or later

We're also targeting the Linux operating system, and the assumption is made
that you are working on a Linux OS. The examples have been tested on Windows
though, and we'll make a note of where there may be differences in the requirements
or outcomes.

Virtual environments
It is highly recommended that you use Python virtual environments, or "venvs",
when you work with this book, and in fact, when doing any work with Python.
A venv is an isolated copy of the Python executable and associated files, which
provides a separate environment for installing Python modules, independent from
the system Python installation. You can have as many venvs as you need, which
means that you can have multiple module configurations set up, and you can switch
between them easily.

From version 3.3, Python includes a venv module, which provides this functionality.
The documentation and examples are available at https://docs.python.org/3/
using/scripts.html. There is also a standalone tool available for earlier versions,
which can be found at https://virtualenv.pypa.io/en/latest/.

Installing Python 3
Most major Linux distributions come preinstalled with Python 2. When installing
Python 3 on such a system, it is important to note that we're not replacing the
installation of Python 2. Many distributions use Python 2 for core system operations,
and these will be tuned for the major version of the system Python. Replacing the
system Python can have severe consequences for the running of the OS. Instead,
when we install Python 3, it is installed side by side with Python 2. After installing
Python 3, it is invoked using the python3.x executable, where x is replaced with the
corresponding installed minor version. Most packages also provide a symlink to this
executable called python3, which can be run instead.

https://docs.python.org/3/using/scripts.html
https://docs.python.org/3/using/scripts.html
https://virtualenv.pypa.io/en/latest/

Preface

[x]

Packages to install Python 3.4 are available for most recent distributions, we'll go
through the major ones here. If packages are not available, there are still some
options that you can use to install a working Python 3.4 environment.

Ubuntu and Debian
Ubuntu 15.04 and 14.04 come with Python 3.4 already installed; so if you're running
these versions, you're already good to go. Note that there is a bug in 14.04, which
means pip must be installed manually in any venvs created using the bundled venv
module. You can find information on working around this at http://askubuntu.
com/questions/488529/pyvenv-3-4-error-returned-non-zero-exit-status-1.

For earlier versions of Ubuntu, Felix Krull maintains a repository of up-to-date
Python installations for Ubuntu. The complete details can be found at https://
launchpad.net/~fkrull/+archive/ubuntu/deadsnakes.

On Debian, Jessie has a Python 3.4 package (python3.4), which can be installed
directly with apt-get. Wheezy has a package for 3.2 (python3.2), and Squeeze
has python3.1, which can be installed similarly. In order to get working Python
3.4 installations on these latter two, it's easiest to use Felix Krull's repositories for
Ubuntu.

RHEL, CentOS, Scientific Linux
These distributions don't provide up-to-date Python 3 packages, so we need to use a
third-party repository. For Red Hat Enterprise Linux, CentOS, and Scientific Linux,
Python 3 can be obtained from the community supported Software Collections (SCL)
repository. Instructions on using this repository can be found at https://www.
softwarecollections.org/en/scls/rhscl/python33/. At the time of writing,
Python 3.3 is the latest available version.

Python 3.4 is available from another repository, the IUS Community repository,
sponsored by Rackspace. Instructions on the installation can be found at
https://iuscommunity.org/pages/IUSClientUsageGuide.html.

Fedora
Fedora 21 and 22 provide Python 3.4 with the python3 package:

$ yum install python3

For earlier versions of Fedora, use the repositories listed in the preceding
Red Hat section.

http://askubuntu.com/questions/488529/pyvenv-3-4-error-returned-non-zero-exit-status-1
http://askubuntu.com/questions/488529/pyvenv-3-4-error-returned-non-zero-exit-status-1
https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes
https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes
https://www.softwarecollections.org/en/scls/rhscl/python33/
https://www.softwarecollections.org/en/scls/rhscl/python33/
https://iuscommunity.org/pages/IUSClientUsageGuide.html

Preface

[xi]

Alternative installation methods
If you're working on a system, which isn't one of the systems mentioned earlier,
and you can't find packages for your system to install an up-to-date Python 3, there
are still other ways of getting it installed. We'll discuss two methods, Pythonz
and JuJu.

Pythonz
Pythonz is a program that manages the compilation of Python interpreters from
source code. It downloads and compiles Python from source and installs the
compiled Python interpreters in your home directory. These binaries can then be
used to create venvs. The only limitation with this installation method is that you
need a build environment (that is, a C compiler and supporting packages) installed
on your system, and dependencies to compile Python. If this doesn't come with
your distribution, you will need root access to install this initially. The complete
instructions can be found at https://github.com/saghul/pythonz.

JuJu
JuJu can be used as a last resort, it allows a working Python 3.4 installation on
any system without needing root access. It works by creating a tiny Arch Linux
installation in a folder, in your home folder and provides tools that allow us to
switch to this installation and run commands in it. Using this, we can install
Arch's Python 3.4 package, and you can run Python programs using this.
The Arch environment even shares your home folder with your system,
so sharing files between environments is easy. The JuJu home page is
available at https://github.com/fsquillace/juju.

JuJu should work on any distribution. To install it we need to do this:

$ mkdir ~/.juju

$ curl https:// bitbucket.org/fsquillace/juju-repo/raw/master/juju-
 x86_64.tar.gz | tar -xz -C ~/.juju

This downloads and extracts the JuJu image to ~/.juju. You'll need to replace the
x86_64 with x86 if you're running on a 32-bit system. Next, set up PATH to pick up
the JuJu commands:

$ export PATH=~/.juju/opt/juju/bin:$PATH

https://github.com/saghul/pythonz
https://github.com/fsquillace/juju

Preface

[xii]

It's a good idea to add this to your .bashrc, so you don't need to run it every time
you log in. Next, we install Python in the JuJu environment, we only need to
do this once:

$ juju -f

$ pacman --sync refresh

$ pacman --sync --sysupgrade

$ pacman --sync python3

$ exit

These commands first activate the JuJu environment as root, then use the pacman
Arch Linux package manager to update the system and install Python 3.4. The
final exit command exits the JuJu environment. Finally, we can access the JuJu
environment as a regular user:

$ juju

We can then start using the installed Python 3:

$ python3

Python 3.4.3 (default, Apr 28 2015, 19:59:08)

[GCC 4.7.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Windows
Compared to some of the older Linux distributions, installing Python 3.4 on
Windows is relatively easy; just download the Python 3.4 installer from http://
www.python.org and run it. The only hitch is that it requires administrator privileges
to do so, so if you're on a locked down machine, things are trickier. The best solution
at the moment is WinPython, which is available at http://winpython.github.io.

Other requirements
We assume that you have a working Internet connection. Several chapters use
Internet resources extensively, and there is no real way to emulate these offline.
Having a second computer is also useful to explore some networking concepts,
and for trying out network applications across a real network.

http://www.python.org
http://www.python.org
http://winpython.github.io

Preface

[xiii]

We also use the Wireshark packet sniffer in several chapters. This will require
a machine where you have root access (or administrator access in Windows).
Wireshark installers and installation instructions are available at https://www.
wireshark.org. An introduction to using Wireshark can be found in the Appendix,
Working with Wireshark.

Who this book is for
If you're a Python developer, or system administrator with Python experience,
and you're looking forward to take your first step in network programming, then
this book is for you. Whether you're working with networks for the first time or
looking to enhance your existing networking and Python skills, you will find this
book very useful.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"IP addresses have been assigned to your computer by running the ip addr or
ipconfig /all command on Windows."

A block of code is set as follows:

import sys, urllib.request

try:
 rfc_number = int(sys.argv[1])
except (IndexError, ValueError):
 print('Must supply an RFC number as first argument')
 sys.exit(2)

template = 'http://www.ietf.org/rfc/rfc{}.txt'
url = template.format(rfc_number)
rfc_raw = urllib.request.urlopen(url).read()
rfc = rfc_raw.decode()
print(rfc)

https://www.wireshark.org
https://www.wireshark.org

Preface

[xiv]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are highlighted:

<body>
...
<div id="content">
<h1>Debian “jessie” Release Information</h1>
<p>Debian 8.0 was
released October 18th, 2014.
The release included many major
changes, described in
...

Any command-line input or output is written as follows:

$ python RFC_downloader.py 2324 | less

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "We can see
there's a list of interfaces below the Start button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

We follow PEP 8 as closely as we can, but we also follow the principle that
practicality beats purity, and do deviate in a few areas. Imports are often performed
on a single line to save space, and we may not strictly adhere to wrapping
conventions do to the nature of printed media; we aim for "readability counts".

We have also chosen to focus on the procedural programming style rather than use
object-oriented examples. The reason for this is that it is generally easier for someone
familiar with object oriented programming to rework procedural examples into an
object oriented format than it is for someone unfamiliar with OOP to do the reverse.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[xv]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xvi]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Network Programming
and Python

This book will focus on writing programs for networks that use the Internet
protocol suite. Why have we chosen to do this? Well, of the sets of protocols
supported by the Python standard library, the TCP/IP protocol is by far the most
widely employable. It contains the principle protocols used by the Internet. By
learning to program for TCP/IP, you'll be learning how to potentially communicate
with just about every device that is connected to this great tangle of network cables
and electromagnetic waves.

In this chapter, we will be looking at some concepts and methods around networks
and network programming in Python, which we'll be using throughout this book.

This chapter has two sections. The first section, An introduction to TCP/IP networks,
offers an introduction to essential networking concepts, with a strong focus on the
TCP/IP stack. We'll be looking at what comprises a network, how the Internet
Protocol (IP) allows data transfer across and between networks, and how TCP/IP
provides us with services that help us to develop network applications. This section
is intended to provide a grounding in these essential areas and to act as a point of
reference for them. If you're already comfortable with concepts such as IP addresses,
routing, TCP and UDP, and protocol stack layers, then you may wish to skip to
second part, Network programming with Python.

In the second part, we'll look at the way in which network programming is
approached with Python. We'll be introducing the main standard library modules,
looking at some examples to see how they relate to the TCP/IP stack, and then
we will be discussing a general approach for finding and employing modules
that meet our networking needs. We'll also be taking a look at a couple of general
issues that we may encounter, when writing applications that communicate over
TCP/IP networks.

Network Programming and Python

[2]

An introduction to TCP/IP networks
The Internet protocol suite, often referred to as TCP/IP, is a set of protocols
designed to work together to provide end-to-end transmission of messages
across interconnected networks.

The following discussion is based on Internet Protocol version 4 (IPv4). Since the
Internet has run out of IPv4 addresses, a new version, IPv6, has been developed,
which is intended to resolve this situation. However, although IPv6 is being used in
a few areas, its deployment is progressing slowly and a majority of the Internet will
likely be using IPv4 for a while longer. We'll focus on IPv4 in this section, and then
we will discuss the relevant changes in IPv6 in second part of this chapter.

TCP/IP is specified in documents called Requests for Comment (RFCs) which are
published by the Internet Engineering Task Force (IETF). RFCs cover a wide range
of standards and TCP/IP is just one of these. They are freely available on the IETF's
website, which can be found at www.ietf.org/rfc.html. Each RFC has a number,
IPv4 is documented by RFC 791, and other relevant RFCs will be mentioned as
we progress.

Note that you won't learn how to set up your own network in this chapter because
that's a big topic and unfortunately, somewhat beyond the scope of this book. But,
it should enable you at least to have a meaningful conversation with your network
support people!

IP addresses
So, let's get started with something you're likely to be familiar with, that is,
IP addresses. They typically look something like this:

203.0.113.12

They are actually a single 32-bit number, though they are usually written just
like the number shown in the preceding example; they are written in the form of
four decimal numbers that are separated by dots. The numbers are sometimes called
octets or bytes because each one represents 8-bits of the 32-bit number. As such, each
octet can only take values from 0 to 255, so valid IP addresses range from 0.0.0.0 to
255.255.255.255. This way of writing IP addresses is called dot-decimal notation.

www.ietf.org/rfc.html

Chapter 1

[3]

IP addresses perform two main functions. They are as follows:

• They uniquely address each device that is connected to a network
• They help the traffic to be routed between networks

You may have noticed that the network-connected devices that you use have IP
addresses assigned to them. Each IP address that is assigned to a network device
is unique and no two devices can share an IP address.

Network interfaces
You can find out what IP addresses have been assigned to your computer by running
ip addr (or ipconfig /all on Windows) on a terminal. In Chapter 6, IP and DNS,
we'll see how to do this when using Python.

If we run one of these commands, then we can see that the IP addresses are assigned
to our device's network interfaces. On Linux, these will have names, such as eth0;
on Windows these will have phrases, such as Ethernet adapter Local Area
Connection.

You will get the following output when you run the ip addr command on Linux:

$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UP qlen 1000

 link/ether b8:27:eb:5d:7f:ae brd ff:ff:ff:ff:ff:ff

 inet 192.168.0.4/24 brd 192.168.0.255 scope global eth0

 valid_lft forever preferred_lft forever

In the preceding example, the IP addresses for the interfaces appear after the
word inet.

An interface is a device's physical connection to its network media. It could be
a network card that connects to a network cable, or a radio that uses a specific
wireless technology. A desktop computer may only have a single interface for a
network cable, whereas a Smartphone is likely to have at least two interfaces, one for
connecting to Wi-Fi networks and one for connecting to mobile networks that use 4G
or other technologies.

Network Programming and Python

[4]

An interface is usually assigned only one IP address, and each interface in a device
has a different IP address. So, going back to the purposes of IP addresses discussed
in the preceding section, we can now more accurately say that their first main
function is to uniquely address each device's connection to a network.

Every device has a virtual interface called the loopback interface, which you can
see in the preceding listing as interface 1. This interface doesn't actually connect to
anything outside the device, and only the device itself can communicate with it.
While this may sound a little redundant, it's actually very useful when it comes to
local network application testing, and it can also be used as a means of inter-process
communication. The loopback interface is often referred to as localhost, and it is
almost always assigned the IP address 127.0.0.1.

Assigning IP addresses
IP addresses can be assigned to a device by a network administrator in one of two
ways: statically, where the device's operating system is manually configured with
the IP address, or dynamically, where the device's operating system is configured by
using the Dynamic Host Configuration Protocol (DHCP).

When using DHCP, as soon as the device first connects to a network, it is
automatically allocated an address by a DHCP server from a predefined pool. Some
network devices, such as home broadband routers provide a DHCP server service
out-of-the-box, otherwise a DHCP server must be set up by a network administrator.
DHCP is widely deployed, and it is particularly useful for networks where different
devices may frequently connect and disconnect, such as public Wi-Fi hotspots or
mobile networks.

IP addresses on the Internet
The Internet is a huge IP network, and every device that sends data over it is
assigned an IP address.

The IP address space is managed by an organization called the Internet Assigned
Numbers Authority (IANA). IANA decides the global allocation of the IP address
ranges and assigns blocks of addresses to Regional Internet Registries (RIRs)
worldwide, who then allocate address blocks to countries and organizations. The
receiving organizations have the freedom to allocate the addresses from their
assigned blocks as they like within their own networks.

Chapter 1

[5]

There are some special IP address ranges. IANA has defined ranges of private
addresses. These ranges will never be assigned to any organization, and as such
these are available for anyone to use for their networks. The private address ranges
are as follows:

• 10.0.0.0 to 10.255.255.255
• 172.16.0.0 to 172.31.255.255
• 192.168.0.0 to 192.168.255.255

You may be thinking that if anybody can use them, then would'nt that mean that
devices on the Internet will end up using the same addresses, thereby breaking IP's
unique addressing property? This is a good question, and this problem has been
avoided by forbidding traffic from private addresses from being routed over the
public Internet. Wherever a network using private addresses needs to communicate
with the public Internet, a technique called Network Address Translation (NAT)
is used, which essentially makes the traffic from the private network appear to be
coming from a single valid public Internet address, and this effectively hides the
private addresses from the Internet. We'll discuss NAT later on.

If you inspect the output of ip addr or ipconfig /all on your home network, then
you will find that your devices are using private range addresses, which would have
been assigned to them by your broadband router through DHCP.

Packets
We'll be talking about network traffic in the following sections, so let's get an idea of
what it is.

Many protocols, including the principle protocols in the Internet protocol suite,
employ a technique called packetization to help manage data while it's being
transmitted across a network.

When a packetizing protocol is given some data to transmit, it breaks it up into small
units — sequences of bytes, typically a few thousand bytes long and then it prefixes
each unit with some protocol-specific information. The prefix is called a header, and
the prefix and data together form a packet. The data within a packet is often called
its payload.

Network Programming and Python

[6]

What a packet contains is shown in the following figure:

Some protocols use alternative terms for packets, such as frames, but we'll stick with
the term packets for now. The header includes all the information that the protocol
implementation running on another device needs to be able to interpret what the
packet is and how to handle it. For example, the information in an IP packet header
includes the source IP address, the destination IP address, the total length of the
packet, and the checksum of the data in the header.

Once created, the packets are sent onto the network, where they are independently
routed to their destination. Sending the data in packets has several advantages,
including multiplexing (where more than one device can send data over the network
at once), rapid notification of errors that may occur on the network, congestion
control, and dynamic re-routing.

Protocols may call upon other protocols to handle their packets for them; passing
their packets to the second protocol for delivery. When both the protocols employ
packetization, nested packets result, as shown in the following figure:

This is called encapsulation, and as we'll see shortly, it is a powerful mechanism for
structuring network traffic.

Chapter 1

[7]

Networks
A network is a discrete collection of connected network devices. Networks
can vary greatly in scale, and they can be made up of smaller networks. Your
network-connected devices at home or the network-connected computers in a
large office building are examples of networks.

There are quite a few ways of defining a network, some loose, some very
specific. Depending on the context, networks can be defined by physical
boundaries, administrative boundaries, institutional boundaries, or network
technology boundaries.

For this section, we're going to start with a simplified definition of a network,
and then work toward a more specific definition, in the form of IP subnets.

So for our simplified definition, our common defining feature of a network will be
that all devices on the network share a single point of connection to the rest of the
Internet. In some large or specialized networks, you will find that there is more
than one point of connection, but for the sake of simplicity we'll stick to a single
connection here.

This connection point is called a gateway, and usually it takes the form of a special
network device called a router. The job of a router is to direct traffic between
networks. It sits between two or more networks and is said to sit at the boundary of
these networks. It always has two or more network interfaces; one for each network
it is attached to. A router contains a set of rules called a routing table, which tells it
how to direct the packets that are passing through it onwards, based on the packets'
destination IP addresses.

The gateway forwards the packets to another router, which is said to be upstream,
and is usually located at the network's Internet Service Provider (ISP). The ISP's
router falls into a second category of routers, that is, it sits outside the networks
described earlier, and routes traffic between network gateways. These routers are
run by ISPs and other communications entities. They are generally arranged in tiers,
and the upper regional tiers route the traffic for some large sections of countries or
continents and form the Internet's backbone.

Network Programming and Python

[8]

Because these routers can sit between many networks, their routing tables can
become very extensive and they need to be updated continuously. A simplified
illustration is shown in the following diagram:

The preceding diagram gives us an idea of the arrangement. Each ISP gateway
connects an ISP network to the regional routers, and each home broadband router
has a home network connected to it. In the real world, this arrangement gets more
complicated as one goes toward the top. ISPs will often have more than one gateway
connecting them to the regional routers, and some of these will also themselves be
acting as regional routers. Regional routers also have more tiers than shown here,
and they have many connections between one another, which are in arrangements
that are much more complicated than this simple hierarchy. A rendering of a section
of the Internet from data gathered in 2005 provides a beautiful illustration of just
how complex this becomes, it can be found at http://en.wikipedia.org/wiki/
Internet_backbone#/media/File:Internet_map_1024.jpg.

http://en.wikipedia.org/wiki/Internet_backbone#/media/File:Internet_map_1024.jpg
http://en.wikipedia.org/wiki/Internet_backbone#/media/File:Internet_map_1024.jpg

Chapter 1

[9]

Routing with IP
We mentioned that routers are able to route traffic toward a destination network,
and implied that this is somehow done by using IP addresses and routing tables.
But what's really going on here?

One perhaps obvious method for routers to determine the correct router to forward
traffic to would be to program every router's routing table with a route for every
IP address. However, in practice, with 4 billion plus IP addresses and constantly
changing network routes, this turns out to be a completely infeasible method.

So, how is routing done? The answer lies in another property of IP addresses.
An IP address can be interpreted as being made up of two logical parts: a network
prefix and a host identifier. The network prefix uniquely identifies the network a
device is on, and the device can use this to determine how to handle traffic that it
generates, or receives for forwarding. The network prefix is the first n bits of the IP
address when it's written out in binary (remember an IP address is really just a 32-bit
number). The n bits are supplied by the network administrator as a part of a device's
network configuration at the same time that it is given its IP address.

You'll see that n is written in one of two ways. It can simply be appended to the IP
address, separated by a slash, as follows:

192.168.0.186/24

This is called CIDR notation. Alternatively, it can be written as a subnet mask,
which is sometimes just called a netmask. This is the way in which you will usually
see n being specified in a device's network configuration. A subnet mask is a 32-bit
number written in dot-decimal notation, just like an IP address.

255.255.255.0

This subnet mask is equivalent to /24. We get n from it by looking at it in binary.
A few examples are as follows:

255.0.0.0 = 11111111 00000000 00000000 00000000 = /8
255.192.0.0 = 11111111 11000000 00000000 00000000 = /10
255.255.255.0 = 11111111 11111111 11111111 00000000 = /24
255.255.255.240 = 11111111 11111111 11111111 11110000 = /28

n is simply the number of 1 bits in the subnet mask. (It's always the leftmost bits that
are set to 1 because this allows us to quickly get the Network prefix in binary by
doing a bitwise AND operation on the IP address and the subnet mask).

Network Programming and Python

[10]

So, how does this help in routing? When a network device generates network traffic
that needs to be sent across a network, it first compares the destination's IP address
with its own network prefix. If the destination IP address has the same network
prefix as that of the sending device, then the sending device will recognise that the
destination device is on the same network and, therefore, it can then send the traffic
directly to it. If the network prefixes differ, then it will send the message to its default
gateway, which will forward it on towards the receiving device.

When a router receives traffic that has to be forwarded, it first checks whether
the destination IP address matches the network prefix of any of the networks that
it's connected to. If that is the case, then it will send the message directly to the
destination device on that network. If not, it will consult its routing table. If it finds a
matching rule, then it sends the message to the router that it found listed, and if there
are no explicit rules defined, then it will send the traffic to its own default gateway.

When we create a network with a given network prefix, in the 32-bits of the IP address,
the digits to the right of the network prefix are available for assignment to the network
devices. We can calculate the number of the available addresses by raising 2 to the
power of the number of available bits. For example, in a /28 network prefix, we
have 4 bits left, which means that 16 addresses are available. In reality, we are able to
assign fewer addresses, since two of the addresses in the calculated range are always
reserved. These are: the first address in the range, which is called the network address
and the last address in the range, which is called the broadcast address.

This range of addresses, which is identified by its network prefix, is called a
subnet. Subnets are the basic unit of assignment when IANA, an RIR or an ISP
allocates IP address blocks to organizations. Organizations assign subnets to
their various networks.

Organizations can further partition their addresses into subnets simply by
employing a longer network prefix than the one they had been assigned. They
might do this either to make more efficient use of their addresses or to create a
hierarchy of networks, which can be delegated across the organization.

DNS
We've discussed connecting to network devices by using IP addresses. However,
unless you work with networks or in systems administration, it is unlikely that you
will get to see an IP address very often, even though many of us use the Internet
every day. When we browse the web or send an e-mail, we usually connect to servers
using host names or domain names. These must somehow map to the servers' IP
addresses. But how is this done?

Chapter 1

[11]

Documented as RFC 1035, the Domain Name System (DNS) is a globally distributed
database of mappings between hostnames and IP addresses. It is an open and
hierarchical system with many organizations choosing to run their own DNS servers.
DNS is also a protocol, which devices use to query DNS servers for resolving
hostnames to IP addresses (and vice-versa).

The nslookup tool comes with most Linux and Windows systems and it lets us
query DNS on the command line, as follows:

$ nslookup python.org

Server: 192.168.0.4

Address: 192.168.0.4#53

Non-authoritative answer:

Name: python.org

Address: 104.130.43.121

Here, we determined that the python.org host has the IP address 104.130.42.121.
DNS distributes the work of looking up hostnames by using an hierarchical system
of caching servers. When connecting to a network, your network device will be given
a local DNS server through either DHCP or manually, and it will query this local
server when doing DNS lookups. If that server doesn't know the IP address, then it
will query its own configured higher tier server, and so on until an answer can be
found. ISPs run their own DNS caching servers, and broadband routers often act as
caching servers as well. In this example, my device's local server is 192.168.0.4.

A device's operating system usually handles DNS, and it provides a programming
interface, which applications use to ask it to resolve hostnames and IP addresses.
Python provides an interface for this, which we'll discuss in Chapter 6, IP and DNS.

The protocol stack or why the Internet is
like a cake
The Internet Protocol is a member of the set of protocols that make up the Internet
protocol suite. Each protocol in the suite has been designed to solve specific
problems in networking. We just saw how IP solves the problems of addressing
and routing.

Network Programming and Python

[12]

The core protocols in the suite are designed to work together within a stack. That is,
each protocol occupies a layer within the stack, and the other protocols are situated
above and below that layer. So, it is layered just like a cake. Each layer provides
a specific service to the layers above it, while hiding the complexity of its own
operation from them, following the principle of encapsulation. Ideally, each layer
only interfaces with the layer below it in order to benefit from the entire range of the
problem solving powers of all the layers below.

Python provides modules for interfacing with different protocols. As the protocols
employ encapsulation, we typically only need to work with one module to leverage
the power of the underlying stack, thus avoiding the complexity of the lower layers.

The TCP/IP Suite defines four layers, although five layers are often used for clarity.
These are given in the following table:

Layer Name Example protocols
5 Application layer HTTP, SMTP, IMAP
4 Transport layer TCP, UDP
3 Network layer IP
2 Data-link layer Ethernet, PPP, FDDI
1 Physical layer -

Layers 1 and 2 correspond to the first layer of the TCP/IP suite. These two bottom
layers deal with the low level network infrastructure and services.

Layer 1 corresponds to the physical media of the network, such as a cable or a Wi-Fi
radio. Layer 2 provides the service of getting the data from one network device to
another, directly connected network device. This layer can employ all sorts of layer
2 protocols, such as Ethernet or PPP, as long as the Internet Protocol in layer 3 can
ask it to get the data to the next device in the network by using any type of available
physical medium.

We don't need to concern ourselves with the two lowest layers, since we will rarely
need to interface with them when using Python. Their operation is almost always
handled by the operating system and the network hardware.

Layer 3 is variously called the Network layer and the Internet layer. It exclusively
employs the Internet Protocol. As we have already seen, it has been tasked primarily
with internetwork addressing and routing. Again, we don't typically directly
interface with this layer in Python.

Layers 4 and 5 are more interesting for our purposes.

Chapter 1

[13]

Layer 4 – TCP and UDP
Layer 4 is the first layer that we may want to work with in Python. This layer
can employ one of two protocols: the Transmission Control Protocol (TCP) and
the User Datagram Protocol (UDP). Both of these provide the common service of
end-to-end transportation of data between applications on different network devices.

Network ports
Although IP facilitates the transport of data from one network device to another,
it doesn't provide us with a way of letting the destination device know what it
should do with the data once it receives it. One possible solution to this would
be to program every process running on the destination device to check all of the
incoming data to see if they are interested in it, but this would quickly lead to
obvious performance and security problems.

TCP and UDP provide the answer by introducing the concept of ports.
A port is an endpoint, which is attached to one of the IP addresses assigned to
the network device. Ports are claimed by a process running on the device, and
the process is then said to be listening on that port. Ports are represented by a
16-bit number, so that each IP address on a device has 65,535 possible ports that the
processes can claim (port number 0 is reserved). Ports can only be claimed by one
process at a time, even though a process can claim more than one port at a time.

When a message is sent over the network through TCP or UDP, the sending
application sets the destination port number in the header of the TCP or UDP
packet. When the message arrives at the destination, the TCP or UDP protocol
implementation running on the receiving device reads the port number and then
delivers the message payload to the process that is listening on that port.

Port numbers need to be known before the messages are sent. The main
mechanism for this is convention. In addition to managing the IP address space,
it is also the responsibility of IANA to manage the assignment of port numbers to
network services.

A service is a class of application, for example a web server, or a DNS server, which
is usually tied to an application protocol. Ports are assigned to services rather than
specific applications, because it gives service providers the flexibility to choose what
kind of software they want to use to provide a service, without having to worry
about the users who would need to look up and connect to a new port number
simply because the server has started using Apache instead of IIS, for example.

Network Programming and Python

[14]

Most operating systems contain a copy of this list of services and their assigned port
numbers. On Linux, this is usually found at /etc/services, and on Windows this is
usually found at c:\windows\system32\drivers\etc\services. The complete list
can also be viewed online at http://www.iana.org/assignments/port-numbers.

TCP and UDP packet headers may also include a source port number. This is
optional for UDP, but mandatory for TCP. The source port number tells the receiving
application on the server where it should send replies to when sending data back
to the client. Applications can specify the source port that they wish to use, or if a
source port has not been specified for TCP, then one is assigned randomly by the
operating system when the packet is sent. Once the OS has a source port number, it
assigns it to the calling application and starts listening on it for a reply. If a reply is
received on that port, then the received data is passed to the sending application.

So, both TCP and UCP provide an end-to-end transport for the application data
through the provision of ports, and both of them employ the Internet Protocol
to get the data to the destination device. Now, let's look at their features.

UDP
UDP is documented as RFC 768. It is deliberately uncomplicated: it provides no
services other than those that we described in the previous section. It just takes
the data that we want to send, packetizes it with the destination port number
(and optional source port number), and hands it off to the local Internet Protocol
implementation for delivery. Applications on the receiving end see the data in the
same discrete chunks in which it was packetized.

Both IP and UDP are what are called connectionless protocols. This means that they
attempt to deliver their packets on a best effort basis, but if something goes wrong,
then they will just shrug their metaphorical shoulders and move on to delivering
the next packet. There is no guarantee that our packets will reach their destinations,
and no error notification if a delivery fails. If the packets do make it, then there is no
guarantee that they will do so in the same order as they were sent. It's up to a higher
layer protocol or the sending application to determine if the packets have arrived
and whether to handle any problems. These are protocols in the fire-and-forget style.

The typical applications of UDP are internet telephony and video streaming.
DNS queries are also transported using UDP.

We'll now look at UDP's more dependable sibling, TCP, and then discuss the
differences, and why applications may choose to use one or the other.

http://www.iana.org/assignments/port-numbers

Chapter 1

[15]

TCP
The Transmission Control Protocol is documented as RFC 761. As opposed to UDP,
TCP is a connection based protocol. In such a protocol, no data is sent until the server
and the client have performed an initial exchange of control packets. This exchange
is called a handshake. This establishes a connection, and from then on data can be
sent. Each data packet that is received is acknowledged by the receiving party, and
it does so by sending a packet called an ACK. As such, TCP always requires that the
packets include a source port number, because it depends on the continual two-way
exchange of messages.

From an application's point of view, the key difference between UDP and TCP is that
the application no longer sees the data in discrete chunks; the TCP connection presents
the data to the application as a continuous, seamless stream of bytes. This makes
things much simpler if we are sending messages that are larger than a typical packet,
however it means that we need to start thinking about framing our messages. While
with UDP, we can rely on its packetization to provide a means of doing this, with TCP
we must decide a mechanism for unambiguously determining where our messages
start and end. We'll see more about this in Chapter 8, Client and Server Applications.

TCP provides the following services:

• In-order delivery
• Receipt acknowledgment
• Error detection
• Flow and congestion control

Data sent through TCP is guaranteed to get delivered to the receiving application in
the order that it was sent in. The receiving TCP implementation buffers the received
packets on the receiving device and then waits until it can deliver them in the correct
order before passing them to the application.

Because the data packets are acknowledged, sending applications can be sure that
the data is arriving and that it is okay to continue sending the data. If an ACK is not
received for a sent packet, then within a set time period the packet will be resent.
If there's still no response, then TCP will keep resending the packet at increasing
intervals, until a second, longer timeout period expires. At this point, it will give up
and notify the calling application that it has encountered a problem.

The TCP header includes a checksum of the header data and the payload.
This allows the receiver to verify whether a packet's contents have been modified
during the transmission.

Network Programming and Python

[16]

TCP also includes algorithms which ensure that traffic is not sent too quickly for the
receiving device to process, and these algorithms also infer network conditions and
regulate the transmission rate to avoid network congestion.

Together these services provide a robust and reliable transport system for application
data. This is one of the reasons many popular higher level protocols, such as HTTP,
SMTP, SSH, and IMAP, depend on TCP.

UDP versus TCP
Given the features of TCP, you may be wondering what the use of a connectionless
protocol like UDP is. Well, the Internet is still a pretty reliable network, and most
of the packets do get delivered. The connectionless protocols are useful where the
minimum transfer overhead is required, and where the occasional dropped packet is
not a big deal. TCP's reliability and congestion control comes at the cost of needing
additional packets and round-trips, and the introduction of deliberate delays when
packets are lost in order to prevent congestion. These can drastically increase latency,
which is the arch-nemesis of real-time services, while not providing any real benefit
for them. A few dropped packets might result in a transient glitch or a drop in signal
quality in a media stream, but as long as the packets keep coming, the stream can
usually recover.

UDP is also the main protocol that is used for DNS, which is interesting because
most DNS queries fit inside a single packet, so TCP's streaming abilities aren't
generally needed. DNS is also usually configured such that it does not depend upon
a reliable connection. Most devices are configured with multiple DNS servers, and
it's usually quicker to resend a query to a second server after a short timeout rather
than wait for a TCP back-off period to expire.

The choice between UDP and TCP comes down to the message size, whether
latency is an issue, and how much of TCP's functionality the application wants
to perform itself.

Layer 5 – The application layer
Finally we come to the top of the stack. The application layer is deliberately left open
in the IP protocol suite, and it's really a catch-all for any protocol that is developed
by application developers on top of TCP or UDP (or even IP, though these are rarer).
Application layer protocols include HTTP, SMTP, IMAP, DNS, and FTP.

Chapter 1

[17]

Protocols may even become their own layers, where an application protocol is built
on top of another application protocol. An example of this is the Simple Object
Access Protocol (SOAP), which defines an XML-based protocol that can be used
over almost any transport, including HTTP and SMTP.

Python has standard library modules for many application layer protocols and
third-party modules for many more. If we write low-level server applications, then
we will be more likely to be interested in TCP and UDP, but if not, then application
layer protocols are the ones we'll be working with, and we'll be looking at some of
them in detail over the next few chapters.

On to Python!
Well, that's it for our rundown of the TCP/IP stack. We'll move on to the next section
of this chapter, where we'll look at how to start using Python and how to work with
some of the topics we've just covered.

Network programming with Python
In this section, we're going to look at the general approach to network programming
in Python. We'll look at how Python lets us interface with the network stack, how to
track down useful modules, and cover some general network programming tips.

Breaking a few eggs
The power of the layer model of network protocols is that a higher layer can easily
build on the services provided by the lower layers and this enables them to add new
services to the network. Python provides modules for interfacing with protocols
at different levels in the network stack, and modules that support higher-layer
protocols follow the aforementioned principle by using the interfaces supplied
by the lower level protocols. How can we visualize this?

Well, sometimes a good way to see inside something like this is by breaking it. So,
let's break Python's network stack. Or, more specifically, let's generate a traceback.

Network Programming and Python

[18]

Yes, this means that the first piece of Python that we're going to write is going
to generate an exception. But, it will be a good exception. We'll learn from it.
So, fire up your Python shell and run the following command:

>>> import smtplib

>>> smtplib.SMTP('127.0.0.1', port=66000)

What are we doing here? We are importing smtplib, which is Python's standard
library for working with the SMTP protocol. SMTP is an application layer protocol,
which is used for sending e-mails. We will then try to open an SMTP connection by
instantiating an SMTP object. We want the connection to fail and that is why we've
specified the port number 66000, which is an invalid port. We will specify the local
host for the connection, as this will cause it to fail quickly, rather than make it wait
for a network timeout.

On running the preceding command, you should get the following traceback:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.4/smtplib.py", line 242, in __init__
 (code, msg) = self.connect(host, port)
 File "/usr/lib/python3.4/smtplib.py", line 321, in connect
 self.sock = self._get_socket(host, port, self.timeout)
 File "/usr/lib/python3.4/smtplib.py", line 292, in _get_socket
 self.source_address)
 File "/usr/lib/python3.4/socket.py", line 509, in
 create_connection
 raise err
 File "/usr/lib/python3.4/socket.py", line 500, in
 create_connection
 sock.connect(sa)
ConnectionRefusedError: [Errno 111] Connection refused

This was generated by using Python 3.4.1 on a Debian 7 machine. The final error
message will be slightly different from this if you run this on Windows, but the stack
trace will remain the same.

Inspecting it will reveal how the Python network modules act as a stack. We can
see that the call stack starts in smtplib.py, and then as we go down, it moves into
socket.py. The socket module is Python's standard interface for the transport
layer, and it provides the functions for interacting with TCP and UDP as well as for
looking up hostnames through DNS. We'll learn much more about this in Chapter 7,
Programming with Sockets, and Chapter 8, Client and Server Applications.

Chapter 1

[19]

From the preceding program, it's clear that the smtplib module calls into the socket
module. The application layer protocol has employed a transport layer protocol
(which in this case is TCP).

Right at the bottom of the traceback, we can see the exception itself and the Errno
111. This is an error message from the operating system. You can verify this by going
through /usr/include/asm-generic/errno.h (asm/errno.h on some systems) for
the error message number 111 (on Windows the error will be a WinError, so you can
see that it has clearly been generated by the OS). From this error message we can see
that the socket module is calling down yet again and asking the operating system to
manage the TCP connection for it.

Python's network modules are working as the protocol stack designers intended
them to. They call on the lower levels in the stack to employ their services to perform
the network tasks. We can work by using simple calls made to the application layer
protocol, which in this case is SMTP, without having to worry about the underlying
network layers. This is network encapsulation in action, and we want to make as
much use of this as we can in our applications.

Taking it from the top
Before we start writing code for a new network application, we want to make sure
that we're taking as much advantage of the existing stack as possible. This means
finding a module that provides an interface to the services that we want to use,
and that is as high up the stack as we can find. If we're lucky, someone has already
written a module that provides an interface that provides the exact service we need.

Let's use an example to illustrate this process. Let's write a tool for downloading
Request for Comments (RFC) documents from IETF, and then display them on screen.

Let's keep the RFC downloader simple. We'll make it a command-line program
that just accepts an RFC number, downloads the RFC in text format, and then
prints it to stdout.

Now, it's possible that somebody has already written a module for doing this,
so let's see if we can find anything.

The first place we look should always be the Python standard library. The modules
in the library are well maintained, and well documented. When we use a standard
library module, the users of your application won't need to install any additional
dependencies for running it.

Network Programming and Python

[20]

A look through the Library Reference at https://docs.python.org doesn't seem to
show anything directly relevant to our requirement. This is not entirely surprising!

So, next we will turn to third-party modules. The Python package index, which
can be found at https://pypi.python.org, is the place where we should look for
these. Here as well, running a few searches around the theme of RFC client and RFC
download doesn't seem to reveal anything useful. The next place to look will be
Google, though again, the searches don't reveal anything promising. This is slightly
disappointing, but this is why we're learning network programming, to fill
these gaps!

There are other ways in which we may be able to find out about useful third-party
modules, including mailing lists, Python user groups, the programming Q&A site
http://stackoverflow.com, and programming textbooks.

For now, let's assume that we really can't find a module for downloading RFCs.
What next? Well, we need to think lower in the network stack. This means that we
need to identify the network protocol that we'll need to use for getting hold of the
RFCs in text format by ourselves.

The IETF landing page for RFCs is http://www.ietf.org/rfc.html, and reading
through it tell us exactly what we want to know. We can access a text version of an
RFC using a URL of the form http://www.ietf.org/rfc/rfc741.txt. The RFC
number in this case is 741. So, we can get text format of RFCs using HTTP.

Now, we need a module that can speak HTTP for us. We should look at the standard
library again. You will notice that there is, in fact, a module called http. Sounds
promising, though looking at its documentation will tell us that it's a low level
library and that something called urllib will prove to be more useful.

Now, looking at the urllib documentation, we find that it does indeed do what we
need. It downloads the target of a URL through a straightforward API. We've found
our protocol module.

Downloading an RFC
Now we can write our program. For this, create a text file called RFC_downloader.py
and save the following code to it:

import sys, urllib.request

try:
 rfc_number = int(sys.argv[1])

https://docs.python.org
https://pypi.python.org
http://stackoverflow.com
http://www.ietf.org/rfc.html
http://www.ietf.org/rfc/rfc741.txt

Chapter 1

[21]

except (IndexError, ValueError):
 print('Must supply an RFC number as first argument')
 sys.exit(2)

template = 'http://www.ietf.org/rfc/rfc{}.txt'
url = template.format(rfc_number)
rfc_raw = urllib.request.urlopen(url).read()
rfc = rfc_raw.decode()
print(rfc)

We can run the preceding code by using the following command:

$ python RFC_downloader.py 2324 | less

On Windows, you'll need to use more instead of less. RFCs can run to many
pages, hence we use a pager here. If you try this, then you should see some useful
information on the remote control of coffee pots.

Let's go through our code and look at what we've done so far.

First, we import our modules and check whether an RFC number has been supplied
on the command line. Then, we construct our URL by substituting the supplied RFC
number. Next, the main activity, the urlopen() call will construct an HTTP request
for our URL, and then it will contact the IETF web server over the Internet and
download the RFC text. Next, we decode the text to Unicode, and finally we print
it out to screen.

So, we can easily view any RFC that we like from the command line. In retrospect,
it's not entirely surprising that there isn't a module for this, because we can use
urllib to do most of the hard work!

Looking deeper
But, what if HTTP was brand new and there were no modules, such as urllib,
which we could use to speak HTTP for us? Well, then we would have to step down
the stack again and use TCP for our purposes. Let's modify our program according
to this scenario, as follows:

import sys, socket

try:
 rfc_number = int(sys.argv[1])
except (IndexError, ValueError):

Network Programming and Python

[22]

 print('Must supply an RFC number as first argument')
 sys.exit(2)

host = 'www.ietf.org'
port = 80
sock = socket.create_connection((host, port))

req = (
 'GET /rfc/rfc{rfcnum}.txt HTTP/1.1\r\n'
 'Host: {host}:{port}\r\n'
 'User-Agent: Python {version}\r\n'
 'Connection: close\r\n'
 '\r\n'
)
req = req.format(
 rfcnum=rfc_number,
 host=host,
 port=port,
 version=sys.version_info[0]
)
sock.sendall(req.encode('ascii'))
rfc_raw = bytearray()
while True:
 buf = sock.recv(4096)
 if not len(buf):
 break
 rfc_raw += buf
rfc = rfc_raw.decode('utf-8')
print(rfc)

The first noticeable change is that we have used socket instead of urllib. Socket
is Python's interface for the operating system's TCP and UDP implementation. The
command-line check remains the same, but then we will see that we now need to
handle some of the things that urllib was doing for us before.

We have to tell socket which transport layer protocol that we want to use.
We do this by using the socket.create_connection() convenience function. This
function will always create a TCP connection. You'll notice that we have to explicitly
supply the TCP port number that socket should use to establish the connection as
well. Why 80? 80 is the standard port number for web services over HTTP. We've
also had to separate the host from the URL, since socket has no understanding
of URLs.

Chapter 1

[23]

The request string that we create to send to the server is also much more complicated
than the URL that we used before: it's a full HTTP request. In the next chapter, we'll
be looking at these in detail.

Next, we deal with the network communication over the TCP connection.
We send the entire request string to the server using the sendall() call.
The data sent through TCP must be in raw bytes, so we have to encode the
request text as ASCII before sending it.

Then, we piece together the server's response as it arrives in the while loop.
Bytes that are sent to us through a TCP socket are presented to our application in
a continuous stream. So, like any stream of unknown length, we have to read it
iteratively. The recv() call will return the empty string after the server sends all its
data and closes the connection. Hence, we can use this as a condition for breaking
out and printing the response.

Our program is clearly more complicated. Compared to our previous one,
this is not good in terms of maintenance. Also, if you run the program and look
at the start of the output RFC text, then you'll notice that there are some extra
lines at the beginning, and these are as follows:

HTTP/1.1 200 OK
Date: Thu, 07 Aug 2014 15:47:13 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Connection: close
Set-Cookie: __cfduid=d1983ad4f7…
Last-Modified: Fri, 27 Mar 1998 22:45:31 GMT
ETag: W/"8982977-4c9a-32a651f0ad8c0"

Because we're now dealing with a raw HTTP protocol exchange, we're seeing the
extra header data that HTTP includes in a response. This has a similar purpose to
the lower-level packet headers. The HTTP header contains HTTP-specific metadata
about the response that tells the client how to interpret it. Before, urllib parsed this
for us, added the data as attributes to the response object, and removed the header
data from the output data. We would need to add code to do this as well to make
this program as capable as our first one.

What can't immediately be seen from the code is that we're also missing out on the
urllib module's error checking and handling. Although low-level network errors
will still generate exceptions, we will no longer catch any problems in the HTTP
layer, which urllib would have done.

Network Programming and Python

[24]

The 200 value in the first line of the aforementioned headers is an HTTP status code,
which tells us whether there were any problems with the HTTP request or response.
200 means that everything went well, but other codes, such as the infamous 404 'not
found' can mean something went wrong. The urllib module would check these for
us and raise an exception. But here, we need to handle these ourselves.

So, there are clear benefits of using modules as far up the stack as possible. Our
resulting programs will be less complicated, which will make them quicker to write,
and easier to maintain. It also means that their error handling will be more robust,
and we will benefit from the expertise of the modules' developers. Also, we benefit
from the testing that the module would have undergone for catching unexpected
and tricky edge-case problems. Over the next few chapters, we'll be discussing more
modules and protocols that live at the top of the stack.

Programming for TCP/IP networks
To round up, we're going to look at a few frequently encountered aspects of TCP/
IP networks that can cause a lot of head-scratching for application developers who
haven't encountered them before. These are: firewalls, Network Address Translation,
and some of the differences between IPv4 and IPv6.

Firewalls
A firewall is a piece of hardware or software that inspects the network packets
that flow through it and, based on the packet's properties, it filters what it lets
through. It is a security mechanism for preventing unwanted traffic from moving
from one part of a network to another. Firewalls can sit at network boundaries or
can be run as applications on network clients and servers. For example, iptables
is the de facto firewall software for Linux. You'll often find a firewall built into
desktop anti-virus programs.

The filtering rules can be based on any property of the network traffic. The
commonly used properties are: the transport layer protocol (that is, whether traffic
uses TCP or UDP), the source and destination IP addresses, and the source and
destination port numbers.

A common filtering strategy is to deny all inbound traffic and only allow traffic that
matches very specific parameters. For example, a company might have a web server
it wants to allow access to from the Internet, but it wants to block all traffic from the
Internet that is directed towards any of the other devices on its network. To do so, it
would put a firewall directly in front of or behind its gateway, and then configure it
to block all incoming traffic, except TCP traffic with the destination IP address of the
web server, and the destination port number 80 (since port 80 is the standard port
number for the HTTP service).

Chapter 1

[25]

Firewalls can also block outbound traffic. This may be done to stop malicious
software that finds its way onto internal network devices from calling home or
sending spam e-mail.

Because firewalls block network traffic, they can cause obvious problems for network
applications. When testing our applications over a network, we need to be sure that
the firewalls that exist between our devices are configured such that they let our
application's traffic through. Usually, this means that we need to make sure that the
ports which we need are open on the firewall for the traffic between the source and
the destination IP addresses to flow freely. This may take some negotiating with
an IT support team or two, and maybe looking at our operating system's and local
network router's documentation. Also, we need to make sure that our application
users are aware of any firewall configuration that they need to perform in their own
environments in order to make use of our program.

Network Address Translation
Earlier, we discussed private IP address ranges. While they are potentially very
useful, they come with a small catch. Packets with source or destination addresses
in the private ranges are forbidden from being routed over the public Internet! So,
without some help, devices using private range addresses can't talk to devices using
addresses on the public Internet. However, with Network Address Translation
(NAT), we can solve this. Since most home networks use private range addresses,
NAT is likely to be something that you'll encounter.

Although NAT can be used in other circumstances, it is most commonly performed
by a gateway at the boundary of the public Internet and a network that is using
private range IP addresses. To enable the packets from the gateway's network to
be routed on the public Internet as the gateway receives packets from the network
that are destined for the Internet, it rewrites the packets' headers and replaces the
private range source IP addresses with its own public range IP address. If the packets
contain TCP or UDP packets, and these contain a source port, then it may also open
up a new source port for listening on its external interface and rewrite the source
port number in the packets to match this new number.

As it does these rewrites, it records the mapping between the newly opened source
port and the source device on the internal network. If it receives a reply to the new
source port, then it reverses the translation process and sends the received packets to
the original device on the internal network. The originating network device shouldn't
be made aware of the fact that its traffic is undergoing NAT.

Network Programming and Python

[26]

There are several benefits of using NAT. The internal network devices are shielded
from malicious traffic directed toward the network from the Internet, devices which
use NAT devices are provided with a layer of privacy since their private addresses
are hidden, and the number of network devices that need to be assigned precious
public IP addresses is reduced. It's actually the heavy use of NAT that allows the
Internet to continue functioning despite having run out of IPv4 addresses.

NAT can cause some problems for network's applications, if it is not taken into
consideration at design time.

If the transmitted application data includes information about a device's network
configuration and that device is behind a NAT router, then problems can occur
if the receiving device acts on the assumption that the application data matches
the IP and the TCP/UDP header data. NAT routers will rewrite the IP and
TCP/UDP header data, but not the application data. This is a well known
problem in the FTP protocol.

Another problem that FTP has with NAT is that in FTP active mode, a part of the
protocol operation involves the client opening a port for listening on, and the server
creating a new TCP connection to that port (as opposed to just a regular reply). This
fails when the client is behind a NAT router because the router doesn't know what to
do with the server's connection attempt. So, be careful about assuming that servers
can create new connections to clients, since they may be blocked by a NAT router, or
firewall. In general, it's best to program under the assumption that it's not possible
for a server to establish a new connection to a client.

IPv6
We mentioned that the earlier discussion is based on IPv4, but that there is a new
version called IPv6. IPv6 is ultimately designed to replace IPv4, but this process is
unlikely to be completed for a while yet.

Since most Python standard library modules have now been updated to support
IPv6 and to accept IPv6 addresses, moving to IPv6 in Python shouldn't have much
impact on our applications. However, there are a few small glitches to watch out for.

The main difference that you'll notice in IPv6 is that the address format has been
changed. One of the main design goals of the new protocol was to alleviate the
global shortage of IPv4 addresses and to prevent it from happening again the IETF
quadrupled the length of an address, to 128 bits, creating a large enough address
space to give each human on the planet a billion times as many addresses as there
are in the entire IPv4 address space.

Chapter 1

[27]

The new format IP addresses are written differently, they look like this:

2001:0db8:85a3:0000:0000:b81a:63d6:135b

Note the use of colons and hexadecimal format.

There are rules for writing IPv6 addresses in more compact forms as well.
This is principally done by omitting runs of consecutive zeros. For example,
the address in the preceding example could be shortened to:

2001:db8:85a3::b81a:63d6:135b

If a program needs to compare or parse text-formatted IPv6 addresses, then it will
need to be made aware of these compacting rules, as a single IPv6 address can be
represented in more than one way. Details of these rules can be found in RFC 4291,
which is available at http://www.ietf.org/rfc/rfc4291.txt.

Since colons may cause conflicts when used in URIs, IPv6 addresses need to
be enclosed in square brackets when they are used in this manner, for example:

http://[2001:db8:85a3::b81a:63d6:135b]/index.html

Also, in IPv6, it is now standard practice for network interfaces to have multiple IP
addresses assigned to them. IPv6 addresses are classified by what scope they are
valid in. The scopes include the global scope (that is, the public Internet) and the
link-local scope, which is only valid for the local subnet. An IP address's scope can
be determined by inspecting its high-order bits. If we enumerate the IP addresses of
local interfaces to use for a certain purpose, then we need to check if we have used
the correct address for the scope that we intend to work with. There are more details
in RFC 4291.

Finally, with the mind-boggling cornucopia of addresses that are available in IPv6,
the idea is that every device (and component, and bacterium) can be given a globally
unique public IP address, and NAT will become a thing of the past. Though it
sounds great in theory, some concerns have been raised about the implications that
this has for issues like user privacy. As such, additions designed for alleviating these
concerns have been made to the protocol (http://www.ietf.org/rfc/rfc3041.
txt). This is a welcome progression; however, it can cause problems for some
applications. So reading through the RFC is worth your while, if you're planning
for your program to employ IPv6.

http://www.ietf.org/rfc/rfc4291.txt
http://www.ietf.org/rfc/rfc3041.txt
http://www.ietf.org/rfc/rfc3041.txt

Network Programming and Python

[28]

Summary
In the first part of this chapter, we looked at the essentials of networking with
TCP/IP. We discussed the concept of network stacks, and looked at the
principle protocols of the Internet protocol suite. We saw how IP solves the
problem of sending messages between devices on different networks,
and how TCP and UDP provide end-to-end transport between applications.

In the second section, we looked at how network programming is generally
approached when using Python. We discussed the general principle of using
modules that interface with services as far up the network stack as we can manage.
We also discussed where we might find those modules. We looked at examples
of employing modules that interface with the network stack at different layers to
accomplish a simple network task.

Finally, we discussed some common pitfalls of programming for TCP/IP networks
and some steps that may be taken to avoid them.

This chapter has been heavy on the networking theory side of things. But, now
it's time to get stuck into Python and put some application layer protocols to
work for us.

[29]

HTTP and Working
with the Web

The Hypertext Transfer Protocol (HTTP) is probably the most widely-used
application layer protocol. It was originally developed to allow academics to
share HTML documents. Nowadays, it is used as the core protocol of innumerable
applications across the Internet, and it is the principle protocol of the World
Wide Web.

In this chapter, we will cover the following topics:

• The HTTP protocol structure
• Using Python for talking to services through HTTP
• Downloading files
• HTTP capabilities, such as compression and cookies
• Handling errors
• URLs
• The Python standard library urllib package
• Kenneth Reitz's third-party Requests package

The urllib package is the recommended Python standard library package
for HTTP tasks. The standard library also has a low-level module called http.
Although this offers access to almost all aspects of the protocol, it has not been
designed for everyday use. The urllib package has a simpler interface, and it
deals with everything that we are going to cover in this chapter.

HTTP and Working with the Web

[30]

The third-party Requests package is a very popular alternative to urllib. It has
an elegant interface and a powerful featureset, and it is a great tool for streamlining
HTTP workflows. We'll be discussing how it can be used in place of urllib at the
end of the chapter.

Request and response
HTTP is an application layer protocol, and it is almost always used on top of TCP.
The HTTP protocol has been deliberately defined to use a human-readable message
format, but it can still be used for transporting arbitrary bytes data.

An HTTP exchange consists of two elements. A request made by the client, which
asks the server for a particular resource specified by a URL, and a response, sent by
the server, which supplies the resource that the client has asked for. If the server can't
provide the resource that the client has requested, then the response will contain
information about the failure.

This order of events is fixed in HTTP. All interactions are initiated by the client. The
server never sends anything to the client without the client explicitly asking for it.

This chapter will teach you how to use Python as an HTTP client. We will learn
how to make requests to servers and then interpret their responses. We will look at
writing server-side applications in Chapter 9, Applications for the Web.

By far, the most widely used version of HTTP is 1.1, defined in RFCs 7230 to 7235.
HTTP 2 is the latest version, which was officially ratified just as this book was going
to press. Most of the semantics and syntax remain the same between versions 1.1 and
2, the main changes are in how the TCP connections are utilised. As of now, HTTP 2
isn't widely supported, so we will focus on version 1.1 in this book. If you do want to
know more, HTTP 2 is documented in RFCs 7540 and 7541.

HTTP version 1.0, documented in RFC 1945, is still used by some older softwares.
Version 1.1 is backwards-compatible with 1.0 though, and the urllib package and
Requests both support HTTP 1.1, so when we're writing a client with Python we
don't need to worry about whether we're connecting to an HTTP 1.0 server. It's just
that some more advanced features are not available. Almost all services nowadays
use version 1.1, so we won't go into the differences here. The stack overflow question
is, a good starting point, if you need further information: http://stackoverflow.
com/questions/246859/http-1-0-vs-1-1.

http://stackoverflow.com/questions/246859/http-1-0-vs-1-1
http://stackoverflow.com/questions/246859/http-1-0-vs-1-1

Chapter 2

[31]

Requests with urllib
We have already seen some examples of HTTP exchanges while discussing the RFC
downloaders in Chapter 1, Network Programming and Python. The urllib package
is broken into several submodules for dealing with the different tasks that we may
need to perform when working with HTTP. For making requests and receiving
responses, we employ the urllib.request module.

Retrieving the contents of a URL is a straightforward process when done using
urllib. Load your Python interpreter and do the following:

>>> from urllib.request import urlopen

>>> response = urlopen('http://www.debian.org')

>>> response

<http.client.HTTPResponse object at 0x7fa3c53059b0>

>>> response.readline()

b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">\n'

We use the urllib.request.urlopen() function for sending a request and
receiving a response for the resource at http://www.debian.org, in this case an
HTML page. We will then print out the first line of the HTML we receive.

Response objects
Let's take a closer look at our response object. We can see from the preceding
example that urlopen() returns an http.client.HTTPResponse instance. The
response object gives us access to the data of the requested resource, and the
properties and the metadata of the response. To view the URL for the response
that we received in the previous section, do this:

>>> response.url

'http://www.debian.org'

We get the data of the requested resource through a file-like interface using the
readline() and read() methods. We saw the readline() method in the previous
section. This is how we use the read() method:

>>> response = urlopen('http://www.debian.org')

>>> response.read(50)

b'g="en">\n<head>\n <meta http-equiv="Content-Type" c'

http://www.debian.org

HTTP and Working with the Web

[32]

The read() method returns the specified number of bytes from the data. Here it's the
first 50 bytes. A call to the read() method with no argument will return all the data
in one go.

The file-like interface is limited. Once the data has been read, it's not possible to go
back and re-read it by using either of the aforementioned functions. To demonstrate
this, try doing the following:

>>> response = urlopen('http://www.debian.org')

>>> response.read()

b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">\n<html
 lang="en">\n<head>\n <meta http-equiv

...

>>> response.read()

b''

We can see that when we call the read() function a second time it returns an empty
string. There are no seek() or rewind() methods, so we cannot reset the position.
Hence, it's best to capture the read() output in a variable.

Both readline() and read() functions return bytes objects, and neither http nor
urllib will make any effort to decode the data that they receive to Unicode. Later on
in the chapter, we'll be looking at a way in which we can handle this with the help of
the Requests library.

Status codes
What if we wanted to know whether anything unexpected had happened to our
request? Or what if we wanted to know whether our response contained any data
before we read the data out? Maybe we're expecting a large response, and we want
to quickly see if our request has been successful without reading the whole response.

HTTP responses provide a means for us to do this through status codes. We can read
the status code of a response by using its status attribute.

>>> response.status

200

Status codes are integers that tell us how the request went. The 200 code informs us
that everything went fine.

Chapter 2

[33]

There are a number of codes, and each one conveys a different meaning. According
to their first digit, status codes are classified into the following groups:

• 100: Informational
• 200: Success
• 300: Redirection
• 400: Client error
• 500: Server error

A few of the more frequently encountered codes and their messages are as follows:

• 200: OK
• 404: Not Found
• 500: Internal Server Error

The official list of status codes is maintained by IANA and it can be found at
https://www.iana.org/assignments/http-status-codes. We'll be looking
at various codes in this chapter.

Handling problems
Status codes help us to see whether our response was successful or not. Any code in
the 200 range indicates a success, whereas any code in either the 400 range or the 500
range indicates failure.

Status codes should always be checked so that our program can respond
appropriately if something goes wrong. The urllib package helps us in
checking the status codes by raising an exception if it encounters a problem.

Let's go through how to catch these and handle them usefully. For this try the
following command block:

>>> import urllib.error

>>> from urllib.request import urlopen

>>> try:

... urlopen('http://www.ietf.org/rfc/rfc0.txt')

... except urllib.error.HTTPError as e:

... print('status', e.code)

https://www.iana.org/assignments/http-status-codes

HTTP and Working with the Web

[34]

... print('reason', e.reason)

... print('url', e.url)

...

status: 404

reason: Not Found

url: http://www.ietf.org/rfc/rfc0.txt

Here we've requested RFC 0, which doesn't exist. So the server has returned a 404
status code, and urllib has spotted this and raised an HTTPError.

You can see that HTTPError provide useful attributes regarding the request. In the
preceding example, we used the status, reason, and url attributes to get some
information about the response.

If something goes wrong lower in the network stack, then the appropriate module
will raise an exception. The urllib package catches these exceptions and then wraps
them as URLErrors. For example, we might have specified a host or an IP address
that doesn't exist, as shown here:

>>> urlopen('http://192.0.2.1/index.html')

...

urllib.error.URLError: <urlopen error [Errno 110] Connection timed
 out>

In this instance, we have asked for index.html from the 192.0.2.1. host. The
192.0.2.0/24 IP address range is reserved to be used by documentation only, so
you will never encounter a host using the preceding IP address. Hence the TCP
connection times out and socket raises a timeout exception, which urllib catches,
re-wraps, and re-raises for us. We can catch these exceptions in the same way as we
did in the preceding example.

HTTP headers
Requests, and responses are made up of two main parts, headers and a body.
We briefly saw some HTTP headers when we used our TCP RFC downloader in
Chapter 1, Network Programming and Python. Headers are the lines of protocol-specific
information that appear at the beginning of the raw message that is sent over the
TCP connection. The body is the rest of the message. It is separated from the headers
by a blank line. The body is optional, its presence depends on the type of request or
response. Here's an example of an HTTP request:

GET / HTTP/1.1
Accept-Encoding: identity

Chapter 2

[35]

Host: www.debian.com
Connection: close
User-Agent: Python-urllib/3.4

The first line is called the request line. It is comprised of the request method, which
is GET in this case, the path to the resource, which is / here, and the HTTP version,
1.1. The rest of the lines are request headers. Each line is comprised of a header
name followed by a colon and a header value. The request in the preceding output
only contains headers, it does not have a body.

Headers are used for several purposes. In a request they can be used for passing
extra data, such as cookies and authorization credentials, and for asking the server
for preferred formats of resources.

For example, an important header is the Host header. Many web server applications
provide the ability to host more than one website on the same server using the same
IP address. DNS aliases are set up for the various website domain names, so they all
point to the same IP address. Effectively, the web server is given multiple hostnames,
one for each website it hosts. IP and TCP (which HTTP runs on), can't be used to
tell the server which hostname the client wants to connect to because both of them
operate solely on IP addresses. The HTTP protocol allows the client to supply the
hostname in the HTTP request by including a Host header.

We'll look at some more request headers in the following section.

Here's an example of a response:

HTTP/1.1 200 OK
Date: Sun, 07 Sep 2014 19:58:48 GMT
Content-Type: text/html
Content-Length: 4729
Server: Apache
Content-Language: en

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">\n...

The first line contains the protocol version, the status code, and the status message.
Subsequent lines contain the headers, a blank line, and then the body. In the
response, the server can use headers to inform the client about things such as the
length of the body, the type of content the response body contains, and the cookie
data that the client should store.

HTTP and Working with the Web

[36]

Do the following to view a response object's headers:

>>> response = urlopen('http://www.debian.org)

>>> response.getheaders()

[('Date', 'Sun, 07 Sep 2014 19:58:48 GMT'), ('Server', 'Apache'),
 ('Content-Location', 'index.en.html'), ('Vary', 'negotiate,accept-
 language,Accept-Encoding')...

The getheaders() method returns the headers as a list of tuples of the form
(header name, header value). A complete list of HTTP 1.1 headers and their
meanings can be found in RFC 7231. Let's look at how to use some headers in
requests and responses.

Customizing requests
To make use of the functionality that headers provide, we add headers to a request
before sending it. To do this, we can't just use urlopen(). We need to follow
these steps:

• Create a Request object
• Add headers to the request object
• Use urlopen() to send the request object

We're going to learn how to customize a request for retrieving a Swedish version of
the Debian home page. We will use the Accept-Language header, which tells the
server our preferred language for the resource it returns. Note that not all servers
hold versions of resources in multiple languages, so not all servers will respond to
Accept-LanguageLinux home page.

First, we create a Request object:

>>> from urllib.request import Request

>>> req = Request('http://www.debian.org')

Next we add the header:

>>> req.add_header('Accept-Language', 'sv')

The add_header() method takes the name of the header and the contents of the
header as arguments. The Accept-Language header takes two-letter ISO 639-1
language codes. The code for Swedish is sv.

Lastly, we submit the customized request with urlopen():

>>> response = urlopen(req)

Chapter 2

[37]

We can check if the response is in Swedish by printing out the first few lines:

>>> response.readlines()[:5]

[b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">\n',

 b'<html lang="sv">\n',

 b'<head>\n',

 b' <meta http-equiv="Content-Type" content="text/html;
 charset=utf- 8">\n',

 b' <title>Debian -- Det universella operativsystemet </title>\n']

Jetta bra! The Accept-Language header has informed the server about our preferred
language for the response's content.

To view the headers present in a request, do the following:

>>> req = Request('http://www.debian.org')

>>> req.add_header('Accept-Language', 'sv')

>>> req.header_items()

[('Accept-language', 'sv')]

The urlopen() method adds some of its own headers when we run it on a request:

>>> response = urlopen(req)

>>> req.header_items()

[('Accept-language', 'sv'), ('User-agent': 'Python-urllib/3.4'),
 ('Host': 'www.debian.org')]

A shortcut for adding headers is to add them at the same time that we create the
request object, as shown here:

>>> headers = {'Accept-Language': 'sv'}

>>> req = Request('http://www.debian.org', headers=headers)

>>> req.header_items()

[('Accept-language', 'sv')]

We supply the headers as a dict to the Request object constructor as the headers
keyword argument. In this way, we can add multiple headers in one go, by adding
more entries to the dict.

Let's take a look at some more things that we can do with headers.

HTTP and Working with the Web

[38]

Content compression
The Accept-Encoding request header and the Content-Encoding response header
can work together to allow us to temporarily encode the body of a response for
transmission over the network. This is typically used for compressing the response
and reducing the amount of data that needs to be transferred.

This process follows these steps:

• The client sends a request with acceptable encodings listed in an Accept-
Encoding header

• The server picks an encoding method that it supports
• The server encodes the body using this encoding method
• The server sends the response, specifying the encoding it has used in a

Content-Encoding header
• The client decodes the response body using the specified encoding method

Let's discuss how to request a document and get the server to use gzip compression
for the response body. First, let's construct the request:

>>> req = Request('http://www.debian.org')

Next, add the Accept-Encoding header:

>>> req.add_header('Accept-Encoding', 'gzip')

And then, submit it with the help of urlopen():

>>> response = urlopen(req)

We can check if the server is using gzip compression by looking at the response's
Content-Encoding header:

>>> response.getheader('Content-Encoding')

'gzip'

We can then decompress the body data by using the gzip module:

>>> import gzip

>>> content = gzip.decompress(response.read())

>>> content.splitlines()[:5]

[b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">',

 b'<html lang="en">',

Chapter 2

[39]

 b'<head>',

 b' <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">',

 b' <title>Debian -- The Universal Operating System </title>']

Encodings are registered with IANA. The current list contains: gzip, compress,
deflate, and identity. The first three refer to specific compression methods.
The last one allows the client to specify that it doesn't want any encoding applied
to the content.

Let's see what happens if we ask for no compression by using the identity
encoding:

>>> req = Request('http://www.debian.org')

>>> req.add_header('Accept-Encoding', 'identity')

>>> response = urlopen(req)

>>> print(response.getheader('Content-Encoding'))

None

When a server uses the identity encoding type, no Content-Encoding header is
included in the response.

Multiple values
To tell the server that we can accept more than one encoding, add more values to the
Accept-Encoding header and separate them by commas. Let's try it. We create our
Request object:

>>> req = Request('http://www.debian.org')

Then, we add our header, and this time we include more encodings:

>>> encodings = 'deflate, gzip, identity'

>>> req.add_header('Accept-Encoding', encodings)

Now, we submit the request and then check the response encoding:

>>> response = urlopen(req)

>>> response.getheader('Content-Encoding')

'gzip'

If needed, relative weightings can be given to specific encodings by adding a q value:

>>> encodings = 'gzip, deflate;q=0.8, identity;q=0.0'

HTTP and Working with the Web

[40]

The q value follows the encoding name, and it is separated by a semicolon. The
maximum q value is 1.0, and this is also the default if no q value is given. So, the
preceding line should be interpreted as my first preference for encoding is gzip, my
second preference is deflate, and my third preference is identity, if nothing else
is available.

Content negotiation
Content compression with the Accept-Encoding header and language selection
with the Accept-Language header are examples of content negotiation, where the
client specifies its preferences regarding the format and the content of the requested
resource. The following headers can also be used for this:

• Accept: For requesting a preferred file format
• Accept-Charset: For requesting the resource in a preferred character set

There are additional aspects to the content negotiation mechanism, but because it's
inconsistently supported and it can become quite involved, we won't be covering it
in this chapter. RFC 7231 contain all the details that you need. Take a look at sections
such as 3.4, 5.3, 6.4.1, and 6.5.6, if you find that your application requires this.

Content types
HTTP can be used as a transport for any type of file or data. The server can use the
Content-Type header in a response to inform the client about the type of data that
it has sent in the body. This is the primary means an HTTP client determines how it
should handle the body data that the server returns to it.

To view the content type, we inspect the value of the response header,
as shown here:

>>> response = urlopen('http://www.debian.org')

>>> response.getheader('Content-Type')

'text/html'

The values in this header are taken from a list which is maintained by IANA. These
values are variously called content types, Internet media types, or MIME types
(MIME stands for Multipurpose Internet Mail Extensions, the specification
in which the convention was first established). The full list can be found at
http://www.iana.org/assignments/media-types.

http://www.iana.org/assignments/media-types

Chapter 2

[41]

There are registered media types for many of the types of data that are transmitted
across the Internet, some common ones are:

Media type Description
text/html HTML document
text/plain Plain text document
image/jpeg JPG image
application/pdf PDF document
application/json JSON data
application/xhtml+xml XHTML document

Another media type of interest is application/octet-stream, which in practice is
used for files that don't have an applicable media type. An example of this would
be a pickled Python object. It is also used for files whose format is not known by
the server. In order to handle responses with this media type correctly, we need to
discover the format in some other way. Possible approaches are as follows:

• Examine the filename extension of the downloaded resource, if it has one.
The mimetypes module can then be used for determining the media type
(go to Chapter 3, APIs in Action to see an example of this).

• Download the data and then use a file type analysis tool. TheUse the
Python standard library imghdr module can be used for images, and the
third-party python-magic package, or the GNU file command, can be used
for other types.

• Check the website that we're downloading from to see if the file type has
been documented anywhere.

Content type values can contain optional additional parameters that provide further
information about the type. This is usually used to supply the character set that the
data uses. For example:

Content-Type: text/html; charset=UTF-8.

In this case, we're being told that the character set of the document is UTF-8.
The parameter is included after a semicolon, and it always takes the form of a
key/value pair.

Let's discuss an example, downloading the Python home page and using the
Content-Type value it returns. First, we submit our request:

>>> response = urlopen('http://www.python.org')

HTTP and Working with the Web

[42]

Then, we check the Content-Type value of our response, and extract the
character set:

>>> format, params = response.getheader('Content-Type').split(';')
>>> params
' charset=utf-8'
>>> charset = params.split('=')[1]
>>> charset
'utf-8'

Lastly, we decode our response content by using the supplied character set:

>>> content = response.read().decode(charset)

Note that quite often, the server either doesn't supply a charset in the Content-
Type header, or it supplies the wrong charset. So, this value should be taken as
a suggestion. This is one of the reasons that we look at the Requests library later
in this chapter. It will automatically gather all the hints that it can find about what
character set should be used for decoding a response body and make a best guess
for us.

User agents
Another request header worth knowing about is the User-Agent header. Any client
that communicates using HTTP can be referred to as a user agent. RFC 7231 suggests
that user agents should use the User-Agent header to identify themselves in every
request. What goes in there is up to the software that makes the request, though it
usually comprises a string that identifies the program and version, and possibly the
operating system and the hardware that it's running on. For example, the user agent
for my current version of Firefox is shown here:

Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140722
 Firefox/24.0 Iceweasel/24.7.0

Although it has been broken over two lines here, it is a single long string. As you can
probably decipher, I'm running Iceweasel (Debian's version of Firefox) version 24 on
a 64-bit Linux system. User agent strings aren't intended for identifying individual
users. They only identify the product that was used for making the request.

We can view the user agent that urllib uses. Perform the following steps:

>>> req = Request('http://www.python.org')
>>> urlopen(req)
>>> req.get_header('User-agent')
'Python-urllib/3.4'

Chapter 2

[43]

Here, we have created a request and submitted it using urlopen, and urlopen
added the user agent header to the request. We can examine this header by using the
get_header() method. This header and its value are included in every request made
by urllib, so every server we make a request to can see that we are using Python 3.4
and the urllib library.

Webmasters can inspect the user agents of requests and then use the information for
various things, including the following:

• Classifying visits for their website statistics
• Blocking clients with certain user agent strings
• Sending alternative versions of resources for user agents with known

problems, such as bugs when interpreting certain languages like CSS,
or not supporting some languages at all, such as JavaScript

The last two can cause problems for us because they can stop or interfere with us
accessing the content that we're after. To work around this, we can try and set our
user agent so that it mimics a well known browser. This is known as spoofing, as
shown here:

>>> req = Request('http://www.debian.org')

>>> req.add_header('User-Agent', 'Mozilla/5.0 (X11; Linux x86_64;
 rv:24.0) Gecko/20140722 Firefox/24.0 Iceweasel/24.7.0')

>>> response = urlopen(req)

The server will respond as if our application is a regular Firefox client. User agent
strings for different browsers are available on the web. I'm yet to come across a
comprehensive resource for them, but Googling for a browser and version number
will usually turn something up. Alternatively you can use Wireshark to capture an
HTTP request made by the browser you want to emulate and look at the captured
request's user agent header.

Cookies
A cookie is a small piece of data that the server sends in a Set-Cookie header as a
part of the response. The client stores cookies locally and includes them in any future
requests that are sent to the server.

Servers use cookies in various ways. They can add a unique ID to them, which
enables them to track a client as it accesses different areas of a site. They can store
a login token, which will automatically log the client in, even if the client leaves
the site and then accesses it later. They can also be used for storing the client's user
preferences or snippets of personalizing information, and so on.

HTTP and Working with the Web

[44]

Cookies are necessary because the server has no other way of tracking a client
between requests. HTTP is called a stateless protocol. It doesn't contain an explicit
mechanism for a server to know for sure that two requests have come from the
same client. Without cookies to allow the server to add some uniquely identifying
information to the requests, things such as shopping carts (which were the original
problem that cookies were developed to solve) would become impossible to build,
because the server would not be able to determine which basket goes with
which request.

We may need to handle cookies in Python because without them, some sites don't
behave as expected. When using Python, we may also want to access the parts
of a site which require a login, and the login sessions are usually maintained
through cookies.

Cookie handling
We're going to discuss how to handle cookies with urllib. First, we need to create a
place for storing the cookies that the server will send us:

>>> from http.cookiejar import CookieJar

>>> cookie_jar = CookieJar()

Next, we build something called an urllib opener. This will automatically extract
the cookies from the responses that we receive and then store them in our cookie jar:

>>> from urllib.request import build_opener, HTTPCookieProcessor

>>> opener = build_opener(HTTPCookieProcessor(cookie_jar))

Then, we can use our opener to make an HTTP request:

>>> opener.open('http://www.github.com')

Lastly, we can check that the server has sent us some cookies:

>>> len(cookie_jar)

2

Whenever we use opener to make further requests, the HTTPCookieProcessor
functionality will check our cookie_jar to see if it contains any cookies for that site
and then it will automatically add them to our requests. It will also add any further
cookies that are received to the cookie jar.

The http.cookiejar module also contains a FileCookieJar class, that works in the
same way as CookieJar, but it provides an additional function for easily saving the
cookies to a file. This allows persistence of cookies across Python sessions.

Chapter 2

[45]

Know your cookies
It's worth looking at the properties of cookies in more detail. Let's examine the
cookies that GitHub sent us in the preceding section.

To do this, we need to pull the cookies out of the cookie jar. The CookieJar module
doesn't let us access them directly, but it supports the iterator protocol. So, a quick
way of getting them is to create a list from it:

>>> cookies = list(cookie_jar)

>>> cookies

[Cookie(version=0, name='logged_in', value='no', ...),

 Cookie(version=0, name='_gh_sess', value='eyJzZxNzaW9uX...', ...)

]

You can see that we have two Cookie objects. Now, let's pull out some information
from the first one:

>>> cookies[0].name
'logged_in'
>>> cookies[0].value
'no'

The cookie's name allows the server to quickly reference it. This cookie is clearly a
part of the mechanism that GitHub uses for finding out whether we've logged in yet.
Next, let's do the following:

>>> cookies[0].domain
'.github.com'
>>> cookies[0].path
'/'

The domain and the path are the areas for which this cookie is valid, so our urllib
opener will include this cookie in any request that it sends to www.github.com and
its sub-domains, where the path is anywhere below the root.

Now, let's look at the cookie's lifetime:

>>> cookies[0].expires
2060882017

This is a Unix timestamp; we can convert it to datetime:

>>> import datetime
>>> datetime.datetime.fromtimestamp(cookies[0].expires)
datetime.datetime(2035, 4, 22, 20, 13, 37)

www.github.com

HTTP and Working with the Web

[46]

So, our cookie will expire on 22nd of April, 2035. An expiry date is the amount of
time that the server would like the client to hold on to the cookie for. Once the
expiry date has passed, the client can throw the cookie away and the server will
send a new one with the next request. Of course, there's nothing to stop a client
from immediately throwing the cookie away, though on some sites this may break
functionality that depends on the cookie.

Let's discuss two common cookie flags:

>>> print(cookies[0].get_nonstandard_attr('HttpOnly'))

None

Cookies that are stored on a client can be accessed in a number of ways:

• By the client as part of an HTTP request and response sequence
• By scripts running in the client, such as JavaScript
• By other processes running in the client, such as Flash

The HttpOnly flag indicates that the client should only allow access to a cookie
when the access is part of an HTTP request or response. The other methods should
be denied access. This will protect the client against Cross-site scripting attacks
(see Chapter 9, Applications for the Web, for more information on these). This is an
important security feature, and when the server sets it, our application should
behaves accordingly.

There is also a secure flag:

>>> cookies[0].secure

True

If the value is true, the Secure flag indicates that the cookie should only ever be sent
over a secure connection, such as HTTPS. Again, we should honor this if the flag has
been set such that when our application send requests containing this cookie, it only
sends them to HTTPS URLs.

You may have spotted an inconsistency here. Our URL has requested a response
over HTTP, yet the server has sent us a cookie, which it's requesting to be sent only
over secure connections. Surely the site designers didn't overlook a security loophole
like that? Rest assured; they didn't. The response was actually sent over HTTPS. But,
how did that happen? Well, the answer lies with redirects.

Chapter 2

[47]

Redirects
Sometimes servers move their content around. They also make some content obsolete
and put up new stuff in a different location. Sometimes they'd like us to use the
more secure HTTPS protocol instead of HTTP. In all these cases, they may get traffic
that asks for the old URLs, and in all these cases they'd probably prefer to be able to
automatically send visitors to the new ones.

The 300 range of HTTP status codes is designed for this purpose. These codes
indicate to the client that further action is required on their part to complete the
request. The most commonly encountered action is to retry the request at a different
URL. This is called a redirect.

We'll learn how this works when using urllib. Let's make a request:

>>> req = Request('http://www.gmail.com')

>>> response = urlopen(req)

Simple enough, but now, look at the URL of the response:

>>> response.url

'https://accounts.google.com/ServiceLogin?service=mail&passive=true&r
 m=false...'

This is not the URL that we requested! If we open this new URL in a browser,
then we'll see that it's actually the Google login page (you may need to clear your
browser cookies to see this if you already have a cached Google login session).
Google redirected us from http://www.gmail.com to its login page, and urllib
automatically followed the redirect. Moreover, we may have been redirected more
than once. Look at the redirect_dict attribute of our request object:

>>> req.redirect_dict

{'https://accounts.google.com/ServiceLogin?service=...': 1,
 'https://mail.google.com/mail/': 1}

The urllib package adds every URL that we were redirected through to this dict.
We can see that we have actually been redirected twice, first to https://mail.
google.com, and second to the login page.

When we send our first request, the server sends a response with a redirect status
code, one of 301, 302, 303, or 307. All of these indicate a redirect. This response
includes a Location header, which contains the new URL. The urllib package will
submit a new request to that URL, and in the aforementioned case, it will receive yet
another redirect, which will lead it to the Google login page.

http://www.gmail.com
https://mail.google.com
https://mail.google.com

HTTP and Working with the Web

[48]

Since urllib follows redirects for us, they generally don't affect us, but it's worth
knowing that a response urllib returns may be for a URL different from what we
had requested. Also, if we hit too many redirects for a single request (more than
10 for urllib), then urllib will give up and raise an urllib.error.HTTPError
exception.

URLs
Uniform Resource Locators, or URLs are fundamental to the way in which the web
operates, and they have been formally described in RFC 3986. A URL represents a
resource on a given host. How URLs map to the resources on the remote system is
entirely at the discretion of the system admin. URLs can point to files on the server,
or the resources may be dynamically generated when a request is received.
What the URL maps to though doesn't matter as long as the URLs work when
we request them.

URLs are comprised of several sections. Python uses the urllib.parse module for
working with URLs. Let's use Python to break a URL into its component parts:

>>> from urllib.parse import urlparse

>>> result = urlparse('http://www.python.org/dev/peps')

>>> result

ParseResult(scheme='http', netloc='www.python.org', path='/dev/peps',
 params='', query='', fragment='')

The urllib.parse.urlparse() function interprets our URL and recognizes http as
the scheme, www.python.org as the network location, and /dev/peps as the path.
We can access these components as attributes of the ParseResult:

>>> result.netloc

'www.python.org'

>>> result.path

'/dev/peps'

For almost all resources on the web, we'll be using the http or https schemes. In
these schemes, to locate a specific resource, we need to know the host that it resides
on and the TCP port that we should connect to (together these are the netloc
component), and we also need to know the path to the resource on the host
(the path component).

Chapter 2

[49]

Port numbers can be specified explicitly in a URL by appending them to the host.
They are separated from the host by a colon. Let's see what happens when we try
this with urlparse.

>>> urlparse('http://www.python.org:8080/')

ParseResult(scheme='http', netloc='www.python.org:8080', path='/',
 params='', query='', fragment='')

The urlparse method just interprets it as a part of the netloc. This is fine because
this is how handlers such as urllib.request.urlopen() expect it to be formatted.

If we don't supply a port (as is usually the case), then the default port 80 is used for
http, and the default port 443 is used for https. This is usually what we want, as
these are the standard ports for the HTTP and HTTPS protocols respectively.

Paths and relative URLs
The path in a URL is anything that comes after the host and the port. Paths always
start with a forward-slash (/), and when just a slash appears on its own, it's called
the root. We can see this by performing the following:

>>> urlparse('http://www.python.org/')

ParseResult(scheme='http', netloc='www.python.org', path='/',
 params='', query='', fragment='')

If no path is supplied in a request, then by default urllib will send a request for
the root.

When a scheme and a host are included in a URL (as in the previous example), the
URL is called an absolute URL. Conversely, it's possible to have relative URLs,
which contain just a path component, as shown here:

>>> urlparse('../images/tux.png')

ParseResult(scheme='', netloc='', path='../images/tux.png',
 params='', query='', fragment='')

We can see that ParseResult only contains a path. If we want to use a relative URL
to request a resource, then we need to supply the missing scheme, the host, and the
base path.

Usually, we encounter relative URLs in a resource that we've already retrieved from
a URL. So, we can just use this resource's URL to fill in the missing components. Let's
look at an example.

HTTP and Working with the Web

[50]

Suppose that we've retrieved the http://www.debian.org URL, and within the
webpage source code we found the relative URL for the 'About' page. We found that
it's a relative URL for intro/about.

We can create an absolute URL by using the URL for the original page and the
urllib.parse.urljoin() function. Let's see how we can do this:

>>> from urllib.parse import urljoin

>>> urljoin('http://www.debian.org', 'intro/about')

'http://www.debian.org/intro/about'

By supplying urljoin with a base URL, and a relative URL, we've created a new
absolute URL.

Here, notice how urljoin has filled in the slash between the host and the path. The
only time that urljoin will fill in a slash for us is when the base URL does not have
a path, as shown in the preceding example. Let's see what happens if the base URL
does have a path.

>>> urljoin('http://www.debian.org/intro/', 'about')

'http://www.debian.org/intro/about'

>>> urljoin('http://www.debian.org/intro', 'about')

'http://www.debian.org/about'

This will give us varying results. Notice how urljoin appends to the path if the base
URL ends in a slash, but it replaces the last path element in the base URL if the base
URL doesn't end in a slash.

We can force a path to replace all the elements of a base URL by prefixing it with a
slash. Do the following:

>>> urljoin('http://www.debian.org/intro/about', '/News')

'http://www.debian.org/News'

How about navigating to parent directories? Let's try the standard dot syntax,
as shown here:

>>> urljoin('http://www.debian.org/intro/about/', '../News')

'http://www.debian.org/intro/News'

>>> urljoin('http://www.debian.org/intro/about/', '../../News')

'http://www.debian.org/News'

>>> urljoin('http://www.debian.org/intro/about', '../News')

'http://www.debian.org/News'

http://www.debian.org

Chapter 2

[51]

It work as we'd expect it to. Note the difference between the base URL having and
not having a trailing slash.

Lastly, what if the 'relative' URL is actually an absolute URL:

>>> urljoin('http://www.debian.org/about', 'http://www.python.org')

'http://www.python.org'

The relative URL completely replaces the base URL. This is handy, as it means that
we don't need to worry about testing whether a URL is relative or not before using it
with urljoin.

Query strings
RFC 3986 defines another property of URLs. They can contain additional parameters
in the form of key/value pairs that appear after the path. They are separated from
the path by a question mark, as shown here:

http://docs.python.org/3/search.html?q=urlparse&area=default

This string of parameters is called a query string. Multiple parameters are separated
by ampersands (&). Let's see how urlparse handles it:

>>> urlparse('http://docs.python.org/3/search.html?
 q=urlparse&area=default')

ParseResult(scheme='http', netloc='docs.python.org',
 path='/3/search.html', params='', query='q=urlparse&area=default',
 fragment='')

So, urlparse recognizes the query string as the query component.

Query strings are used for supplying parameters to the resource that we
wish to retrieve, and this usually customizes the resource in some way. In the
aforementioned example, our query string tells the Python docs search page that
we want to run a search for the term urlparse.

The urllib.parse module has a function that helps us turn the query component
returned by urlparse into something more useful:

>>> from urllib.parse import parse_qs

>>> result = urlparse
 ('http://docs.python.org/3/search.html?q=urlparse&area=default')

>>> parse_qs(result.query)

{'area': ['default'], 'q': ['urlparse']}

http://docs.python.org/3/search.html?q=urlparse&area=default

HTTP and Working with the Web

[52]

The parse_qs() method reads the query string and then converts it into a
dictionary. See how the dictionary values are actually in the form of lists? This
is because parameters can appear more than once in a query string. Try it with a
repeated parameter:

>>> result = urlparse
 ('http://docs.python.org/3/search.html?q=urlparse&q=urljoin')

>>> parse_qs(result.query)

{'q': ['urlparse', 'urljoin']}

See how both of the values have been added to the list? It's up to the server to
decide how it interprets this. If we send this query string, then it may just pick
one of the values and use that, while ignoring the repeat. You can only try it,
and see what happens.

You can usually figure out what you need to put in a query string for a given page
by submitting a query through the web interface using your web browser, and
inspecting the URL of the results page. You should be able to spot the text of your
search and consequently deduce the corresponding key for the search text. Quite
often, many of the other parameters in the query string aren't actually needed for
getting a basic result. Try requesting the page using only the search text parameter
and see what happens. Then, add the other parameters, if it does not work
as expected.

If you submit a form to a page and the resulting page's URL doesn't have a query
string, then the page would have used a different method for sending the form data.
We'll look at this in the HTTP methods section in the following, while discussing the
POST method.

URL encoding
URLs are restricted to the ASCII characters and within this set, a number of
characters are reserved and need to be escaped in different components of a URL.
We escape them by using something called URL encoding. It is often called percent
encoding, because it uses the percent sign as an escape character. Let's URL-encode
a string:

>>> from urllib.parse import quote

>>> quote('A duck?')

'A%20duck%3F'

The special characters ' ' and ? have been replaced by escape sequences. The
numbers in the escape sequences are the characters' ASCII codes in hexadecimal.

Chapter 2

[53]

The full rules for where the reserved characters need to be escaped are given in RFC
3986, however urllib provides us with a couple of methods for helping us construct
URLs. This means that we don't need to memorize all of these!

We just need to:

• URL-encode the path
• URL-encode the query string
• Combine them by using the urllib.parse.urlunparse() function

Let's see how to use the aforementioned steps in code. First, we encode the path:

>>> path = 'pypi'
>>> path_enc = quote(path)

Then, we encode the query string:

>>> from urllib.parse import urlencode
>>> query_dict = {':action': 'search', 'term': 'Are you quite sure
 this is a cheese shop?'}
>>> query_enc = urlencode(query_dict)
>>> query_enc
'%3Aaction=search&term=Are+you+quite+sure+this+is+a+cheese+shop%3F'

Lastly, we compose everything into a URL:

>>> from urllib.parse import urlunparse
>>> netloc = 'pypi.python.org'
>>> urlunparse(('http', netloc, path_enc, '', query_enc, ''))
'http://pypi.python.org/pypi?%3Aaction=search&term=Are+you+quite+sure
 +this+is+a+cheese+shop%3F'

The quote() function has been setup for specifically encoding paths. By default,
it ignores slash characters and it doesn't encode them. This isn't obvious in the
preceding example, try the following to see how this works:

>>> from urllib.parse import quote
>>> path = '/images/users/+Zoot+/'
>>> quote(path)
'/images/users/%2BZoot%2B/'

Notice that it ignores the slashes, but it escapes the +. That is perfect for paths.

The urlencode() function is similarly intended for encoding query strings directly
from dicts. Notice how it correctly percent encodes our values and then joins them
with &, so as to construct the query string.

Lastly, the urlunparse() method expects a 6-tuple containing the elements
matching those of the result of urlparse(), hence the two empty strings.

HTTP and Working with the Web

[54]

There is a caveat for path encoding. If the elements of a path themselves contain
slashes, then we may run into problems. The example is shown in the following
commands:

>>> username = '+Zoot/Dingo+'

>>> path = 'images/users/{}'.format(username)

>>> quote(path)

'images/user/%2BZoot/Dingo%2B'

Notice how the slash in the username doesn't get escaped? This will be incorrectly
interpreted as an extra level of directory structure, which is not what we want. In
order to get around this, first we need to individually escape any path elements that
may contain slashes, and then join them manually:

>>> username = '+Zoot/Dingo+'

>>> user_encoded = quote(username, safe='')

>>> path = '/'.join(('', 'images', 'users', username))

'/images/users/%2BZoot%2FDingo%2B'

Notice how the username slash is now percent-encoded? We encode the username
separately, telling quote not to ignore slashes by supplying the safe='' argument,
which overwrites its default ignore list of /. Then, we combine the path elements by
using a simple join() function.

Here, it's worth mentioning that hostnames sent over the wire must be strictly
ASCII, however the socket and http modules support transparent encoding of
Unicode hostnames to an ASCII-compatible encoding, so in practice we don't need
to worry about encoding hostnames. There are more details about this process in the
encodings.idna section of the codecs module documentation.

URLs in summary
There are quite a few functions that we've used in the preceding sections. Let's just
review what we have used each function for. All of these functions can be found in
the urllib.parse module. They are as follows:

• Splitting a URL into its components: urlparse
• Combining an absolute URL with a relative URL: urljoin
• Parsing a query string into a dict: parse_qs
• URL-encoding a path: quote
• Creating a URL-encoded query string from a dict: urlencode
• Creating a URL from components (reverse of urlparse): urlunparse

Chapter 2

[55]

HTTP methods
So far, we've been using requests for asking servers to send web resources to us, but
HTTP provides more actions that we can perform. The GET in our request lines is
an HTTP method, and there are several methods, such as HEAD, POST, OPTION, PUT,
DELETE, TRACE, CONNECT, and PATCH.

We'll be looking at several of these in some detail in the next chapter, but there are
two methods, we're going to take a quick look at now.

The HEAD method
The HEAD method is the same as the GET method. The only difference is that the
server will never include a body in the response, even if there is a valid resource at
the requested URL. The HEAD method is used for checking if a resource exists or if it
has changed. Note that some servers don't implement this method, but when they
do, it can prove to be a huge bandwidth saver.

We use alternative methods with urllib by supplying the method name to a
Request object when we create it:

>>> req = Request('http://www.google.com', method='HEAD')

>>> response = urlopen(req)

>>> response.status

200

>>> response.read()

b''

Here the server has returned a 200 OK response, yet the body is empty, as expected.

The POST method
The POST method is in some senses the opposite of the GET method. We use the POST
method for sending data to the server. However, in return the server can still send
us a full response. The POST method is used for submitting user input from HTML
forms and for uploading files to a server.

When using POST, the data that we wish to send will go in the body of the request.
We can put any bytes data in there and declare its type by adding a Content-Type
header to our request with an appropriate MIME type.

HTTP and Working with the Web

[56]

Let's look at an example for sending some HTML form data to a server by using
a POST request, just as browsers do when we submitt a form on a website. The
form data always consists of key/value pairs; urllib lets us work with regular
dictionaries for supplying this (we'll look at where this data comes from in the
following section):

>>> data_dict = {'P': 'Python'}

When posting the HTML form data, the form values must be formatted in the
same way as querystrings are formatted in a URL, and must be URL-encoded. A
Content-Type header must also be set to the special MIME type of application/x-
www-form-urlencoded.

Since this format is identical to querystrings, we can just use the urlencode()
function on our dict for preparing the data:

>>> data = urlencode(data_dict).encode('utf-8')

Here, we also additionally encode the result to bytes, as it's to be sent as the body of
the request. In this case, we use the UTF-8 character set.

Next, we will construct our request:

>>> req = Request('http://search.debian.org/cgi-bin/omega',
 data=data)

By adding our data as the data keyword argument, we are telling urllib that we
want our data to be sent as the body of the request. This will make the request use
the POST method rather than the GET method.

Next, we add the Content-Type header:

>>> req.add_header('Content-Type', 'application/x-www-form-urlencode;
 charset=UTF-8')

Lastly, we submit the request:

>>> response = urlopen(req)

If we save the response data to a file and open it in a web browser, then we should
see some Debian website search results related to Python.

Formal inspection
In the previous section we used the URL http://search.debian.org/cgibin/
omega, and the dictionary data_dict = {'P': 'Python'}. But where did these
come from?

http://search.debian.org/cgibin/omega
http://search.debian.org/cgibin/omega

Chapter 2

[57]

We get these by visiting the web page containing the form we would submit to get
the results manually. We then inspect the HTML source code of the web page. If
we were carrying out the aforementioned search in a web browser, then we would
most likely be on the http://www.debian.org page, and we would be running a
search by typing our search term into the search box at the top right corner and then
clicking on Search.

Most modern browsers allow you to directly inspect the source for any element on a
page. To do this right-click on the element, which in this case is the search box, then
select the Inspect Element option, as shown in the screenshot here:

http://www.debian.org

HTTP and Working with the Web

[58]

The source code will pop up in a section of the window. In the preceding screenshot,
it's at the bottom left corner of the screen. Here, you will see some lines of code that
looks like the following example:

<form action="http://search.debian.org/cgi-bin/omega"
method="get" name="P">
 <p>
 <input type="hidden" value="en" name="DB"></input>
 <input size="27" value="" name="P"></input>
 <input type="submit" value="Search"></input>
 </p>
</form>

You should see the second <input> highlighted. This is the tag that corresponds to
the search text box. The value of the name attribute on the highlighted <input> tag
is the key that we use in our data_dict, which in this case is P. The value in our
data_dict is the term that we want to search for.

To get the URL, we need to look above the highlighted <input> for the enclosing
<form> tag. Here, our URL will be of the value of the action attribute, http://
search.debian.org/cgi-bin/omega. The source code for this web page is included
in the source code download for this book, in case Debian changes their website
before you read this.

This process can be applied to most HTML pages. To do this, look for the <input>
corresponding to the input text box, then find the URL from the enclosing <form>
tag. If you're not familiar with HTML, then this can be a bit of a trial and error
process. We'll be looking at some more methods of parsing HTML in the
next chapter.

Once we have our input name and URL, we can construct and submit the POST
request, as shown in the previous section.

HTTPS
Unless otherwise protected, all HTTP requests and responses are sent in clear text.
Anyone with access to the network that the messages travel over can potentially
intercept our traffic and read it without hindrance.

Since the web is used for transferring quite a lot of sensitive data, solutions have
been created for preventing eavesdroppers from reading the traffic, even if they
are able to intercept it. These solutions, for the most part, employ some form
of encryption.

http://search.debian.org/cgi-bin/omega
http://search.debian.org/cgi-bin/omega

Chapter 2

[59]

The standard method for encrypting HTTP traffic is called HTTP Secure, or HTTPS.
It uses an encryption mechanism called TLS/SSL, and it is applied to the TCP
connection on which the HTTP traffic travels. HTTPS typically uses TCP port 443,
as opposed to the default HTTP port 80.

To most users, this process is almost transparent. In principle, we only need to
change the http in a URL to an https. Since urllib supports HTTPS, the same is
true for our Python clients.

Note that not all servers support HTTPS, so simply changing the URL scheme to
https: isn't guaranteed to work for all sites. If this is the case, then the connection
attempt may fail in a number of ways, including a socket timeout, a connection
reset error, or possibly even an HTTP error, such as a 400 range error or a 500 range
error. An increasing number of sites are enabling HTTPS however. Many others
are switching to it and using it as their default protocol, so it's worth investigating
whether it's available so you can give your application's users extra security.

The Requests library
So that's it for the urllib package. As you can see, access to the standard library
is more than adequate for most HTTP tasks. We haven't touched upon all of its
capabilities. There are numerous handler classes which we haven't discussed, plus
the opener interface is extensible.

However, the API isn't the most elegant, and there have been several attempts made
to improve it. One of these is the very popular third-party library called Requests.
It's available as the requests package on PyPi. It can either be installed through
Pip or be downloaded from http://docs.python-requests.org, which hosts
the documentation.

The Requests library automates and simplifies many of the tasks that we've been
looking at. The quickest way of illustrating this is by trying some examples.

The commands for retrieving a URL with Requests are similar to retrieving a URL
with the urllib package, as shown here:

>>> import requests

>>> response = requests.get('http://www.debian.org')

http://docs.python-requests.org

HTTP and Working with the Web

[60]

And we can look at properties of the response object. Try:

>>> response.status_code

200

>>> response.reason

'OK'

>>> response.url

'http://www.debian.org/'

>>> response.headers['content-type']

'text/html'

Note that the header name in the preceding command is in lowercase. The keys in
the headers attribute of Requests response objects are case insensitive.

There are some convenience attributes that have been added to the response object:

>>> response.ok

True

The ok attribute indicates whether the request was successful. That is, the request
contained a status code in the 200 range. Also:

>>> response.is_redirect

False

The is_redirect attribute indicates whether the request was redirected. We can
also access the request properties through the response object:

>>> response.request.headers

{'User-Agent': 'python-requests/2.3.0 CPython/3.4.1 Linux/3.2.0-4-
 amd64', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*'}

Notice that Requests is automatically handling compression for us. It's including
gzip and deflate in an Accept-Encoding header. If we look at the Content-
Encoding response, then we will see that the response was in fact gzip compressed,
and Requests transparently decompressed it for us:

>>> response.headers['content-encoding']

'gzip'

We can look at the response content in many more ways. To get the same bytes
object as we got from an HTTPResponse object, perform the following:

>>> response.content

b'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">\n<html lang="en">...

Chapter 2

[61]

But Requests also performs automatic decoding for us. To get the decoded content,
do this:

>>> response.text

'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">\n<html
 lang="en">\n<head>\n

...

Notice that this is now str rather than bytes. The Requests library uses values in
the headers for choosing a character set and decoding the content to Unicode for
us. If it can't get a character set from the headers, then it uses the chardet library
(http://pypi.python.org/pypi/chardet) to make an estimate from the content
itself. We can see what encoding Requests has chosen here:

>>> response.encoding

'ISO-8859-1'

We can even ask it to change the encoding that it has used:

>>> response.encoding = 'utf-8'

After changing the encoding, subsequent references to the text attribute for this
response will return the content decoded by using the new encoding setting.

The Requests library automatically handles cookies. Give the following a try:

>>> response = requests.get('http://www.github.com')

>>> print(response.cookies)

<<class 'requests.cookies.RequestsCookieJar'>

[<Cookie logged_in=no for .github.com/>,

 <Cookie _gh_sess=eyJzZxNz... for ..github.com/>]>

The Requests library also has a Session class, which allows the reuse of
cookies, and this is similar to using the http module's CookieJar and the
urllib module's HTTPCookieHandler objects. Do the following to reuse the
cookies in subsequent requests:

>>> s = requests.Session()

>>> s.get('http://www.google.com')

>>> response = s.get('http://google.com/preferences')

http://pypi.python.org/pypi/chardet

HTTP and Working with the Web

[62]

The Session object has the same interface as the requests module, so we use its
get() method in the same way as we use the requests.get()method. Now, any
cookies encountered are stored in the Session object, and they will be sent with
corresponding requests when we use the get() method in the future.

Redirects are also automatically followed, in the same way as when using urllib,
and any redirected requests are captured in the history attribute.

The different HTTP methods are easily accessible, they have their own functions:

>>> response = requests.head('http://www.google.com')

>>> response.status_code

200

>>> response.text

''

Custom headers are added to to requests in a similar way as they are when
using urllib:

>>> headers = {'User-Agent': 'Mozilla/5.0 Firefox 24'}

>>> response = requests.get('http://www.debian.org', headers=headers)

Making requests with query strings is a straightforward process:

>>> params = {':action': 'search', 'term': 'Are you quite sure this
 is a cheese shop?'}

>>> response = requests.get('http://pypi.python.org/pypi',
 params=params)

>>> response.url

'https://pypi.python.org/pypi?%3Aaction=search&term=Are+you+quite+sur
 e+this+is+a+cheese+shop%3F'

The Requests library takes care of all the encoding and formatting for us.

Posting is similarly simplified, although we use the data keyword argument here:

>>> data = {'P', 'Python'}

>>> response = requests.post('http://search.debian.org/cgi-
 bin/omega', data=data)

Chapter 2

[63]

Handling errors with Requests
Errors in Requests are handled slightly differently from how they are handled with
urllib. Let's work through some error conditions and see how it works. Generate a
404 error by doing the following:

>>> response = requests.get('http://www.google.com/notawebpage')

>>> response.status_code

404

In this situation, urllib would have raised an exception, but notice that Requests
doesn't. The Requests library can check the status code and raise a corresponding
exception, but we have to ask it to do so:

>>> response.raise_for_status()

...

requests.exceptions.HTTPError: 404 Client Error

Now, try it on a successful request:

>>> r = requests.get('http://www.google.com')

>>> r.status_code

200

>>> r.raise_for_status()

None

It doesn't do anything, which in most situations would let our program exit a try/
except block and then continue as we would want it to.

What happens if we get an error that is lower in the protocol stack? Try the following:

>>> r = requests.get('http://192.0.2.1')

...

requests.exceptions.ConnectionError: HTTPConnectionPool(...

We have made a request for a host that doesn't exist and once it has timed out,
we get a ConnectionError exception.

The Requests library simply reduces the workload that is involved in using HTTP
in Python as compared to urllib. Unless you have a requirement for using urllib,
I would always recommend using Requests for your projects.

HTTP and Working with the Web

[64]

Summary
We looked at the principles of the HTTP protocol. We saw how to perform
numerous fundamental tasks with the standard library urllib and the
third-party Requests packages.

We looked at the structure of HTTP messages, HTTP status codes, the different
headers that we may encounter in requests and responses, and how to interpret them
and use them for customizing our requests. We looked at how URLs are formed, and
how to manipulate and construct them.

We saw how to handle cookies and redirects, how to handle errors that might occur,
and how to use secure HTTP connections.

We also covered how to submit data to websites in the manner of submitting a
form on a web page, and how to extract the parameters that we need from a page's
source code.

Finally, we looked at the third-party Requests package. We saw that as compared
to the urllib package, Requests, automates and simplifies many of the tasks that
we may routinely need to carry out with HTTP. This makes it a great choice for
day-to-day HTTP work.

In the next chapter, we'll be employing what we've learned here to carry out detailed
interactions with different web services, querying APIs for data, and uploading our
own objects to the web.

[65]

APIs in Action
When we talk about APIs in relation to Python, we usually refer to the classes and
the functions that a module presents to us to interact with. In this chapter, we'll be
talking about something different, that is, web APIs.

A web API is a type of API that you interact with through the HTTP protocol.
Nowadays, many web services provide a set of HTTP calls, which are designed to
be used programmatically by clients, that is, they are meant to be used by machines
rather than by humans. Through these interfaces it's possible to automate interaction
with the services and to perform tasks such as extracting data, configuring the
service in some way, and uploading your own content into the service.

In this chapter, we'll look at:

• Two popular data exchange formats used by web APIs: XML and JSON
• How to interact with two major web APIs: Amazon S3 and Twitter
• How to pull data from HTML pages when an API is not available
• How to make life easier for the webmasters that provide these APIs

and websites

There are hundreds of services that offer web APIs. A quite comprehensive and ever-
growing list of these services can be found at http://www.programmableweb.com.

We're going to start by introducing how XML is used in Python, and then we will
explain an XML-based API called the Amazon S3 API.

http://www.programmableweb.com

APIs in Action

[66]

Getting started with XML
The Extensible Markup Language (XML) is a way of representing hierarchical
data in a standard text format. When working with XML-based web APIs, we'll be
creating XML documents and sending them as the bodies of HTTP requests and
receiving XML documents as the bodies of responses.

Here's the text representation of an XML document, perhaps this represents the stock
at a cheese shop:

<?xml version='1.0'?>
<inventory>
 <cheese id="c01">
 <name>Caerphilly</name>
 <stock>0</stock>
 </cheese>
 <cheese id="c02">
 <name>Illchester</name>
 <stock>0</stock>
 </cheese>
</inventory>

If you've coded with HTML before, then this may look familiar. XML is a markup
based format. It is from the same family of languages as HTML. The data is
structured in an hierarchy formed by elements. Each element is represented by two
tags, a start tag, for example, <name>, and a matching end tag, for example, </name>.
Between these two tags, we can either put data, such as Caerphilly, or add more
tags, which represent child elements.

Unlike HTML, XML is designed such that we can define our own tags and create our
own data formats. Also, unlike HTML, the XML syntax is always strictly enforced.
Whereas in HTML small mistakes, such as tags being closed in the wrong order,
closing tags missing altogether, or attribute values missing quotes are tolerated,
in XML, these mistakes will result in completely unreadable XML documents.
A correctly formatted XML document is called well formed.

The XML APIs
There are two main approaches to working with XML data:

• Reading in a whole document and creating an object-based representation of
it, then manipulating it by using an object-oriented API

• Processing the document from start to end, and performing actions as
specific tags are encountered

Chapter 3

[67]

For now, we're going to focus on the object-based approach by using a Python XML
API called ElementTree. The second so-called pull or event-based approach (also
often called SAX, as SAX is one of the most popular APIs in this category) is more
complicated to set up, and is only needed for processing large XML files. We won't
need this to work with Amazon S3.

The basics of ElementTree
We'll be using the Python standard library implementation of the ElementTree API,
which is in the xml.etree.ElementTree module.

Let's see how we may create the aforementioned example XML document by using
ElementTree. Open a Python interpreter and run the following commands:

>>> import xml.etree.ElementTree as ET

>>> root = ET.Element('inventory')

>>> ET.dump(root)

<inventory />

We start by creating the root element, that is, the outermost element of the document.
We create a root element <inventory> here, and then print its string representation
to screen. The <inventory /> representation is an XML shortcut for <inventory></
inventory>. It's used to show an empty element, that is, an element with no data
and no child tags.

We create the <inventory> element by creating a new ElementTree.Element
object. You'll notice that the argument we give to Element() is the name of the
tag that is created.

Our <inventory> element is empty at the moment, so let's put something in it.
Do this:

>>> cheese = ET.Element('cheese')

>>> root.append(cheese)

>>> ET.dump(root)

<inventory><cheese /></inventory>

Now, we have an element called <cheese> in our <inventory> element. When an
element is directly nested inside another, then the nested element is called a child of
the outer element, and the outer element is called the parent. Similarly, elements that
are at the same level are called siblings.

APIs in Action

[68]

Let's add another element, and this time let's give it some content. Add the
following commands:

>>> name = ET.SubElement(cheese, 'name')

>>> name.text = 'Caerphilly'

>>> ET.dump(root)

<inventory><cheese><name>Caerphilly</name></cheese></inventory>

Now, our document is starting to shape up. We do two new things here: first,
we use the shortcut class method ElementTree.SubElement() to create the
new <name> element and insert it into the tree as a child of <cheese> in a single
operation. Second, we give it some content by assigning some text to the element's
text attribute.

We can remove elements by using the remove() method on the parent element,
as shown in the following commands:

>>> temp = ET.SubElement(root, 'temp')

>>> ET.dump(root)

<inventory><cheese><name>Caerphilly</name></cheese><temp
 /></inventory>

>>> root.remove(temp)

>>> ET.dump(root)

<inventory><cheese><name>Caerphilly</name></cheese></inventory>

Pretty printing
It would be useful for us to be able to produce output in a more legible format, such
as the example shown at the beginning of this section. The ElementTree API doesn't
have a function for doing this, but another XML API, minidom, provided by the
standard library, does, and it's simple to use. First, import minidom:

>>> import xml.dom.minidom as minidom

Second, use the following command to print some nicely formatted XML:

>>> print(minidom.parseString(ET.tostring(root)).toprettyxml())

<?xml version="1.0" ?>

<inventory>

 <cheese>

 <name>Caerphilly</name>

 </cheese>

</inventory>

Chapter 3

[69]

These are not the easiest lines of code at first glance, so let's break them down.
The minidom library can't directly work with ElementTree elements, so we use
ElementTree's tostring() function to create a string representation of our XML.
We load the string into the minidom API by using minidom.parseString(),
and then we use the toprettyxml() method to output our formatted XML.

This can be wrapped into a function so that it becomes more handy. Enter the
command block as shown in the following into your Python shell:

>>> def xml_pprint(element):

... s = ET.tostring(element)

... print(minidom.parseString(s).toprettyxml())

Now, just do the following to pretty print:

>>> xml_pprint(root)

<?xml version="1.0" ?>

<inventory>

 <cheese>

...

Element attributes
In the example shown at the beginning of this section, you may have spotted
something in the opening tag of the <cheese> element, that is, the id="c01" text.
This is called an attribute. We can use attributes to attach extra information to
elements, and there's no limit to the number of attributes an element can have.
Attributes are always comprised of an attribute name, which in this case is id,
and a value, which in this case is c01. The values can be any text, but they must
be enclosed in quotes.

Now, add the id attribute to the <cheese> element, as shown here:

>>> cheese.attrib['id'] = 'c01'

>>> xml_pprint(cheese)

<?xml version="1.0" ?>

<cheese id="c01">

 <name>Caerphilly</name>

</cheese>

The attrib attribute of an element is a dict-like object which holds an element's
attribute names and values. We can manipulate the XML attributes as we would a
regular dict.

APIs in Action

[70]

By now, you should be able to fully recreate the example document shown at the
beginning of this section. Go ahead and give it a try.

Converting to text
Once we have an XML tree that we're happy with, usually we would want to
convert it into a string to send it over the network. The ET.dump() function that
we've been using isn't appropriate for this. All the dump() function does is print the
tag to the screen. It doesn't return a string which we can use. We need to use the
ET.tostring() function for this, as shown in the following commands:

>>> text = ET.tostring(name)
>>> print(text)
b'<name>Caerphilly</name>'

Notice that it returns a bytes object. It encods our string for us. The default character
set is us-ascii but it's better to use UTF-8 for transmitting over HTTP, since it
can encode the full range of Unicode characters, and it is widely supported by
web applications.

>>> text = ET.tostring(name, encoding='utf-8')

For now, this is all that we need to know about creating XML documents, so let's see
how we can apply it to a web API.

The Amazon S3 API
Amazon S3 is a data storage service. It underpins many of today's high-profile
web services. Despite offering enterprise-grade resilience, performance and
features, it's pretty easy to start with. It is affordable, and it provides a simple
API for automated access. It's one of many cloud services in the growing
Amazon Web Services (AWS) portfolio.

APIs change every now and then, and they are usually given a version number so
that we can track them. We'll be working with the current version of the S3 REST
API, "2006-03-01".

You'll notice that in the S3 documentation and elsewhere, the S3 web API is referred
to as a REST API. REST stands for Representational State Transfer, and it is a fairly
academic conception of how HTTP should be used for APIs, originally presented
by Roy Fielding in his PhD dissertation. Although the properties that an API should
possess so as to be considered RESTful are quite specific, in practice pretty much
any API that is based on HTTP is now slapped with the RESTful label. The S3 API is
actually among the most RESTful high-profile APIs, because it appropriately uses a
good range of the HTTP methods.

Chapter 3

[71]

If you want to read more about this topic, Roy Fielding's dissertation
is available here http://ics.uci.edu/~fielding/pubs/
dissertation, and one of the original books that promoted the concept,
and is a great read, RESTful Web Services by Leonard Richardson and
Sam Ruby, is now available for free download from this page http://
restfulwebapis.org/rws.html.

Registering with AWS
Before we can access S3, we need to register with AWS. It is the norm for APIs to
require registration before allowing access to their features. You can use either an
existing Amazon account or create a new one at http://www.amazonaws.com.
Although S3 is ultimately a paid-for service, if you are using AWS for the first time,
then you will get a year's free trial for low-volume use. A year is plenty of time for
finishing this chapter! The trial provides 5GB of free S3 storage.

Authentication
Next, we need to discuss authentication, which is an important topic of discussion
when using many web APIs. Most web APIs we use will specify a way for supplying
authentication credentials that allow requests to be made to them, and typically
every HTTP request we make must include authentication information.

APIs require this information for the following reasons:

• To ensure that others can't abuse your application's access permissions
• To apply per-application rate limiting
• To manage delegation of access rights, so that an application can act on the

behalf of other users of a service or other services
• Collection of usage statistics

All of the AWS services use an HTTP request signing mechanism for authentication.
To sign a request, we hash and sign unique data in an HTTP request using a
cryptographic key, then add the signature to the request as a header. By recreating
the signature on the server, AWS can ensure that the request has been sent by us,
and that it doesn't get altered in transit.

http://ics.uci.edu/~fielding/pubs/dissertation
http://ics.uci.edu/~fielding/pubs/dissertation
http://restfulwebapis.org/rws.html
http://restfulwebapis.org/rws.html
http://www.amazonaws.com

APIs in Action

[72]

The AWS signature generation process is currently on its 4th version, and an
involved discussion would be needed to cover it, so we're going to employ a
third-party library, that is, requests-aws4auth. This is a companion library for
the Requests module that automatically handles signature generation for us. It's
available at PyPi. So, install it on a command line with the help of pip:

$ pip install requests-aws4auth

Downloading/unpacking requests-aws4auth

...

Setting up an AWS user
To use authentication, we need to acquire some credentials.

We will set this up through the AWS Console. Once you've registered with AWS, log
into the Console at https://console.aws.amazon.com.

Once you are logged in, you need to perform the steps shown here:

1. Click on your name at the top-right, and then choose Security Credentials.
2. Click on Users, which is on the list in the left-hand side of the screen, and

then click on the Create New Users button at the top.
3. Type in the username, and make sure that Generate an access key for each

user has been checked, and then click on the Create button in the bottom
right-hand corner.

You'll see a new page saying that the user has been created successfully. Click on
the Download credentials button at the bottom right corner to download a CSV file,
which contains the Access ID and Access Secret for this user. These are important
because they will help in authenticating ourselves to the S3 API. Make sure that you
store them securely, as they will allow full access to your S3 files.

Then, click on Close at the bottom of the screen, and click on the new user in the
list that will appear, and then click on the Attach Policy button. A list of policy
templates will appear. Scroll down this list and select the AmazonS3FullAccess
policy, as shown in the following screenshot:

https://console.aws.amazon.com

Chapter 3

[73]

Finally, click on the Attach Policy button at the bottom right-hand side when it
appears. Now, our user has full access to the S3 service.

Regions
AWS has datacenters around the world, so when we activate a service in AWS we
pick the region we want it to live in. There is a list of regions for S3 at http://docs.
aws.amazon.com/general/latest/gr/rande.html#s3_region.

It's best to choose a region that is closest to the users who will be using the service.
For now, you'll be the only user, so just decide on the region that is closest to you for
our first S3 tests.

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

APIs in Action

[74]

S3 buckets and objects
S3 organizes the data that we store in it using two concepts: buckets and objects. An
object is the equivalent of a file, that is, a blob of data with a name, and a bucket is
equivalent to a directory. The only difference between buckets and directories is that
buckets cannot contain other buckets.

Every bucket has its own URL of the form:

http://<bucketname>.s3-<region>.amazonaws.com.

In the URL, <bucketname> is the name of the bucket and <region> is the AWS
region where the bucket is present, for example eu-west-1. The bucket name and
region are set when we create the bucket.

Bucket names are shared globally among all S3 users, and so they must be unique.
If you own a domain, then a subdomain of that will make an appropriate bucket
name. You could also use your email address by replacing the @ symbol with a
hyphen or underscore.

Objects are named when we first upload them. We access objects by adding the
object name to the end of the bucket's URL as a path. For example, if we have a
bucket called mybucket.example.com in the eu-west-1 region containing the
object cheeseshop.txt, then we can access it by using the URL http://mybucket.
example.com.s3-eu-west-1.amazonaws.com/cheeseshop.txt.

Let's create our first bucket through the AWS Console. We can perform most of the
operations that the API exposes manually through this web interface, and it's a good
way of checking that our API client is performing the desired tasks:

1. Log into the Console at https://console.aws.amazon.com.
2. Go to the S3 service. You will see a page, which will prompt you to

create a bucket.
3. Click on the Create Bucket button.
4. Enter a bucket name, pick a region, and then click on Create.
5. You will be taken to the bucket list, and you will be able to see your bucket.

An S3 command-line client
Okay, enough preparation, let's get to coding. For the rest of this section on S3, we
will be writing a small command line client that will enable us to interact with the
service. We will create buckets, and then upload and download files.

http://<bucketname>.s3-<region>.amazonaws.com
http://mybucket.example.com.s3-eu-west-1.amazonaws.com/cheeseshop.txt
http://mybucket.example.com.s3-eu-west-1.amazonaws.com/cheeseshop.txt
https://console.aws.amazon.com

Chapter 3

[75]

First we'll set up our command line interpreter and initialize the authentication.
Create a file called s3_client.py and save the following code block in it:

import sys
import requests
import requests_aws4auth as aws4auth
import xml.etree.ElementTree as ET
import xml.dom.minidom as minidom

access_id = '<ACCESS ID>'
access_key = '<ACCESS KEY>'
region = '<REGION>'
endpoint = 's3-{}.amazonaws.com'.format(region)
auth = aws4auth.AWS4Auth(access_id, access_key, region, 's3')
ns = 'http://s3.amazonaws.com/doc/2006-03-01/'

def xml_pprint(xml_string):
 print(minidom.parseString(xml_string).toprettyxml())

def create_bucket(bucket):
 print('Bucket name: {}'.format(bucket))

if __name__ == '__main__':
 cmd, *args = sys.argv[1:]
 globals()[cmd](*args)

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You'll need to replace <ACCESS ID> and <ACCESS KEY> with the values from the
credentials CSV that we downloaded earlier, and <REGION> with the AWS region
of your choice.

So, what are we doing here? Well, first we set up our endpoint. An endpoint is a
general term for a URL which is used to access an API. Some web APIs have a single
endpoint, some have many endpoints, it depends on how the API is designed. The
endpoint we generate here is actually only a part of the full endpoint which we'll
use when we work with buckets. Our actual endpoint is the endpoint prefixed by a
bucket name.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.packtpub.com
http://www.PacktPub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

APIs in Action

[76]

Next, we create our auth object. We'll use this in conjunction with Requests to add
AWS authentication to our API requests.

The ns variable is a string, which we'll need for working with XML from the S3 API.
We'll discuss this when we use it.

We've included a modified version of our xml_pprint() function to help with
debugging. And, for now, the create_bucket() function is just a placeholder.
We'll learn more about this in the next section.

Finally, we have the command interpreter itself - it simply takes the first argument
given to the script on the command line and tries to run a function with the same
name, passing any remaining command-line arguments to the function. Let's give
this a test run. Enter the following in a command prompt:

$ python3.4 s3_client.py create_bucket mybucket

Bucket name: mybucket

You can see that the script pulls create_bucket from the command line arguments
and so calls the function create_bucket(), passing myBucket as an argument.

This framework makes adding functions to expand our client's capabilities
a straightforward process. Let's start by making create_bucket() do
something useful.

Creating a bucket with the API
Whenever we write a client for an API, our main point of reference is the API
documentation. The documentation tells us how to construct the HTTP requests
for performing operations. The S3 documentation can be found at http://docs.
aws.amazon.com/AmazonS3/latest/API/APIRest.html. The http://docs.aws.
amazon.com/AmazonS3/latest/API/RESTBucketPUT.html URL will provide the
details of bucket creation.

This documentation tells us that to create a bucket we need to make an HTTP request
to our new bucket's endpoint by using the HTTP PUT method. It also tells us that the
request body must contain some XML, which specifies the AWS region that we want
the bucket to be created in.

So, now we know what we're aiming for, let's discuss our function. First, let's create
the XML. Replace the content of create_bucket() with the following code block:

def create_bucket(bucket):
 XML = ET.Element('CreateBucketConfiguration')
 XML.attrib['xmlns'] = ns
 location = ET.SubElement(XML, 'LocationConstraint')

http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketPUT.html

Chapter 3

[77]

 location.text = auth.region
 data = ET.tostring(XML, encoding='utf-8')
 xml_pprint(data)

Here we create an XML tree following the format given in the S3 documentation.
If we run our client now, then we will see the XML shown here:

$ python3.4 s3_client.py create_bucket mybucket.example.com

<?xml version="1.0" ?>

<CreateBucketConfiguration xmlns="http://s3.amazonaws.com/doc/2006-
 03-01/">

 <LocationConstraint>eu-west-1</LocationConstraint>

</CreateBucketConfiguration>

This matches the format specified in the documentation. You can see that we've used
the ns variable to fill the xmlns attribute. This attribute pops up throughout the S3
XML, having the ns variable pre-defined makes it quicker to work with it.

Now, let's add the code to make the request. Replace the xml_pprint(data) at the
end of create_bucket() with the following:

 url = 'http://{}.{}'.format(bucket, endpoint)
 r = requests.put(url, data=data, auth=auth)
 if r.ok:
 print('Created bucket {} OK'.format(bucket))
 else:
 xml_pprint(r.text)

The first line shown here will generate the full URL from our bucket name and
endpoint. The second line will make the request to the S3 API. Notice that we
have used the requests.put() function to make this request using the HTTP PUT
method, rather than by using either the requests.get()method or the requests.
post() method. Also, note that we have supplied our auth object to the call. This
will allow Requests to handle all the S3 authentication for us!

If all goes well , then we print out a message. In case everything does not go as
expected, we print out the response body. S3 returns error messages as XML in the
response body. So we use our xml_pprint() function to display it. We'll look at
working with these errors in the Handling errors section, later on.

APIs in Action

[78]

Now run the client, and if everything works as expected, then we will get a
confirmation message. Make sure that you have picked a bucket that hasn't
already been created:

$ python3.4 s3_client.py create_bucket mybucket.example.com

Created bucket mybucket.example.com OK

When we refresh the S3 Console in our browser, we will see that our bucket has
been created.

Uploading a file
Now that we've created a bucket, we can upload some files. Writing a function for
uploading a file is similar to creating a bucket. We check the documentation to see
how to construct our HTTP request, figure out what information should be collected
at the command line, and then write the function.

We need to use an HTTP PUT again. We need the name of the bucket that we want to
store the file in and the name that we want the file to be stored under in S3. The body
of the request will contain the file data. At the command line, we'll collect the bucket
name, the name we want the file to have in the S3 service and the name of the local
file to upload.

Add the following function to your s3_client.py file after the create_bucket()
function:

def upload_file(bucket, s3_name, local_path):
 data = open(local_path, 'rb').read()
 url = 'http://{}.{}/{}'.format(bucket, endpoint, s3_name)
 r = requests.put(url, data=data, auth=auth)

 if r.ok:
 print('Uploaded {} OK'.format(local_path))
 else:
 xml_pprint(r.text)

In creating this function, we follow a pattern similar to that for creating a bucket:

1. Prepare the data that will go in the request body.
2. Construct our URL.
3. Make the request.
4. Check the outcome.

Chapter 3

[79]

Note that we open the local file in binary mode. The file could contain any type
of data, so we don't want text transforms applied. We could pull this data from
anywhere, such as a database or another web API. Here, we just use a local file
for simplicity.

The URL is the same endpoint that we constructed in create_bucket() with the
S3 object name appended to the URL path. Later, we can use this URL to retrieve
the object.

Now, run the command shown here to upload a file:

$ python3.4 s3_client.py mybucket.example.com test.jpg ~/test.jpg

Uploaded ~/test.jpg OK

You'll need to replace mybucket.example.com with your own bucket name. Once
the file gets uploaded, you will see it in the S3 Console.

I have used a JPEG image that was stored in my home directory as the source file.
You can use any file, just change the last argument to an appropriate path. However,
using a JPEG image will make the following sections easier for you to reproduce.

Retrieving an uploaded file through a web browser
By default, S3 applies restrictive permissions for buckets and objects. The account
that creates them has full read-write permissions, but access is completely denied
for anyone else. This means that the file that we've just uploaded can only be
downloaded if the download request includes authentication for our account. If we
try the resulting URL in a browser, then we'll get an access denied error. This isn't
very useful if we're trying to use S3 for sharing files with other people.

The solution for this is to use one of S3's mechanisms for changing the permissions.
Let's look at the simple task of making our uploaded file public. Change
upload_file() to the following:

def upload_file(bucket, s3_name, local_path, acl='private'):
 data = open(local_path, 'rb').read()
 url = 'http://{}.{}/{}'.format(bucket, endpoint, s3_name)
 headers = {'x-amz-acl': acl}
 r = requests.put(url, data=data, headers=headers, auth=auth)

 if r.ok:
 print('Uploaded {} OK'.format(local_path))
 else:
 xml_pprint(r.text)

APIs in Action

[80]

We have now included a header in our HTTP request, x-amz-acl, which specifies a
permission set to be applied to the object. We've also added a new argument to our
function signature so that we can specify the permission set on the command line.
We have used the so-called canned ACLs (canned Access Control Lists), which
have been provided by S3, and are documented at http://docs.aws.amazon.com/
AmazonS3/latest/dev/acl-overview.html#canned-acl.

The ACL that we're interested in is called public-read. This will allow anyone to
download the file without needing any kind of authentication. We can now re-run
our upload, but this time it will apply this ACL to it:

$ python3.4 s3_client.py mybucket.example.com test.jpg ~/test.jpg
 public-read

Uploaded test.jpg OK

Now, visiting the file's S3 URL in a browser will give us the option to download
the file.

Displaying an uploaded file in a web browser
If you have uploaded an image, then you may be wondering why the browser had
asked us to save it instead of just displaying it. The reason is that we haven't set the
file's Content-Type.

If you remember from the last chapter, the Content-Type header in an HTTP
response tells the client, which in this case is our browser, the type of file that is in
the body. By default, S3 applies the content type of binary/octet-stream. Because
of this Content-Type, the browser can't tell that it's downloading an image, so it just
presents it as a file that can be saved. We can fix this by supplying a Content-Type
header in the upload request. S3 will store the type that we specify, and it will use it
as the Content-Type in the subsequent download responses.

Add the code block shown here to the import at the beginning of s3_client.py:

import mimetypes

Then change upload_file() to this:

def upload_file(bucket, s3_name, local_path, acl='private'):
 data = open(local_path, 'rb').read()
 url = 'http://{}.{}/{}'.format(bucket, endpoint, s3_name)
 headers = {'x-amz-acl': acl}
 mimetype = mimetypes.guess_type(local_path)[0]
 if mimetype:
 headers['Content-Type'] = mimetype

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl

Chapter 3

[81]

 r = requests.put(url, data=data, headers=headers, auth=auth)

 if r.ok:
 print('Uploaded {} OK'.format(local_path))
 else:
 xml_pprint(r.text)

Here, we have used the mimetypes module to guess a suitable Content-Type
by looking at the file extension of local_path. If mimetypes can't determine a
Content-Type from local_path, then we don't include the Content-Type
header, and let S3 apply the default binary/octet-stream type.

Unfortunately, in S3 we won't be able to overwrite the metadata for an existing object
by using a simple PUT request. It's possible to do it by using a PUT copy request, but
that's beyond the scope of this chapter. For now, it's better to just delete the file from
S3 by using the AWS Console before uploading it again. We only need to do this
once. Now, our code will automatically add the Content-Type for any new file that
we upload.

Once you've deleted the file, re-run the client just as shown in the last section, that is,
upload the file with the new Content-Type and try to download the file in a browser
again. If all goes well, then the image will be displayed.

Downloading a file with the API
Downloading a file through the S3 API is similar to uploading it. We simply take the
bucket name, the S3 object name and the local filename again but issue a GET request
instead of a PUT request, and then write the data received to disk.

Add the following function to your program, underneath the upload_file() function:

def download_file(bucket, s3_name, local_path):
 url = 'http://{}.{}/{}'.format(bucket, endpoint, s3_name)
 r = requests.get(url, auth=auth)
 if r.ok:
 open(local_path, 'wb').write(r.content)
 print('Downloaded {} OK'.format(s3_name))
 else:
 xml_pprint(r.text)

Now, run the client and download a file, which you have uploaded previously,
by using the following command:

$ python3.4 s3_client.py download_file mybucket.example.com test.jpg
 ~/test_downloaded.jpg

Downloaded test.jpg OK

APIs in Action

[82]

Parsing XML and handling errors
If you ran into any errors while running the aforementioned code, then you'll notice
that a clear error message will not get displayed. S3 embeds error messages in the
XML returned in the response body, and until now we've just been dumping the raw
XML to the screen. We can improve on this and pull the text out of the XML. First,
let's generate an error message so that we can see what the XML looks like. In
s3_client.py, replace your access secret with an empty string, as shown here:

access_secret = ''

Now, try and perform the following operation on the service:

$ python3.4 s3_client.py create_bucket failbucket.example.com

<?xml version="1.0" ?>

<Error>

 <Code>SignatureDoesNotMatch</Code>

 <Message>The request signature we calculated does not match the
 signature you provided. Check your key and signing
 method.</Message>

 <AWSAccessKeyId>AKIAJY5II3SZNHZ25SUA</AWSAccessKeyId>

 <StringToSign>AWS4-HMAC-SHA256...</StringToSign>

 <SignatureProvided>e43e2130...</SignatureProvided>

 <StringToSignBytes>41 57 53 34...</StringToSignBytes>

 <CanonicalRequest>PUT...</CanonicalRequest>

 <CanonicalRequestBytes>50 55 54...</CanonicalRequestBytes>

 <RequestId>86F25A39912FC628</RequestId>

 <HostId>kYIZnLclzIW6CmsGA....</HostId>

</Error>

The preceding XML is the S3 error information. I've truncated several of the fields
so as to show it here. Your code block will be slightly longer than this. In this case,
it's telling us that it can't authenticate our request, and this is because we have set a
blank access secret.

Parsing XML
Printing all of the XML is too much for an error message. There's a lot of extraneous
information which isn't useful to us. It would be better if we could just pull out the
useful parts of the error message and display them.

Well, ElementTree gives us some powerful tools for extracting such information
from XML. We're going back to XML for a while to explore these tools a little.

Chapter 3

[83]

First we need to open an interactive Python shell, and then generate the
aforementioned error message again by using the following command:

>>> import requests

>>> import requests_aws4auth

>>> auth = requests_aws4auth.AWS4Auth('<ID>', '', 'eu-west-1', '')

>>> r = requests.get('http://s3.eu-west-1.amazonaws.com', auth=auth)

You'll need to replace <ID> with your AWS access ID. Print out r.text to make sure
that you get an error message, which is similar to the one that we generated earlier.

Now, we can explore our XML. Convert the XML text into an ElementTree tree.
A handy function for doing this is:

>>> import xml.etree.ElementTree as ET

>>> root = ET.fromstring(r.text)

We now have an ElementTree instance, with root as the root element.

Finding elements
The simplest way of navigating the tree is by using the elements as iterators.
Try doing the following:

>>> for element in root:

... print('Tag: ' + element.tag)

Tag: Code

Tag: Message

Tag: AWSAccessKeyId

Tag: StringToSign

Tag: SignatureProvided

...

Iterating over root returns each of its child elements, and then we print out the tag
of an element by using the tag attribute.

We can apply a filter to the tags that we iterate over by using the following command:

>>> for element in root.findall('Message'):

... print(element.tag + ': ' + element.text)

Message: The request signature we calculated does not match the
 signature you provided. Check your key and signing method.

APIs in Action

[84]

Here, we have used the findall() method of the root element. This method will
provide us with a list of all the direct children of the root element that match the
specified tag, which in this case is <Message>.

And this will solve our problem of just extracting the text of the error message.
Now, let's update our error handling.

Handling errors
We can go back and add this to our s3_client.py file, but let's include a little more
information in the output, and structure the code to allow re-use. Add the following
function to the file underneath the download_file() function:

def handle_error(response):
 output = 'Status code: {}\n'.format(response.status_code)
 root = ET.fromstring(response.text)
 code = root.find('Code').text
 output += 'Error code: {}\n'.format(code)
 message = root.find('Message').text
 output += 'Message: {}\n'.format(message)
 print(output)

You'll notice that we have used a new function here, namely, root.find().
This works in the same way as findall() except that it only returns the first
matching element, as opposed to a list of all matching elements.

Then, replace each instance of xml_pprint(r.text) in your file with
handle_error(r) and then run the client again with the incorrect access
secret. Now, you will see a more informative error message:

$ python3.4 s3_client.py create_bucket failbucket.example.com

Status code: 403

Error code: SignatureDoesNotMatch

Message: The request signature we calculated does not match the
 signature you provided. Check your key and signing method.

Further enhancements
That's as far as we're going to take our client. We've written a command line
program that can perform essential operations, such as creating buckets and
uploading and downloading objects on the Amazon S3 service. There are still
plenty of operations that can be implemented, and these can be found in the S3
documentation; operations such as listing buckets' contents, deleting objects, and
copying objects.

Chapter 3

[85]

We could improve a few other things, especially if we are going to make this into a
production application. The command-line parsing mechanism, although compact,
is not satisfactory from a security perspective, since anybody with access to the
command line can run any built-in python command. It would be better to have a
whitelist of functions and to implement a proper command line parser by using one
of the standard library modules like argparse.

Storing the access ID and the access secret in the source code is also a problem for
security. Several serious security incidents have happened because passwords were
stored in source code and then uploaded to cloud code repositories. It's much better
to load the keys from an external source, such as a file or a database at run time.

The Boto package
We've discussed working directly with the S3 REST API, and this has given us some
useful techniques that will allow us to program against similar APIs in the future.
In many cases, this will be the only way in which we can interact with a web API.

However, some APIs, including AWS, have ready-to-use packages which expose the
functionality of the service without having to deal with the complexities of the HTTP
API. These packages generally make the code cleaner and simpler, and they should
be preferred for doing production work if they're available.

The AWS package is called Boto. We will take a very quick look at the Boto package
to see how it can provide some of the functionalities that we wrote earlier.

The boto package is available in PyPi, so we can install it with pip:

$ pip install boto

Downloading/unpacking boto

...

Now, fire up a Python shell and let's try it out. We need to connect to the service first:

>>> import boto

>>> conn = boto.connect_s3('<ACCESS ID>', '<ACCESS SECRET>')

You'll need to replace <ACCESS ID> and <ACCESS SECRET> with your access ID and
access secret. Now, let's create a bucket:

>>> conn.create_bucket('mybucket.example.com')

APIs in Action

[86]

This creates the bucket in the default standard US region. We can supply a different
region, as shown here:

>>> from boto.s3.connection import Location

>>> conn.create_bucket('mybucket.example.com', location=Location.EU)

The region names we need to use for this function are different to the ones we used
when creating buckets earlier. To see a list of acceptable region names do this:

>>> [x for x in dir(Location) if x.isalnum()]

['APNortheast', 'APSoutheast', 'APSoutheast2', 'CNNorth1', 'DEFAULT',
 'EU', 'SAEast', 'USWest', 'USWest2']

Do the following to display a list of the buckets we own:

>>> buckets = conn.get_all_buckets()

>>> [b.name for b in buckets]

['mybucket.example.com', 'mybucket2.example.com']

We can also list the contents of a bucket. To do so, first, we need to get a reference
to it:

>>> bucket = conn.get_bucket('mybucket.example.com')

And then to list the contents:

>>> [k.name for k in bucket.list()]

['cheesehop.txt', 'parrot.txt']

Uploading a file is a straightforward process. First, we need to get a reference to the
bucket that we want to put it in, and then we need to create a Key object, which will
represent our object in the bucket:

>>> bucket = conn.get_bucket('mybucket.example.com')

>>> from boto.s3.key import Key

>>> key = Key(bucket)

Next, we have to set the Key name and then upload our file data:

>>> key.key = 'lumberjack_song.txt'

>>> key.set_contents_from_filename('~/lumberjack_song.txt')

The boto package will automatically set the Content-Type when it uploads a
file like this, and it uses the same mimetypes module that we used earlier for
determining a type.

Chapter 3

[87]

Downloading also follows a similar pattern. Try the following commands:

>>> bucket = conn.get_bucket('mybucket.example.com')

>>> key = bucket.get_key('parrot.txt')

>>> key.get_contents_to_filename('~/parrot.txt')

This downloads the parrot.txt S3 object in the mybucket.example.com bucket and
then stores it in the ~/parrot.txt local file.

Once we have a reference to the key, just use the following to set the ACL:

>>> key.set_acl('public-read')

I'll leave you to further explore the boto package's functionality with the help of
the tutorial, which can be found at https://boto.readthedocs.org/en/latest/
s3_tut.html.

It should be evident that for everyday S3 work in Python, boto should be your go
to package.

Wrapping up with S3
So, we've discussed some of the uses of the Amazon S3 API, and learned some things
about working with XML in Python. These skills should give you a good start in
working with any XML based REST API, whether or not it has a pre-built library
like boto.

However, XML isn't the only data format that is used by web APIs, and the S3 way
of working with HTTP isn't the only model used by web APIs. So, we're going to
move on and take a look at the other major data format in use today, JSON and
another API: Twitter.

JSON
JavaScript Object Notation (JSON) is a standard way of representing simple objects,
such as lists and dicts, in the form of text strings. Although, it was originally
developed for JavaScript, JSON is language independent and most languages can
work with it. It's lightweight, yet flexible enough to handle a broad range of data.
This makes it ideal for exchanging data over HTTP, and a large number of web APIs
use this as their primary data format.

https://boto.readthedocs.org/en/latest/s3_tut.html
https://boto.readthedocs.org/en/latest/s3_tut.html

APIs in Action

[88]

Encoding and decoding
We use the json module for working with JSON in Python. Let's create a JSON
representation of a Python list by using the following commands:

>>> import json

>>> l = ['a', 'b', 'c']

>>> json.dumps(l)

'["a", "b", "c"]'

We use the json.dumps() function for converting an object to a JSON string.
In this case, we can see that the JSON string appears to be identical to Python's
own representation of a list, but note that this is a string. Confirm this by doing
the following:

>>> s = json.dumps(['a', 'b', 'c'])

>>> type(s)

<class 'str'>

>>> s[0]

'['

Converting JSON to a Python object is also straightforward, as shown here:

>>> s = '["a", "b", "c"]'

>>> l = json.loads(s)

>>> l

['a', 'b', 'c']

>>> l[0]

'a'

We use the json.loads() function, and just pass it a JSON string. As we'll see, this
is very powerful when interacting with web APIs. Typically, we will receive a JSON
string as the body of an HTTP response, which can simply be decoded using
json.loads() to provide immediately usable Python objects.

Using dicts with JSON
JSON natively supports a mapping-type object, which is equivalent to a Python dict.
This means that we can work directly with dicts through JSON.

>>> json.dumps({'A':'Arthur', 'B':'Brian', 'C':'Colonel'})

'{"A": "Arthur", "C": "Colonel", "B": "Brian"}'

Chapter 3

[89]

Also, it is useful to know how JSON handles nested objects.

>>> d = {

... 'Chapman': ['King Arthur', 'Brian'],

... 'Cleese': ['Sir Lancelot', 'The Black Knight'],

... 'Idle': ['Sir Robin', 'Loretta'],

... }

>>> json.dumps(d)

'{"Chapman": ["King Arthur", "Brian"], "Idle": ["Sir
 Robin", "Loretta"], "Cleese": ["Sir Lancelot", "The Black
 Knight"]}'

There is just one gotcha though: JSON dictionary keys can only be in the form
of strings.

>>> json.dumps({1:10, 2:20, 3:30})

'{"1": 10, "2": 20, "3": 30}'

Notice, how the keys in the JSON dictionary become string representations of
integers? To decode a JSON dictionary that uses numeric keys, we need to manually
type-convert them if we want to work with them as numbers. Do the following to
accomplish this:

>>> j = json.dumps({1:10, 2:20, 3:30})

>>> d_raw = json.loads(j)

>>> d_raw

{'1': 10, '2': 20, '3': 30}

>>> {int(key):val for key,val in d_raw.items()}

{1: 10, 2: 20, 3: 30}

We just use a dictionary comprehension to apply int() to the dictionary's keys.

Other object types
JSON cleanly handles only Python lists and dicts, for other object types json may
attempt to cast the object type as one or the other, or fail completely. Try a tuple,
as shown here:

>>> json.dumps(('a', 'b', 'c'))

'["a", "b", "c"]'

APIs in Action

[90]

JSON doesn't have a tuple data type, so the json module will cast it to a list.
If we convert it back:

>>> j = json.dumps(('a', 'b', 'c'))

>>> json.loads(j)

['a', 'b', 'c']

It will still remain a list. The json module doesn't support sets, so they also need
to be recast as lists. Try the following commands:

>>> s = set(['a', 'b', 'c'])

>>> json.dumps(s)

...

TypeError: {'a', 'c', 'b'} is not JSON serializable

>>> json.dumps(list(s))

'["a", "b", "c"]'

This will cause problems similar to the ones caused by tuples. If we convert the JSON
back to a Python object, then it will be a list and not a set.

We almost never encounter web APIs that need these kinds of specialist Python
objects, and if we do, then the API should provide some kind of convention for
handling it. But we do need to keep track of any conversions that we would need to
apply to the outgoing or the incoming objects, if we were storing the data locally in
any format other than that of lists or dicts.

Now that we have an understanding of JSON, let's see how it works in a web API.

The Twitter API
The Twitter API provides access to all the functions that we may want a Twitter
client to perform. With the Twitter API, we can create clients that search for recent
tweets, find out what's trending, look up user details, follow users' timelines, and
even act on the behalf of users by posting tweets and direct messages for them.

We'll be looking at Twitter API version 1.1, the version current at time of writing
this chapter.

Twitter maintains comprehensive documentation for its API,
which can be found at https://dev.twitter.com/overview/
documentation.

https://dev.twitter.com/overview/documentation
https://dev.twitter.com/overview/documentation

Chapter 3

[91]

A Twitter world clock
To illustrate some of the functionalities of the Twitter API, we're going to write
the code for a simple Twitter world clock. Our application will periodically poll its
Twitter account for mentions which contain a recognizable city name, and if it finds
one, then it will reply to the Tweet with the current local time of that city. In Twitter
speak, a mention is any Tweet which includes our account name prefixed by an @, for
example, @myaccount.

Authentication for Twitter
Similar to S3, we need to determine how authentication will be managed before we
get started. We need to register, and then we need to find out how Twitter expects us
to authenticate our requests.

Registering your application for the Twitter API
We need to create a Twitter account, register our application against the account,
and then we will receive the authentication credentials for our app. It's also a good
idea to set up a second account, which we can use for sending test tweets to the
application account. This provides for a cleaner way of checking whether the app is
working properly, rather than having the app account send tweets to itself. There's
no limit on the number of Twitter accounts that you can create.

To create an account, go to http://www.twitter.com and complete the signup
process. Do the following for registering your application once you have a
Twitter account:

1. Log into http://apps.twitter.com with your main Twitter account, and
then create a new app.

2. Fill out the new app form, note that Twitter application names need to be
unique globally.

3. Go to the app's settings and then change the app permissions to have read
and write access. You may need to register your mobile number for enabling
this. Even if you're unhappy about supplying this, we can create the full app;
however the final function that sends a tweet in reply won't be active.

Now we need to get our access credentials, as shown here:

1. Go to the Keys and Access Tokens section and then note the Consumer Key
and the Access Secret.

2. Generate an Access Token.
3. Note down the Access Token and the Access Secret.

http://www.twitter.com
http://apps.twitter.com

APIs in Action

[92]

Authenticating requests
We now have enough information for authenticating requests. Twitter uses an
authentication standard called oAuth, version 1.0a. It's described in detail at
http://oauth.net/core/1.0a/.

The oAuth authentication standard is a little tricky, but fortunately the Requests
module has a companion library called requests-oauthlib, which can handle most
of the complexity for us. This is available on PyPi, so we can download and install it
with pip.

$ pip install requests-oauthlib
Downloading/unpacking requests-oauthlib
...

Now, we can add authentication to our requests, and then write our application.

A Twitter client
Save the code mentioned here to a file, and save it as twitter_worldclock.py.
You'll need to replace <CONSUMER_KEY>, <CONSUMER_SECRET>, <ACCESS_TOKEN>,
and <ACCESS_SECRET> with the values that you have taken down from the
aforementioned Twitter app configuration:

import requests, requests_oauthlib, sys

consumer_key = '<CONSUMER_KEY>'
consumer_secret = '<CONSUMER_SECRET>'
access_token = '<ACCESS_TOKEN>'
access_secret = '<ACCESS_KEY>'

def init_auth():
 auth_obj = requests_oauthlib.OAuth1(
 consumer_key, consumer_secret,
 access_token, access_secret)

 if verify_credentials(auth_obj):
 print('Validated credentials OK')
 return auth_obj
 else:
 print('Credentials validation failed')
 sys.exit(1)

def verify_credentials(auth_obj):
 url = 'https://api.twitter.com/1.1/' \
 'account/verify_credentials.json'
 response = requests.get(url, auth=auth_obj)
 return response.status_code == 200

http://oauth.net/core/1.0a/

Chapter 3

[93]

if __name__ == '__main__':
 auth_obj = init_auth()

Remember that consumer_secret and access_secret act as the password to your
Twitter account, so in a production app they should be loaded from a secure external
location instead of being hard-coded into the source code.

In the aforementioned code, we create the OAuth1 authentication instance,
auth_obj, in the init_auth() function by using our access credentials. We
pass this to Requests whenever we need to make an HTTP request, and through
it Requests handles the authentication. You can see an example of this in the
verify_credentials() function.

In the verify_credentials() function, we test whether Twitter recognizes our
credentials. The URL that we're using here is an endpoint that Twitter provides
purely for testing whether our credentials are valid. It returns an HTTP 200 status
code if they are valid or a 401 status code if not.

Now, let's run twitter_worldclock.py and if we've registered our application
and filled out the tokens and secrets properly, then we should see Validated
credentials OK. Now that the authentication is working, the basic flow of our
program will be, as shown in the following diagram:

APIs in Action

[94]

Our program will be running as a daemon, polling Twitter periodically to see
whether there are any new tweets for us to process and reply to. When we poll the
mentions timeline, we will download any new tweets that were received in a single
batch since our last poll, so that we can process all of them without having to
poll again.

Polling for Tweets
Let's add a function for checking and retrieving new tweets from our mentions
timeline. We'll get this to work before we add the loop. Add the new function
underneath verify_credentials(), and then add a call this function to the main
section, as shown here; also, add json to the list of the imports at the beginning of
the file:

def get_mentions(since_id, auth_obj):
 params = {'count': 200, 'since_id': since_id,
 'include_rts': 0, 'include_entities': 'false'}
 url = 'https://api.twitter.com/1.1/' \
 'statuses/mentions_timeline.json'
 response = requests.get(url, params=params, auth=auth_obj)
 response.raise_for_status()
 return json.loads(response.text)

if __name__ == '__main__':
 auth_obj = init_auth()
 since_id = 1
 for tweet in get_mentions(since_id, auth_obj):
 print(tweet['text'])

Using get_mentions(), we check for and download any tweets that mention our
app account by connecting to the statuses/mentions_timeline.json endpoint.
We supply a number of parameters, which Requests passes on as a query string.
These parameters are specified by Twitter and they control how the tweets will be
returned to us. They are as follows:

• 'count': This specifies the maximum number of tweets that will be returned.
Twitter will allow 200 tweets to be received by a single request made to this
endpoint.

• 'include_entities': This is used for trimming down some extraneous
information from the tweets retrieved.

• 'include_rts': This tells Twitter not to include any retweets. We don't want
the user to receive another time update if someone retweets our reply.

Chapter 3

[95]

• 'since_id': This tells Twitter to only return the tweets with IDs above this
value. Every tweet has a unique 64-bit integer ID, and later tweets have
higher value IDs than earlier tweets. By remembering the ID of the last tweet
we process and then passing it as this parameter, Twitter will filter out the
tweets that we've already seen.

Before running the aforementioned, we want to generate some mentions for our
account so that we have something to download. Log into your Twitter test account
and then create a couple of tweets that contain @username, where you replace
username with your app account's username. After this, when you go into the
Mentions section of the Notifications tab of your app account, you will see
these tweets.

Now, if we run the aforementioned code, then we will get the text of our mentions
printed to screen.

Processing the Tweets
The next step is to parse our mentions and then generate the times that we want
to include in our replies. Parsing is a straightforward process. In this, we just
check the 'text' value of the tweets, but it takes a little more work to generate the
times. In fact, for this, we'll need a database of cities and their time zones. This is
available in the pytz package, which can be found at PyPi. For doing this, install
the following package:

$ pip install pytz

Downloading/unpacking pytz

...

And then, we can write our tweet processing function. Add this function underneath
get_mentions(), and then add datetime and pytz to the list of the imports at the
beginning of the file:

def process_tweet(tweet):
 username = tweet['user']['screen_name']
 text = tweet['text']
 words = [x for x in text.split() if
 x[0] not in ['@', '#']]
 place = ' '.join(words)
 check = place.replace(' ', '_').lower()
 found = False
 for tz in pytz.common_timezones:
 tz_low = tz.lower()
 if check in tz_low.split('/'):

APIs in Action

[96]

 found = True
 break
 if found:
 timezone = pytz.timezone(tz)
 time = datetime.datetime.now(timezone).strftime('%H:%M')
 reply = '@{} The time in {} is currently
 {}'.format(username, place, time)
 else:
 reply = "@{} Sorry, I didn't recognize " \
 "'{}' as a city".format(username, place)
 print(reply)

if __name__ == '__main__':
 auth_obj = init_auth()
 since_id = 1
 for tweet in get_mentions(since_id, auth_obj):
 process_tweet(tweet)

The bulk of process_tweet() is used for formatting the tweet's text and processing
the time zone data. First we will remove any @username mentions and #hashtags
from the tweet. Then, we prepare the remaining tweet text to be compared with the
time zone names database. The time zone names database is held in pytz.common_
timezones, but the names also contain regions, which are separated from the names
with slashes (/). Also, in these names underscores are used in place of spaces.

We scan through the database checking against the formatted tweet text. If a match is
found, then we construct a reply, which contains the local time of the matched time
zone. For this, we use the datetime module along with a time zone object generated
by pytz. If we don't find a match in the time zone database, then we compose a
reply to let the user know the same. Then, we print our reply to screen to check if it's
working as expected.

Again, before running this, we may want to create a few tweets that contain just
a city name and mention our world clock app account, so that the function has
something to process. Some cities that appear in the time zone database are
Dublin, New York, and Tokyo.

Give it a try! When you run it, you will get some tweet reply texts on the screen,
which contain the cities and the current local times for those cities.

Rate limits
If we run the aforementioned several times, then we'll find that it will stop working
after a while. Either the credentials will temporarily fail to validate, or the HTTP
request in get_mentions() will fail.

Chapter 3

[97]

This is because Twitter applies rate limits to its API, which means that our
application is only allowed to make a certain number of requests to an endpoint in
a given amount of time. The limits are listed in the Twitter documentation and they
vary according to the authentication route (as discussed later) and endpoint. We are
using statuses/mentions_timeline.json, so our limit is 15 requests for every 15
minutes. If we exceed this, then Twitter will respond with a 429 Too many requests
status code. This will force us to wait till the next 15 minute window starts before it
lets us get any useful data back.

Rate limits are a common feature of web APIs, so it's useful to have ways of testing
efficiently when using them. One approach to testing with data from rate-limited
APIs is to download some data once and then store it locally. After this, load it from
the file instead of pulling it from the API. Download some test data by using the
Python interpreter, as shown here:

>>> from twitter_worldclock import *

>>> auth_obj = init_auth()

Credentials validated OK

>>> mentions = get_mentions(1, auth_obj)

>>> json.dump(mentions, open('test_mentions.json', 'w'))

You'll need to be in the same folder as twitter_worldclock.py when you run
this. This creates a file called test_mentions.json, which contains our JSONized
mentions. Here, the json.dump() function writes the supplied data into a file rather
than returning it as a string.

Instead of calling the API, we can use this data by modifying our program's main
section to look like the following:

if __name__ == '__main__':
 mentions = json.load(open('test_mentions.json'))
 for tweet in mentions:
 process_tweet(tweet)

Sending a reply
The final function that we need to perform is sending a tweet in response to a
mention. For this, we use the statuses/update.json endpoint. If you've not
registered your mobile number with your app account, then this won't work. So, just
leave your program as it is. If you have registered your mobile number, then add this
function under process_tweets():

def post_reply(reply_to_id, text, auth_obj):
 params = {

APIs in Action

[98]

 'status': text,
 'in_reply_to_status_id': reply_to_id}
 url = 'https://api.twitter.com/1.1./statuses/update.json'
 response = requests.post(url, params=params, auth=auth_obj)
 response.raise_for_status()

And add this below the print() call at the end of process_tweet(), at the same
indentation level:

post_reply(tweet['id'], reply, auth_obj)

Now, if you run this and then check your test account's Twitter notifications,
you will see some replies.

The post_reply() function just calls the endpoint by using the following
parameters to inform Twitter on what to post:

• status: This is the text of our reply tweet.
• in_reply_to_status_id: This is the ID of the tweet that we're replying to.

We supply this so that Twitter can link the tweets as a conversation.

When testing this, we might get some 403 status code responses. This is okay, it's just
that Twitter refuses to let us post two tweets with identical text in a row, which we
may find happens with this set up, depending on what test tweets we send.

Final touches
The building blocks are in place, and we can add our main loop to make the program
a daemon. Add the time module to the imports at the top, and then change the main
section to what is shown here:

if __name__ == '__main__':
 auth_obj = init_auth()
 since_id = 1
 error_count = 0
 while error_count < 15:
 try:
 for tweet in get_mentions(since_id, auth_obj):
 process_tweet(tweet)
 since_id = max(since_id, tweet['id'])
 error_count = 0
 except requests.exceptions.HTTPError as e:
 print('Error: {}'.format(str(e)))
 error_count += 1
 time.sleep(60)

Chapter 3

[99]

This will call get_mentions() every 60 seconds and then process any new tweets
that have been downloaded. If we hit any HTTP errors, then it will retry the process
15 times before exiting the program.

Now if we run our program, then it will run continuously, replying to tweets that
mention the world clock app account. Give it a try, run the program, and then send
some tweets from your test account. After a minute, you will see some replies to
your notifications.

Taking it further
Now that we've written a basic functional Twitter API client, there are certainly some
things that we could improve upon. Although we don't have space in this chapter to
explore enhancements in detail, it's worth mentioning a few to inform future projects
you may want to undertake.

Polling and the Twitter streaming APIs
You may have already spotted a problem that our client will only pull a maximum
of 200 tweets per poll. In each poll, Twitter provides the most recent tweets first. This
means that if we get more than 200 tweets in 60 seconds, then we will permanently
lose the tweets that come in first. In fact, there is no complete solution for this using
the statuses/mentions_timeline.json endpoint.

Twitter's solution for this problem is to provide an alternative type of API, which
is called a streaming API. When connecting to these APIs, the HTTP response
connection is actually left open and the incoming tweets are continuously streamed
through it. The Requests package provides neat functionality for handling this.
The Requests response objects have an iter_lines() method, which runs
indefinitely. It is capable of outputting a line of data whenever the server sends one,
which can then be processed by us. If you do find that you need this, then there's
an example that will help you in getting started in the Requests documentation,
and it can be found at http://docs.python-requests.org/en/latest/user/
advanced/#streaming-requests.

Alternative oAuth flows
Our setup for having our app operate against our main account and having a second
account for sending the test tweets is a little clunky, especially so if you use your
app account for regular tweeting. Wouldn't it be better to have a separate account
dedicated to handling the world clock tweets?

http://docs.python-requests.org/en/latest/user/advanced/#streaming-requests
http://docs.python-requests.org/en/latest/user/advanced/#streaming-requests

APIs in Action

[100]

Well, yes it would. The ideal set up is to have a main account on which you register
the app, and which you can also use it as a regular Twitter account, and have the app
process tweets for a second dedicated world clock account.

oAuth makes this possible, but there are some extra steps that are needed to get it
to work. We would need the world clock account to authorize our app to act on its
behalf. You'll notice that the oAuth credentials mentioned earlier are comprised
of two main elements, consumer and access. The consumer element identifies our
application, and the access element proves that the account the access credentials
came from authorized our app to act on its behalf. In our app we shortcut the full
account authorization process by having the app act on behalf of the account through
which it was registered, that is, our app account. When we do this, Twitter lets us
acquire the access credentials directly from the dev.twitter.com interface. To use a
different user account, we would have needed to have inserted a step where the user
is taken to Twitter, which would be opened in a web browser, where the user would
have to log in and then explicitly authorize our application.

This process is demonstrated in the requests-oauthlib
documentation, which can be found at https://requests-oauthlib.
readthedocs.org/en/latest/oauth1_workflow.html.

HTML and screen scraping
Although more and more services are offering their data through APIs, when a
service doesn't do this then the only way of getting the data programmatically is to
download its web pages and then parse the HTML source code. This technique is
called screen scraping.

Though it sounds simple enough in principle, screen scraping should be approached
as a last resort. Unlike XML, where the syntax is strictly enforced and data structures
are usually reasonably stable and sometimes even documented, the world of web
page source code is a messy one. It is a fluid place, where the code can change
unexpectedly and in a way that can completely break your script and force you to
rework the parsing logic from scratch.

Still, it is sometimes the only way to get essential data, so we're going to take a brief
look at developing an approach toward scraping. We will discuss ways to reduce the
impact when the HTML code does change.

dev.twitter.com
https://requests-oauthlib.readthedocs.org/en/latest/oauth1_workflow.html
https://requests-oauthlib.readthedocs.org/en/latest/oauth1_workflow.html

Chapter 3

[101]

You should always check a site's terms and conditions before scraping. Some
websites explicitly disallow automated parsing and retrieval. Breaching the terms
may result in your IP address being barred. However, in most cases, as long as you
don't republish the data and don't make excessively frequent requests, you should
be okay.

HTML parsers
We'll be parsing HTML just as we parsed XML. We again have a choice between
pull-style APIs and object-oriented APIs. We are going to use ElementTree for
the same reasons as mentioned before.

There are several HTML parsing libraries that are available. They're differentiated
by their speed, the interfaces that they offer for navigating within HTML documents,
and their ability at handling badly constructed HTML. The Python standard library
doesn't include an object-oriented HTML parser. The universally recommended
third-party package for this is lxml, which is primarily an XML parser. However,
it does include a very good HTML parser. It's quick, it offers several ways of
navigating documents, and it is tolerant of broken HTML.

The lxml library can be installed on Debian and Ubuntu through the python-lxml
package. If you need an up-to-date version or if you're not able to install the system
packages, then lxml can be installed through pip. Note that you'll need a build
environment for this. Debian usually comes with an environment that has already
been set up but if it's missing, then the following will install one for both Debian
and Ubuntu:

$ sudo apt-get install build-essential

Then you should be able to install lxml, like this:

$ sudo STATIC_DEPS=true pip install lxml

If you hit compilation problems on a 64-bit system, then you can also try:

$ CFLAGS="$CFLAGS -fPIC" STATIC_DEPS=true pip install lxml

On Windows, installer packages are available from the lxml website at
http://lxml.de/installation.html. Check the page for links to third-party
installers in case an installer for your version of Python isn't available.

The next best library, in case lxml doesn't work for you, is BeautifulSoup.
BeautifulSoup is pure Python, so it can be installed with pip, and it should run
anywhere. Although it has its own API, it's a well-respected and capable library,
and it can, in fact, use lxml as a backend library.

http://lxml.de/installation.html

APIs in Action

[102]

Show me the data
Before we start parsing HTML, we need something to parse! Let's grab the
version and codename of the latest stable Debian release from the Debian website.
Information about the current stable release can be found at https://www.debian.
org/releases/stable/.

The information that we want is displayed in the page title and in the first sentence:

So, we should extract the "jessie" codename and the 8.0 version number.

Parsing HTML with lxml
Let's open a Python shell and get to parsing. First, we'll download the page with
Requests.

>>> import requests

>>> response = requests.get('https://www.debian.org/releases/stable')

Next, we parse the source into an ElementTree tree. This is the same as it is for
parsing XML with the standard library's ElementTree, except here we will use the
lxml specialist HTMLParser.

>>> from lxml.etree import HTML

>>> root = HTML(response.content)

The HTML() function is a shortcut that reads the HTML that is passed to it, and
then it produces an XML tree. Notice that we're passing response.content and
not response.text. The lxml library produces better results when it uses the raw
response rather than the decoded Unicode text.

https://www.debian.org/releases/stable/
https://www.debian.org/releases/stable/

Chapter 3

[103]

The lxml library's ElementTree implementation has been designed to be 100 percent
compatible with the standard library's, so we can start exploring the document in the
same way as we did with XML:

>>> [e.tag for e in root]

['head', 'body']

>>> root.find('head').find('title').text

'Debian –- Debian \u201cjessie\u201d Release Information'

In the preceding code, we have printed out the text content of the document's
<title> element, which is the text that appears in the tab in the preceding
screenshot. We can already see it contains the codename that we want.

Zeroing in
Screen scraping is the art of finding a way to unambiguously address the elements
in the HTML that contain the information that we want, and extract the information
from only those elements.

However, we also want the selection criteria to be as simple as possible. The less we
rely on the contents of the document, the lesser the chance of it being broken if the
page's HTML changes.

Let's inspect the HTML source of the page, and see what we're dealing with. For this,
either use View Source in a web browser, or save the HTML to a file and open it in
a text editor. The page's source code is also included in the source code download
for this book. Search for the text Debian 8.0, so that we are taken straight to the
information we want. For me, it looks like the following block of code:

<body>
...
<div id="content">
<h1>Debian “jessie” Release Information</h1>
<p>Debian 8.0 was
released October 18th, 2014.
The release included many major
changes, described in
...

I've skipped the HTML between the <body> and the <div> to show that the <div>
is a direct child of the <body> element. From the above, we can see that we want the
contents of the <p> tag child of the <div> element.

APIs in Action

[104]

If we navigated to this element by using the ElementTree functions, which we have
used before, then we'd end up with something like the following:

>>> root.find('body').findall('div')[1].find('p').text

Debian 8.0 was.

...

But this isn't the best approach, as it depends quite heavily on the HTML structure.
A change, such as a <div> tag being inserted before the one that we needed, would
break it. Also, in more complex documents, this can lead to horrendous chains of
method calls, which are hard to maintain. Our use of the <title> tag in the previous
section to get the codename is an example of a good technique, because there is
always only one <head> and one <title> tag in a document. A better approach to
finding our <div> would be to make use of the id="content" attribute it contains.
It's a common web page design pattern to break a page into a few top-level <divs>
for the major page sections like the header, the footer and the content, and to give the
<divs> id attributes which identify them as such.

Hence, if we could search for <div>s with an id attribute of "content", then
we'd have a clean way of selecting the right <div>. There is only one <div> in the
document that is a match, and it's unlikely that another<div> like that will be added
to the document. This approach doesn't depend on the document structure, and so
it won't be affected by any changes that are made to the structure. We'll still need
to rely on the fact that the <p> tag in the <div> is the first <p> tag that appears, but
given that there is no other way to identify it, this is the best we can do.

So, how do we run such a search for our content <div>?

Searching with XPath
In order to avoid exhaustive iteration and the checking of every element, we need
to use XPath, which is more powerful than what we've used so far. It is a query
language that was developed specifically for XML, and it's supported by lxml. Plus,
the standard library implementation provides limited support for it.

We're going to take a quick look at XPath, and in the process we will find the answer
to the question posed earlier.

To get started, use the Python shell from the last section, and do the following:

>>> root.xpath('body')

[<Element body at 0x39e0908>]

Chapter 3

[105]

This is the simplest form of XPath expression: it searches for children of the current
element that have tag names that match the specified tag name. The current element
is the one we call xpath() on, in this case root. The root element is the top-level
<html> element in the HTML document, and so the returned element is the
<body> element.

XPath expressions can contain multiple levels of elements. The searches start
from the node the xpath() call is made on and work down the tree as they match
successive elements in the expression. We can use this to find just the <div> child
elements of <body>:

>>> root.xpath('body/div')

[<Element div at 0x39e06c8>, <Element div at 0x39e05c8>, <Element div
 at 0x39e0608>]

The body/div expression means match <div> children of <body> children of the
current element. Elements with the same tag can appear more than once at the same
level in an XML document, so an XPath expression can match multiple elements,
hence the xpath() function always returns a list.

The preceding queries are relative to the element that we call xpath() on, but we
can force a search from the root of the tree by adding a slash to the start of the
expression. We can also perform a search over all the descendants of an element,
with the help of a double-slash. To do this, try the following:

>>> root.xpath('//h1')

[<Element h1 at 0x2ac3b08>]

Here, we've directly found our <h1> element by only specifying a single tag, even
though it's several levels below root. This double-slash at the beginning of the
expression will always search from the root, but we can prefix this with a dot if we
want it to start searching from the context element.

>>> root.find('head').xpath('.//h1')

[]

This will not find anything because there are no <h1> descendents of <head>.

XPath conditions
So, we can be quite specific by supplying paths, but the real power of XPath lies
in applying additional conditions to the elements in the path. In particular, our
aforementioned problem, which is, testing element attributes.

>>> root.xpath('//div[@id="content"]')

[<Element div at 0x39e05c8>]

APIs in Action

[106]

The square brackets after div, [@id="content"], form a condition that we place on
the <div> elements that we're matching. The @ sign before id means that id refers
to an attribute, so the condition means: only elements with an id attribute equal to
"content". This is how we can find our content <div>.

Before we employ this to extract our information, let's just touch on a couple of
useful things that we can do with conditions. We can specify just a tag name,
as shown here:

>>> root.xpath('//div[h1]')

[<Element div at 0x39e05c8>]

This returns all <div> elements which have an <h1> child element. Also try:

>>> root.xpath('body/div[2]'):

[<Element div at 0x39e05c8>]

Putting a number as a condition will return the element at that position in the
matched list. In this case this is the second <div> child element of <body>.
Note that these indexes start at 1, unlike Python indexing which starts at 0.

There's a lot more that XPath can do, the full specification is a World Wide
Web Consortium (W3C) standard. The latest version can be found at
http://www.w3.org/TR/xpath-3/.

Pulling it together
Now that we've added XPath to our superpowers, let's finish up by writing a script
to get our Debian version information. Create a new file, get_debian_version.py,
and save the following to it:

import re
import requests
from lxml.etree import HTML

response = requests.get('http://www.debian.org/releases/stable/')
root = HTML(response.content)
title_text = root.find('head').find('title').text
release = re.search('\u201c(.*)\u201d', title_text).group(1)
p_text = root.xpath('//div[@id="content"]/p[1]')[0].text
version = p_text.split()[1]

print('Codename: {}\nVersion: {}'.format(release, version))

http://www.w3.org/TR/xpath-3/

Chapter 3

[107]

Here, we have downloaded and parsed the web page by pulling out the text that we
want with the help of XPath. We have used a regular expression to pull out jessie,
and a split to extract the version 8.0. Finally we print it out.

So, run it like it is shown here:

$ python3.4 get_debian_version.py

Codename: jessie

Version: 8.0

Magnificent. Well, darned nifty, at least. There are some third-party packages
available which can speed up scraping and form submission, two popular ones are
Mechanize and Scrapy. Check them out at http://wwwsearch.sourceforge.net/
mechanize/, and http://scrapy.org.

With great power...
As an HTTP client developer, you may have different priorities to the webmasters
that run websites. A webmaster will typically provide a site for human users;
possibly offering a service designed for generating revenue, and it is most likely
that all this will need to be done with the help of very limited resources. They will
be interested in analyzing how humans use their site, and may have areas of the site
they would prefer that automated clients didn't explore.

HTTP clients that automatically parse and download pages on websites are called
various things, such as bots, web crawlers, and spiders. Bots have many legitimate
uses. All the search engine providers make extensive use of bots for crawling the
web and building their huge page indexes. Bots can be used to check for dead links,
and to archive sites for repositories, such as the Wayback Machine. But, there are
also many uses that might be considered as illegitimate. Automatically traversing
an information service to extract the data on its pages and then repackaging that
data for presentation elsewhere without permission of the site owners, downloading
large batches of media files in one go when the spirit of the service is online viewing
and so on could be considered as illegitimate. Some sites have terms of service
which explicitly bar automated downloads. Although some actions such as copying
and republishing copyrighted material are clearly illegitimate, some other actions
are subject to interpretation. This gray area is a subject of ongoing debate, and it is
unlikely that it will ever be resolved to everyone's satisfaction.

However, even when they do serve a legitimate purpose, in general, bots do make
webmasters lives somewhat more difficult. They pollute the webserver logs, which
webmasters use for calculating statistics on how their site is being used by their
human audience. Bots also consume bandwidth and other server resources.

http://wwwsearch.sourceforge.net/mechanize/
http://wwwsearch.sourceforge.net/mechanize/
http://scrapy.org

APIs in Action

[108]

Using the methods that we are looking at in this chapter, it is quite straightforward
to write a bot that performs many of the aforementioned functions. Webmasters
provide us with services that we will be using, so in return, we should respect the
aforementioned areas and design our bots in such a way that they impact them as
little as possible.

Choosing a User Agent
There are a few things that we can do to help our webmasters out. We should always
pick an appropriate user agent for our client. The principle way in which webmasters
filter out bot traffic from their logfiles is by performing user agent analysis.

There are lists of the user agents of known bots, for example, one such list can be
found at http://www.useragentstring.com/pages/Crawlerlist/.

Webmasters can use these in their filters. Many webmasters also simply filter out
any user agents that contain the words bot, spider, or crawler. So, if we are writing an
automated bot rather than a browser, then it will make the webmasters' lives a little
easier if we use a user agent that contains one of these words. Many bots used by the
search engine providers follow this convention, some examples are listed here:

• Mozilla/5.0 compatible; bingbot/2.0; http://www.bing.com/
bingbot.htm

• Baiduspider: http://www.baidu.com/search/spider.htm

• Mozilla/5.0 compatible; Googlebot/2.1; http://www.google.com/
bot.html

There are also some guidelines in section 5.5.3 of the HTTP RFC 7231.

The Robots.txt file
There is an unofficial but standard mechanism to tell bots if there are any parts of
a website that they should not crawl. This mechanism is called robots.txt, and
it takes the form of a text file called, unsurprisingly, robots.txt. This file always
lives in the root of a website so that bots can always find it. It has rules that describe
the accessible parts of the website. The file format is described at http://www.
robotstxt.org.

The Python standard library provides the urllib.robotparser module for parsing
and working with robots.txt files. You can create a parser object, feed it a robots.
txt file and then you can simply query it to see whether a given URL is permitted
for a given user agent. A good example can be found in the documentation in the
standard library. If you check every URL that your client might want to access before
you access it, and honor the webmasters wishes, then you'll be helping them out.

http://www.robotstxt.org
http://www.robotstxt.org
http://www.useragentstring.com/pages/Crawlerlist/

Chapter 3

[109]

Finally, since we may be making quite a lot of requests as we test out our fledgling
clients, it's a good idea to make local copies of the web pages or the files that you
want your client to parse and test it against them. In this way, we'll be saving
bandwidth for ourselves and for the websites.

Summary
We've covered a lot of ground in this chapter, but you should now be able to start
making real use of the web APIs that you encounter.

We looked at XML, how to construct documents, parse them and extract data from
them by using the ElementTree API. We looked at both the Python ElementTree
implementation and lxml. We also looked at how the XPath query language can be
used efficiently for extracting information from documents.

We looked at the Amazon S3 service and wrote a client that lets us perform basic
operations, such as creating buckets, and uploading and downloading files through
the S3 REST API. We learned about setting access permissions and setting content
types, such that the files work properly in web browsers.

We looked at the JSON data format, how to convert Python objects into the JSON
data format and how to convert them back to Python objects.

We then explored the Twitter API and wrote an on-demand world clock service,
through which we learned how to read and process tweets for an account, and how
to send a tweet as a reply.

We saw how to extract or scrape information from the HTML source of web pages.
We saw how to work with HTML when using ElementTree and the lxml HTML
parser. We also learned how to use XPath to help make this process more efficient.

And finally, we looked at how we can give back to the webmasters that provide
us with all the data. We discussed a few ways in which we can code our clients to
make the webmasters lives a little easier and respect how they would like us to use
their sites.

So, that's it for HTTP for now. We'll re-visit HTTP in Chapter 9, Applications for the
Web, where we'll be looking at using Python for constructing the server-side of web
applications. In the next chapter, we'll discuss the other great workhorse of the
Internet: e-mail.

[111]

Engaging with E-mails
E-mail is one of the most popular ways of digital communication. Python has a
rich number of built-in libraries for dealing with e-mails. In this chapter, we will
learn how to use Python to compose, send, and retrieve e-mails. The following
topics will be covered in this chapter:

• Sending e-mails with SMTP through the smtplib library
• Securing e-mails transport with TLS
• Retrieving e-mails by using POP3 with poplib
• Retrieving e-mails by using IMAP with imapclient
• Manipulating e-mails on the server with IMAP
• Sending e-mails with the help of the logging module

E-mail terminologies
Before we start composing our first e-mail with the help of Python, let us revisit
some of the elementary concepts of e-mail. Often, an end-user uses a piece of
software or a graphical user interface (GUI) for composing, sending, and receiving
e-mails. This piece of software is known as an e-mail client, for example, Mozilla
Thunderbird, Microsoft Outlook, and so on are e-mail clients. The same tasks can be
done by a web interface, that is, a webmail client interface. Some common examples
of these are: Gmail, Yahoo mail, Hotmail and so on.

The mail that you send from your client interface does not reach the receiver's
computer directly. Your mail travels through a number of specialized e-mail servers.
These servers run a piece of software called the Mail Transfer Agent (MTA), and its
primary job is to route the e-mail to the appropriate destinations by analyzing the
mail header, among other things.

Engaging with E-mails

[112]

Lots of other things also happen en-route, and then the mail reaches the recipient's
local e-mail gateway. Then, the recipient can retrieve the e-mail by using his or her
e-mail client.

A few protocols are involved in the aforementioned process. The most common of
those have been listed here:

• Simple Mail Transfer Protocol (SMTP): The SMTP protocol is used by the
MTA for delivering your e-mail to the recipient's e-mail server. The SMTP
protocol can only be used for sending e-mails from one host to another.

• Post Office Protocol 3 (POP3): The POP3 protocol provides a simple and
standardized way for the users to gain access to the mailboxes and then
download the messages to their computers. When using the POP3 protocol,
your e-mail messages will be downloaded from the Internet service
provider's (ISP) mail server to the local computer. You can also leave the
copies of your e-mails on the ISP server.

• Internet Message Access Protocol (IMAP): The IMAP protocol also provides
a simple and standardized way for accessing your e-mail from the ISP's local
server. IMAP is a client/server protocol in which the e-mails are received
and held for you by your ISP. As this requires only a small data transfer,
this scheme works well even over a slow connection, such as the mobile
phone network. Only if you send a request to read a specific e-mail, that
email message will be downloaded from the ISP. You can also do some other
interesting things, such as creating and manipulating folders or mailboxes on
the server, deleting messages, and so on.

Python has three modules, smtplib, poplib, and imaplib, which support
SMTP, POP3, and the IMAP protocols respectively. Each module has options for
transmitting the information securely by using the Transport Layer Security (TLS)
protocol. Each protocol also uses some form of authentication for ensuring the
confidentiality of the data.

Sending e-mails with SMTP
We can send an e-mail from a Python script by using smtplib and e-mail packages.
The smtplib module provides an SMTP objects which is used for sending mail by
using either an SMTP or an Extended SMTP (ESMTP) protocol. The e-mail module
helps us in constructing the e-mail messages with the help of the various header
information and attachments. This module conforms to the Internet Message Format
(IMF) described at http://tools.ietf.org/html/rfc2822.html.

http://tools.ietf.org/html/rfc2822.html

Chapter 4

[113]

Composing an e-mail message
Let us construct the e-mail message by using classes from the email module. The
email.mime module provides classes for creating the e-mail and MIME objects from
scratch. MIME is an acronym for Multi-purpose Internet Mail Extensions. This is an
extension of the original Internet e-mail protocol. This is widely used for exchanging
different kinds of data files, such as audio, video, images, applications, and so on.

Many classes have been derived from the MIME base class. We will use an SMTP
client script using email.mime.multipart.MIMEMultipart() class as an example.
It accepts passing the e-mail header information through a keyword dictionary. Let's
have a look at how we can specify an e-mail header by using the MIMEMultipart()
object. Multi-part mime refers to sending both the HTML and the TEXT part of
an e-mail message in a single e-mail. When an e-mail client receives a multipart
message, it accepts the HTML version if it can render HTML, otherwise it presents
the plain text version, as shown in the following code block:

 from email.mime.multipart import MIMEMultipart()
 msg = MIMEMultipart()
 msg['To'] = recipient
 msg['From'] = sender
 msg['Subject'] = 'Email subject..'

Now, attach a plain text message to this multi-part message object. We can wrap
a plain-text message by using the MIMEText() object. The constructor of this class
takes the additional arguments. For example, we can pass text and plain as its
arguments. The data of this message can be set by using the set_payload() method,
as shown here:

 part = MIMEText('text', 'plain')
 message = 'Email message ….'
 part.set_payload(message)

Now, we will attach the plain text message to the Multi-part message, as shown here:

 msg.attach(part)

The message is ready to be routed to the destination mail server by using one or
more SMTP MTA servers. But, obviously, the script only talks to a specific MTA
and that MTA handles the routing of the message.

Engaging with E-mails

[114]

Sending an e-mail message
The smtplib module supplies us with an SMTP class, which can be initialized by an
SMTP server socket. Upon successful initialization, this will give us an SMTP session
object. The SMTP client will establish a proper SMTP session with the server. This
can be done by using the ehlo() method for an SMTP session object. The actual
message sending will be done by applying the sendmail() method to the SMTP
session. So, a typical SMTP session will look like the following:

 session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)
 session.ehlo()
 session.sendmail(sender, recipient, msg.as_string())
 session.quit()

In our example SMTP client script, we have made use of Google's free Gmail service.
If you have a Gmail account, then you can send an e-mail from a Python script to
that account by using SMTP. Your e-mail may get blocked initially, as Gmail may
detect that it had been sent from a less secure e-mail client. You can change your
Gmail account settings and enable your account to send/receive e-mails from less
secure e-mail clients. You can learn more about sending e-mail from an app on
the Google website, which can be found at https://support.google.com/a/
answer/176600?hl=en.

If you don't have a Gmail account, then you can use a local SMTP server setup in
a typical Linux box and run this script. The following code shows how to send an
e-mail through a public SMTP server:

#!/usr/bin/env python3
Listing 1 – First email client
import smtplib

from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

SMTP_SERVER = 'aspmx.l.google.com'
SMTP_PORT = 25

def send_email(sender, recipient):
 """ Send email message """
 msg = MIMEMultipart()

https://support.google.com/a/answer/176600?hl=en
https://support.google.com/a/answer/176600?hl=en

Chapter 4

[115]

 msg['To'] = recipient
 msg['From'] = sender
 subject = input('Enter your email subject: ')
 msg['Subject'] = subject
 message = input('Enter your email message. Press Enter when
 finished. ')
 part = MIMEText('text', "plain")
 part.set_payload(message)
 msg.attach(part)
 # create smtp session
 session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)
 session.ehlo()
 #session.set_debuglevel(1)
 # send mail
 session.sendmail(sender, recipient, msg.as_string())
 print("You email is sent to {0}.".format(recipient))
 session.quit()

if __name__ == '__main__':
 sender = input("Enter sender email address: ")
 recipient = input("Enter recipient email address: ")
 send_email(sender, recipient)

If you run this script, then you can see that the output is similar to what is mentioned
here. For the sake of anonymity, real e-mail addresses have not been shown in the
following example:

$ python3 smtp_mail_sender.py

Enter sender email address: <SENDER>@gmail.com

Enter recipeint email address: <RECEIVER>@gmail.com

Enter your email subject: Test mail

Enter your email message. Press Enter when finished. This message can be
ignored

You email is sent to <RECEIVER>@gmail.com.

This script will send a very simple e-mail message by using Python's standard library
module, smtplib. For composing the message, MIMEMultipart and MIMEText
classes have been imported from the email.mime submodule. This submodule
has various types of classes for composing e-mail messages with different types of
attachments, for example, MIMEApplication(), MIMEAudio(), MIMEImage(), and
so on.

Engaging with E-mails

[116]

In this example, the send_mail() function has been called by two arguments: sender
and receiver. Both of these arguments are e-mail addresses. An e-mail message is
constructed by the MIMEMultipart() message class. The essential headers, such as
To, From, and Subject have been added to this class namespace. The body of the
message is composed with the instance of the MIMEText() class. This is done by the
class set_payload() method. Then, this payload is attached to the main message by
the attach() method.

In order to communicate with the SMTP server, a session with the server will be
created by instantiating the smtplib module's SMTP() class. The server name and the
port arguments will be passed to the constructor. According to the SMTP protocol,
an extended hello message through ehlo() method will be sent by the client to the
server. The message will be sent by the sendmail() method.

Notice that if the set_debuglevel() method is called on an SMTP session object,
then it will produce additional debug messages. The line is commented out in the
preceding example. Un-commenting that line will produce a debug message such as:

$ python3 smtp_mail_sender.py

Enter sender email address: <SENDER>@gmail.com

Enter recipeint email address: <RECEIVER>@gmail.com

Enter your email subject: Test email

Enter your email message. Press Enter when finished. This is a test email

send: 'mail FROM:<SENDER@gmail.com> size=339\r\n'

reply: b'250 2.1.0 OK hg2si4622244wib.38 - gsmtp\r\n'

reply: retcode (250); Msg: b'2.1.0 OK hg2si4622244wib.38 - gsmtp'

send: 'rcpt TO:<RECEIVER@gmail.com>\r\n'

reply: b'250 2.1.5 OK hg2si4622244wib.38 - gsmtp\r\n'

reply: retcode (250); Msg: b'2.1.5 OK hg2si4622244wib.38 - gsmtp'

send: 'data\r\n'

reply: b'354 Go ahead hg2si4622244wib.38 - gsmtp\r\n'

reply: retcode (354); Msg: b'Go ahead hg2si4622244wib.38 - gsmtp'

data: (354, b'Go ahead hg2si4622244wib.38 - gsmtp')

send: 'Content-Type: multipart/mixed;
 boundary="===============1431208306=="\r\nMIME-Version: 1.0\r\nTo:
 RECEIVER@gmail.com\r\nFrom: SENDER@gmail.com\r\nSubject: Test
 email\r\n\r\n--===============1431208306==\r\nContent-Type:
 text/plain; charset="us-ascii"\r\nMIME-Version: 1.0\r\nContent-
 Transfer-Encoding: 7bit\r\n\r\nThis is a test email\r\n--
 ===============1431208306==--\r\n.\r\n'

Chapter 4

[117]

reply: b'250 2.0.0 OK 1414233177 hg2si4622244wib.38 - gsmtp\r\n'

reply: retcode (250); Msg: b'2.0.0 OK 1414233177 hg2si4622244wib.38 -
 gsmtp'

data: (250, b'2.0.0 OK 1414233177 hg2si4622244wib.38 - gsmtp')

You email is sent to RECEIVER@gmail.com.

send: 'quit\r\n'

reply: b'221 2.0.0 closing connection hg2si4622244wib.38 - gsmtp\r\n'

reply: retcode (221); Msg: b'2.0.0 closing connection
 hg2si4622244wib.38 - gsmtp'

This is interesting because the message has been sent through a public SMTP server
in a step-by-step fashion.

Sending e-mails securely with TLS
TLS protocol is a successor of SSL or Secure Socket Layer. This ensures that the
communication between the client and the server is secure. This is done by sending
the message in an encrypted format so that unauthorized people cannot see the
message. It is not difficult to use TLS with smtplib. After you create an SMTP
session object, you need to call the starttls() method. Before sending an e-mail,
you need to login to the server by using the SMTP server credentials.

Here is an example for the second e-mail client:

#!/usr/bin/env python3
Listing 2
import getpass
import smtplib

from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 587 # ssl port 465, tls port 587

def send_email(sender, recipient):
 """ Send email message """
 msg = MIMEMultipart()
 msg['To'] = recipient
 msg['From'] = sender

Engaging with E-mails

[118]

 msg['Subject'] = input('Enter your email subject: ')
 message = input('Enter your email message. Press Enter when
 finished. ')
 part = MIMEText('text', "plain")
 part.set_payload(message)
 msg.attach(part)
 # create smtp session
 session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)
 session.set_debuglevel(1)
 session.ehlo()
 session.starttls()
 session.ehlo
 password = getpass.getpass(prompt="Enter you email password:
 ")
 # login to server
 session.login(sender, password)
 # send mail
 session.sendmail(sender, recipient, msg.as_string())
 print("You email is sent to {0}.".format(recipient))
 session.quit()

if __name__ == '__main__':
 sender = input("Enter sender email address: ")
 recipient = input("Enter recipeint email address: ")
 send_email(sender, recipient)

The preceding code is similar to our first example, except for the authentication to
the server. In this case, the SMTP user is authenticated against the server. If we run
the script after turning on the SMTP debugging, then we would be seeing an output
similar to the following:

$ python3 smtp_mail_sender_tls.py

Enter sender email address: SENDER@gmail.com

Enter recipeint email address: RECEPIENT@gmail.com

Enter your email subject: Test email

Enter your email message. Press Enter when finished. This is a test
 email that can be ignored.

After the user input, communication with the server will begin. It will start by the
ehlo() method. In response to this command, the SMTP server will send a few
response lines with the return code 250. This response will include the features
supported by the server.

Chapter 4

[119]

The summary of these responses will indicate that the server is ready to proceed
with the client, as shown in the following:

send: 'ehlo debian6box.localdomain.loc\r\n'

reply: b'250-mx.google.com at your service, [77.233.155.107]\r\n'

reply: b'250-SIZE 35882577\r\n'

reply: b'250-8BITMIME\r\n'

reply: b'250-STARTTLS\r\n'

reply: b'250-ENHANCEDSTATUSCODES\r\n'

reply: b'250-PIPELINING\r\n'

reply: b'250-CHUNKING\r\n'

reply: b'250 SMTPUTF8\r\n'

reply: retcode (250); Msg: b'mx.google.com at your service,
 [77.233.155.107]\nSIZE
 35882577\n8BITMIME\nSTARTTLS\nENHANCEDSTATUSCODES\nPIPELINING\
 nCHUNKING\nSMTPUTF8'

After the initial command, the client will use the starttls() method to upgrade the
connection to TLS, as shown here:

send: 'STARTTLS\r\n'

reply: b'220 2.0.0 Ready to start TLS\r\n'

reply: retcode (220); Msg: b'2.0.0 Ready to start TLS'

Enter you email password:

send: 'ehlo debian6box.localdomain.loc\r\n'

reply: b'250-mx.google.com at your service, [77.233.155.107]\r\n'

reply: b'250-SIZE 35882577\r\n'

reply: b'250-8BITMIME\r\n'

reply: b'250-AUTH LOGIN PLAIN XOAUTH XOAUTH2 PLAIN-CLIENTTOKEN
 OAUTHBEARER\r\n'

reply: b'250-ENHANCEDSTATUSCODES\r\n'

reply: b'250-PIPELINING\r\n'

reply: b'250-CHUNKING\r\n'

reply: b'250 SMTPUTF8\r\n'

reply: retcode (250); Msg: b'mx.google.com at your service,
 [77.233.155.107]\nSIZE 35882577\n8BITMIME\nAUTH LOGIN PLAIN XOAUTH
 XOAUTH2 PLAIN-CLIENTTOKEN
 OAUTHBEARER\nENHANCEDSTATUSCODES\nPIPELINING\nCHUNKING\nSMTPUTF8'

Engaging with E-mails

[120]

In the authentication phase, the authentication data is sent by the client-side
script with the help of the login() method. Note that the authentication token is a
base-64 encoded string and the username and password are separated by a null byte.
There other supported authentication protocols exists for the sophisticated clients.
The following is the example of authentication token:

send: 'AUTH PLAIN A...dvXXDDCCD.......sscdsvsdvsfd...12344555\r\n'

reply: b'235 2.7.0 Accepted\r\n'

reply: retcode (235); Msg: b'2.7.0 Accepted'

After the client is authenticated, it can send e-mail messages by using the
sendmail() method. Three arguments are passed to this method, sender, recipient,
and the message. The sample output is shown here:

send: 'mail FROM:<SENDER@gmail.com> size=360\r\n'

reply: b'250 2.1.0 OK xw9sm8487512wjc.24 - gsmtp\r\n'

reply: retcode (250); Msg: b'2.1.0 OK xw9sm8487512wjc.24 - gsmtp'

send: 'rcpt TO:<RECEPIENT@gmail.com>\r\n'

reply: b'250 2.1.5 OK xw9sm8487512wjc.24 - gsmtp\r\n'

reply: retcode (250); Msg: b'2.1.5 OK xw9sm8487512wjc.24 - gsmtp'

send: 'data\r\n'

reply: b'354 Go ahead xw9sm8487512wjc.24 - gsmtp\r\n'

reply: retcode (354); Msg: b'Go ahead xw9sm8487512wjc.24 - gsmtp'

data: (354, b'Go ahead xw9sm8487512wjc.24 - gsmtp')

send: 'Content-Type: multipart/mixed;
 boundary="===============1501937935=="\r\nMIME-Version: 1.0\r\n

To: <Output omitted>-===============1501937935==--\r\n.\r\n'

reply: b'250 2.0.0 OK 1414235750 xw9sm8487512wjc.24 - gsmtp\r\n'

reply: retcode (250); Msg: b'2.0.0 OK 1414235750 xw9sm8487512wjc.24 -
 gsmtp'

data: (250, b'2.0.0 OK 1414235750 xw9sm8487512wjc.24 - gsmtp')

You email is sent to RECEPIENT@gmail.com.

send: 'quit\r\n'

reply: b'221 2.0.0 closing connection xw9sm8487512wjc.24 - gsmtp\r\n'

reply: retcode (221); Msg: b'2.0.0 closing connection
 xw9sm8487512wjc.24 - gsmtp'

Chapter 4

[121]

Retrieving e-mails by using POP3 with
poplib
The stored e-mail messages can be downloaded and read by the local computer.
The POP3 protocol can be used to download the messages from the e-mail server.
Python has a module called poplib, and it can be used for this purpose. This module
provides two high-level classes, POP() and POP3_SSL(),which implement the POP3
and POP3S protocols respectively for communicating with a POP3/POP3S server.
It accepts three arguments, host, port, and timeout. If port is omitted, then the
default port (110) can be used. The optional timeout parameter determines the
length (in seconds) of the connection timeout at the server.

The secure version of POP3() is its subclass POP3_SSL(). It takes additional
parameters, such as keyfile and certfile, which are used for supplying the SSL
certificate files, namely the private key and certificate chain file.

Writing for a POP3 client is also very straightforward. To do this, instantiate a mailbox
object by initializing the POP3() or POP3_SSL() class. Then, invoke the user() and
pass_() methods to login to the server by using the following command:

 mailbox = poplib.POP3_SSL(<POP3_SERVER>, <SERVER_PORT>)
 mailbox.user('username')
 mailbox.pass_('password')

Now, you can call the various methods for manipulating your accounts and
messages. A few interesting methods have been listed here:

• stat(): This method returns the mailbox status according to tuples
of two integers, that is, the message count and the size of the mailbox.

• list(): This method sends a request for getting a message list,
which has been demonstrated in the example shown later in this section.

• retr(): This method gives an argument message a number
that indicates the message that has to be retrieved. It also marks the
message as read.

• dele(): This method provides an argument for the message that has to be
deleted. On many POP3 servers, the deletion is not performed until QUIT.
You can reset the delete flag by using the rset() method.

• quit(): This method takes you off the connection by committing a few
changes and disconnecting you from the server.

Engaging with E-mails

[122]

Let us see how we can read out the e-mail messages by accessing the Google's
secure POP3 e-mail server. By default, the POP3 server listens on port 995
securely. The following is an example of fetching an e-mail by using POP3:

#!/usr/bin/env python3
import getpass
import poplib

GOOGLE_POP3_SERVER = 'pop.googlemail.com'
POP3_SERVER_PORT = '995'

def fetch_email(username, password):
 mailbox = poplib.POP3_SSL(GOOGLE_POP3_SERVER,
 POP3_SERVER_PORT)
 mailbox.user(username)
 mailbox.pass_(password)
 num_messages = len(mailbox.list()[1])
 print("Total emails: {0}".format(num_messages))
 print("Getting last message")
 for msg in mailbox.retr(num_messages)[1]:
 print(msg)
 mailbox.quit()

if __name__ == '__main__':
 username = input("Enter your email user ID: ")
 password = getpass.getpass(prompt="Enter your email password:
 ")
 fetch_email(username, password)

As you can see in the preceding code, the fetch_email() function has created a
mailbox object by calling POP3_SSL() along with the server socket. The username
and the password are set on this object by calling the user() and pass_() method.
Upon successful authentication, we can invoke the POP3 commands by using
methods, such as the list() method, which is called to list the e-mails. In this
example, the total number of messages has been displayed on the screen. Then,
the retr() method has been used for retrieving the content of a single message.

A sample output has been shown here:

$ python3 fetch_email_pop3.py

Enter your email user ID: <PERSON1>@gmail.com

Enter your email password:

Total emails: 330

Chapter 4

[123]

Getting last message

b'Received: by 10.150.139.7 with HTTP; Tue, 7 Oct 2008 13:20:42 -0700
 (PDT)'

b'Message-ID: <fc9dd8650810...@mail.gmail.com>'

b'Date: Tue, 7 Oct 2008 21:20:42 +0100'

b'From: "Mr Person1" <PERSON1@gmail.com>'

b'To: "Mr Person2" <PERSON2@gmail.com>'

b'Subject: Re: Some subject'

b'In-Reply-To: <1bec119d...@mail.gmail.com>'

b'MIME-Version: 1.0'

b'Content-Type: multipart/alternative; '

b'\tboundary="----=_Part_63057_22732713.1223410842697"'

b'References: <fc9dd8650809270....@mail.gmail.com>'

b'\t <1bec119d0810060337p557bc....@mail.gmail.com>'

b'Delivered-To: PERSON1@gmail.com'

b''

b'------=_Part_63057_22732713.1223410842697'

b'Content-Type: text/plain; charset=ISO-8859-1'

b'Content-Transfer-Encoding: quoted-printable'

b'Content-Disposition: inline'

b''

b'Dear Person2,'

Retrieving e-mails by using IMAP with
imaplib
As we mentioned previously, accessing e-mail over the IMAP protocol doesn't
necessarily download the message to the local computer or mobile phone. So, this
can be very efficient, even when used over any low bandwidth Internet connection.

Python provides a client-side library called imaplib, which can be used for accessing
e-mails over the IMAP protocol. This provides the IMAP4() class, which implements
the IMAP protocol. It takes two arguments, that is, host and port for implementing
this protocol. By default, 143 has been used as the port number.

The derived class, that is, IMAP4_SSL(), provides a secure version of the IMAP4
protocol. It connects over an SSL encrypted socket. So, you will need an SSL friendly
socket module. The default port is 993. Similar to POP3_SSL(), you can supply the
path to a private key and a certificate file path.

Engaging with E-mails

[124]

A typical example of what an IMAP client looks like can be seen here:

 mailbox = imaplib.IMAP4_SSL(<IMAP_SERVER>, <SERVER_PORT>)
 mailbox.login('username', 'password')
 mailbox.select('Inbox')

The aforementioned code will try to initiate an IMAP4 encrypted client session.
After the login() method is successful, you can apply the various methods on the
created object. In the aforementioned code snippet, the select() method has been
used. This will select a user's mailbox. The default mailbox is called Inbox. A full
list of methods supported by this mailbox object is available on the Python Standard
library documentation page, which can be found at https://docs.python.org/3/
library/imaplib.html.

Here, we would like to demonstrate how you can search the mailbox by using the
search() method. It accepts a character set and search criterion parameter. The
character set parameter can be None, where a request for no specific character will
be sent to the server. However, at least one criterion needs to be specified. For
performing advance search for sorting the messages, you can use the sort() method.

Similar to POP3, we will use a secure IMAP connection for connecting to the server by
using the IMAP4_SSL() class. Here's a lightweight example of a Python IMAP client:

#!/usr/bin/env python3
import getpass
import imaplib
import pprint

GOOGLE_IMAP_SERVER = 'imap.googlemail.com'
IMAP_SERVER_PORT = '993'

def check_email(username, password):
 mailbox = imaplib.IMAP4_SSL(GOOGLE_IMAP_SERVER,
 IMAP_SERVER_PORT)
 mailbox.login(username, password)
 mailbox.select('Inbox')

https://docs.python.org/3/library/imaplib.html
https://docs.python.org/3/library/imaplib.html

Chapter 4

[125]

 tmp, data = mailbox.search(None, 'ALL')
 for num in data[0].split():
 tmp, data = mailbox.fetch(num, '(RFC822)')
 print('Message: {0}\n'.format(num))
 pprint.pprint(data[0][1])
 break
 mailbox.close()
 mailbox.logout()

if __name__ == '__main__':
 username = input("Enter your email username: ")
 password = getpass.getpass(prompt="Enter you account password:
 ")
 check_email(username, password)

In this example, an instance of IMPA4_SSL(), that is, the mailbox object, has been
created. In this, we have taken the server address and port as arguments. Upon
successfully logging in with the login() method, you can use the select() method
for choosing the mail box folder that you want to access. In this example, the Inbox
folder has been selected. In order to read the messages, we need to request for the
data from the Inbox. One way to do that is to use the search() method. Upon the
successful reception of some mail metadata, we can use the fetch() method for
retrieving the e-mail message envelope part and data. In this example, the RFC 822
type of standard text message has been sought with the help of the fetch() method.
We can use the Python pretty print or the print module for showing the output on the
screen. Finally, apply the close() and the logout() methods to the mailbox object.

The preceding code will display an output similar to the following:

$ python3 fetch_email_imap.py
Enter your email username: RECIPIENT@gmail.comn
Enter you Google password:
Message b'1'
b'X-Gmail-Received:
 3ec65fa310559efe27307d4e37fdc95406deeb5a\r\nDelivered-To:
 RECIPIENT@gmail.com\r\nReceived: by 10.54.40.10 with SMTP id
 n10cs1955wrn;\r\n
 [Message omitted]

Engaging with E-mails

[126]

Sending e-mail attachments
In the previous section, we have seen how plain text messages can be sent by using
the SMTP protocol. In this section, let us explore how to send attachments through
e-mail messages. We can use our second example, in which we have sent an e-mail
by using TLS, for this. While composing the e-mail message, in addition to adding a
plain text message, include the additional attachment field.

In this example, we can use the MIMEImage type for the email.mime.image sub-
module. A GIF type of image will be attached to the e-mail message. It is assumed
that a GIF image can be found anywhere in the file system path. This file path is
generally taken on the basis of the user input.

The following example shows how to send an attachment along with your
e-mail message:

#!/usr/bin/env python3

import os
import getpass
import re
import sys
import smtplib

from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

SMTP_SERVER = 'aspmx.l.google.com'
SMTP_PORT = 25

def send_email(sender, recipient):
 """ Sends email message """
 msg = MIMEMultipart()
 msg['To'] = recipient
 msg['From'] = sender
 subject = input('Enter your email subject: ')
 msg['Subject'] = subject
 message = input('Enter your email message. Press Enter when
 finished. ')

Chapter 4

[127]

 part = MIMEText('text', "plain")
 part.set_payload(message)
 msg.attach(part)
 # attach an image in the current directory
 filename = input('Enter the file name of a GIF image: ')
 path = os.path.join(os.getcwd(), filename)
 if os.path.exists(path):
 img = MIMEImage(open(path, 'rb').read(), _subtype="gif")
 img.add_header('Content-Disposition', 'attachment',
 filename=filename)
 msg.attach(img)
 # create smtp session
 session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT)
 session.ehlo()
 session.starttls()
 session.ehlo
 # send mail
 session.sendmail(sender, recipient, msg.as_string())
 print("You email is sent to {0}.".format(recipient))
 session.quit()

if __name__ == '__main__':
 sender = input("Enter sender email address: ")
 recipient = input("Enter recipeint email address: ")
 send_email(sender, recipient)

If you run the preceding script, then it will ask the usual, that is, the e-mail sender,
the recipient, the user credentials, and the location of the image file.

$ python3 smtp_mail_sender_mime.py

Enter sender email address: SENDER@gmail.com

Enter recipeint email address: RECIPIENT@gmail.com

Enter your email subject: Test email with attachment

Enter your email message. Press Enter when finished. This is a test email
with atachment.

Enter the file name of a GIF image: image.gif

You email is sent to RECIPIENT@gmail.com.

Engaging with E-mails

[128]

Sending e-mails via the logging module
In any modern programming language, the logging facilities are provided with
common features. Similarly, Python's logging module is very rich in features and
flexibilities. We can use the different types of log handlers with the logging module,
such as the console or the file logging handler. One way in which you can maximize
your logging benefits is by e-mailing the log messages to the user just as the log
is being produced. Python's logging module provides a type of handler called
BufferingHandler, which is capable of buffering the log data.

An example of extending BufferingHandler has been displayed later. A child class
called BufferingSMTPHandler is defined by BufferingHandler. In this example,
an instance of the logger object is created by using the logging module. Then, an
instance of BufferingSMTPHandler is tied to this logger object. The logging level is
set to DEBUG so that it can log any message. A sample list of four words has been
used for creating the four log entries. Each log entry should resemble the following:

<Timestamp> INFO First line of log

This accumulated log message will be emailed to a local user as set
 on top of the script.

Now, let us take a look at the full code. The following is an example of sending an
e-mail with the help of the logging module:

import logging.handlers
import getpass

MAILHOST = 'localhost'
FROM = 'you@yourdomain'
TO = ['%s@localhost' %getpass.getuser()]
SUBJECT = 'Test Logging email from Python logging module
 (buffering)'

class BufferingSMTPHandler(logging.handlers.BufferingHandler):
 def __init__(self, mailhost, fromaddr, toaddrs, subject,
 capacity):
 logging.handlers.BufferingHandler.__init__(self, capacity)
 self.mailhost = mailhost
 self.mailport = None
 self.fromaddr = fromaddr
 self.toaddrs = toaddrs
 self.subject = subject

Chapter 4

[129]

 self.setFormatter(logging.Formatter("%(asctime)s
 %(levelname)-5s %(message)s"))

 def flush(self):
 if len(self.buffer) > 0:
 try:
 import smtplib
 port = self.mailport
 if not port:
 port = smtplib.SMTP_PORT
 smtp = smtplib.SMTP(self.mailhost, port)
 msg = "From: %s\r\nTo: %s\r\nSubject:
 %s\r\n\r\n" % (self.fromaddr,
 ",".join(self.toaddrs), self.subject)
 for record in self.buffer:
 s = self.format(record)
 print(s)
 msg = msg + s + "\r\n"
 smtp.sendmail(self.fromaddr, self.toaddrs, msg)
 smtp.quit()
 except:
 self.handleError(None) # no particular record
 self.buffer = []

def test():
 logger = logging.getLogger("")
 logger.setLevel(logging.DEBUG)
 logger.addHandler(BufferingSMTPHandler(MAILHOST, FROM, TO,
 SUBJECT, 10))
 for data in ['First', 'Second', 'Third', 'Fourth']:
 logger.info("%s line of log", data)
 logging.shutdown()

if __name__ == "__main__":
 test()

As you can see, our BufferingSMTPHandler method only overrides one method,
that is, flush(). On the constructor, __init__(), the basic variable is setup as well
as the logging format by using the setFormatter() method. In the flush() method,
we have created an instance of an SMTP() object. The SMTP message header has
been created by using the data available. The log message has been appended to
the e-mail message, and the sendmail() method has been called to send the e-mail
message. The code in the flush() method is wrapped inside a try-except block.

Engaging with E-mails

[130]

The output of the script discussed will be similar to the following:

$ python3 logger_mail_send.py

2014-10-25 13:15:07,124 INFO First line of log

2014-10-25 13:15:07,127 INFO Second line of log

2014-10-25 13:15:07,127 INFO Third line of log

2014-10-25 13:15:07,129 INFO Fourth line of log

Now, when you check the e-mail message with the e-mail command (native to
Linux/UNIX machines), you can expect that the e-mail would have been received
by the local user, as shown in the following:

$ mail

Mail version 8.1.2 01/15/2001. Type ? for help.

"/var/mail/faruq": 1 message 1 new

>N 1 you@yourdomain Sat Oct 25 13:15 20/786 Test Logging
 email from Python logging module (buffering)

You can view the content of the message by typing the message ID on the command
prompt with &, as shown in the following output:

& 1

Message 1:

From you@yourdomain Sat Oct 25 13:15:08 2014

Envelope-to: faruq@localhost

Delivery-date: Sat, 25 Oct 2014 13:15:08 +0100

Date: Sat, 25 Oct 2014 13:15:07 +0100

From: you@yourdomain

To: faruq@localhost

Subject: Test Logging email from Python logging module (buffering)

2014-10-25 13:15:07,124 INFO First line of log

2014-10-25 13:15:07,127 INFO Second line of log

2014-10-25 13:15:07,127 INFO Third line of log

2014-10-25 13:15:07,129 INFO Fourth line of log

Chapter 4

[131]

Finally, you can quit the mail program by typing the shortcut q on the command
prompt, as shown here:

& q

Saved 1 message in /home/faruq/mbox

Summary
This chapter demonstrates how Python can interact with the three major e-mail
handling protocols: SMTP, POP3, and IMAP. In each of these cases, how to work
the client code has been explained. Finally, an example for using SMTP in the
Python's logging module has been shown.

In the next chapter, you will learn how to use Python to work with remote systems
to perform various tasks, such as administrative tasks by using SSH, file transfer
through FTP, Samba, and so forth. Some remote monitoring protocols, such as
SNMP, and the authentication protocols, such as LDAP, will also be discussed
briefly. So, enjoy writing more Python codes in the next chapter.

[133]

Interacting with
Remote Systems

If your computer is connected to the Internet or a local area network (LAN), then
it's time to talk to the other computers on the network. In a typical home, office, or
campus LAN, you will find that many different types of computers are connected
to the network. Some computers act as the servers for specific services, such as a
file server, a print server, a user authentication management server, and so on.
In this chapter, we will explore how the computers in a network can interact with
each other and how they can access a few services through the Python scripts.
The following task list will give you an overview of the topics that will be
covered in this chapter:

• Accessing SSH terminals with paramiko
• Transferring files through SFTP
• Transferring files with the help of FTP
• Reading the SNMP packets
• Reading the LDAP packets
• Sharing the files with the help of SAMBA

This chapter requires quite a few third-party packages, such as paramiko, pysnmp,
and so on. You can use your operating system's package management tool for
installing them. Here's a quick how-to on installing the paramiko module in Ubuntu
14, python3, and the other modules that are required for understanding the topics
covered in this chapter:

sudo apt-get install python3
sudo apt-get install python3-setuptools
sudo easy_install3 paramiko
sudo easy_install3 python3-ldap
sudo easy_install3 pysnmp
sudo easy_install3 pysmb

Interacting with Remote Systems

[134]

Secure shell – access using Python
SSH has become a very popular network protocol for performing secure data
communication between two computers. It provides an excellent cryptographic
support, so that unrelated third-parties cannot see the content of the data during
the transmission process. Details of the SSH protocol can be found in these RFC
documents: RFC4251-RFC4254, available at http://www.rfc-editor.org/rfc/
rfc4251.txt.

Python's paramiko library provides a very good support for the SSH-based network
communication. You can use Python scripts to benefit from the advantages of
SSH-based remote administration, such as the remote command-line login,
command execution, and the other secure network services between two networked
computers. You may also be interested in using the pysftp module, which is
based on paramiko. More details regarding this package can be found at PyPI:
https://pypi.python.org/pypi/pysftp/.

The SSH is a client/server protocol. Both of the parties use the SSH key pairs to
encrypt the communication. Each key pair has one private and one public key. The
public key can be published to anyone who may be interested in that. The private
key is always kept private and secure from everyone except the owner of the key.

The SSH public and private keys can be generated and digitally signed by an external
or an internal certificate authority. But that brings a lot of overhead to a small
organization. So, alternatively, the keys can be generated randomly by utility tools,
such as ssh-keygen. The public key needs to be available to all participating parties.
When the SSH client connects to the server for the first time, it registers the public
key of the server on a special file called ~/.ssh/known_hosts file. So, the subsequent
connection to the server ensures that the client is talking to the same server as it spoke
to before. On the server side, if you would like to restrict access to certain clients who
have certain IP addresses, then the public keys of the permitted hosts can be stored
to another special file called ssh_known_hosts file. Of course, if you re-build the
machines, such as the server machine, then the old public key of the server won't
match with that of the one stored in the ~/.ssh/known_hosts file. So, the SSH client
will raise an exception and prevent you from connecting to it. You can delete the old
key from that file and then try to re-connect, as if for the first time.

We can use the paramiko module to create an SSH client and then connect it to the
SSH server. This module will supply the SSHClient() class.

ssh_client = paramiko.SSHClient()

http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
https://pypi.python.org/pypi/pysftp/

Chapter 5

[135]

By default, the instance of this client class will reject the unknown host keys.
So, you can set up a policy for accepting the unknown host keys. The built-in
AutoAddPolicy() class will add the host keys as and when they are discovered.
Now, you need to run the set_missing_host_key_policy() method along with
the following argument on the ssh_client object.

ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())

If, you want to restrict connecting only to certain hosts, then you can define your
own policy and replace it with the AutoAddPolicy() class.

You may also be interested in adding the system host keys by using the
load_system_host_keys() method.

ssh_client.load_system_host_keys()

So far, we have discussed how to encrypt the connection. However, SSH needs your
authentication credentials. This means that the client needs to prove to the server
that a specific user is talking, not someone else. This can be done in a few ways. The
simplest way is by using the username and the password combination. Another
popular way is by using the key-based authentication method. This means that the
user's public key can be copied to the server. There's a specific tool for doing that.
This comes with the later versions of the SSH. Here's an example of how to use
ssh-copy-id.

ssh-copy-id -i ~/.ssh/id_rsa.pub faruq@debian6box.localdomain.loc

This command will copy the SSH public key of the faruq user to a machine,
debian6box.localdomain.loc:

 Here, we can simply call the connect() method along with the target hostname
and the SSH login credentials. To run any command on the target host, we need to
invoke the exec_command() method by passing the command as its argument.

ssh_client.connect(hostname, port, username, password)
stdin, stdout, stderr = ssh_client.exec_command(cmd)

The following code listing shows how to do SSH login to a target host and then run a
simple ls command:

#!/usr/bin/env python3

import getpass
import paramiko

Interacting with Remote Systems

[136]

HOSTNAME = 'localhost'
PORT = 22

def run_ssh_cmd(username, password, cmd, hostname=HOSTNAME,
 port=PORT):
 ssh_client = paramiko.SSHClient()
 ssh_client.set_missing_host_key_policy(\
 paramiko.AutoAddPolicy())
 ssh_client.load_system_host_keys()
 ssh_client.connect(hostname, port, username, password)
 stdin, stdout, stderr = ssh_client.exec_command(cmd)
 print(stdout.read())

if __name__ == '__main__':
 username = input("Enter username: ")
 password = getpass.getpass(prompt="Enter password: ")
 cmd = 'ls -l /dev'
 run_ssh_cmd(username, password, cmd)

Before running it, we need to ensure that the SSH server daemon is running on the
target host (which in this case is the localhost). As shown in the following screenshot,
we can use the netstat command for doing that. This command will show all the
running services that are listening to a particular port:

Chapter 5

[137]

The preceding script will make an SSH connection to the localhost and the
run the ls -l /dev/ command. The output of this script will be similar to
the following screenshot:

Inspecting the SSH packets
It would be very interesting to see the network packet exchange between the client
and the server. We can use either the native tcpdump command or the third-party
Wireshark tool to capture network packets. With tcpdump, you can specify the target
network interface (-i lo) and the port number (port 22) options. In the following
packet capture session, five packet exchanges have been shown during an SSH
client/server communication session:

root@debian6box:~# tcpdump -i lo port 22

tcpdump: verbose output suppressed, use -v or -vv for full protocol
 decode

listening on lo, link-type EN10MB (Ethernet), capture size 65535
 bytes

12:18:19.761292 IP localhost.50768 > localhost.ssh: Flags [S], seq
 3958510356, win 32792, options [mss 16396,sackOK,TS val 57162360
 ecr 0,nop,wscale 6], length 0

12:18:19.761335 IP localhost.ssh > localhost.50768: Flags [S.], seq
 1834733028, ack 3958510357, win 32768, options [mss 16396,sackOK,TS
 val 57162360 ecr 57162360,nop,wscale 6], length 0

12:18:19.761376 IP localhost.50768 > localhost.ssh: Flags [.], ack 1,
 win 513, options [nop,nop,TS val 57162360 ecr 57162360], length 0

Interacting with Remote Systems

[138]

12:18:19.769430 IP localhost.50768 > localhost.ssh: Flags [P.], seq
 1:25, ack 1, win 513, options [nop,nop,TS val 57162362 ecr
 57162360], length 24

12:18:19.769467 IP localhost.ssh > localhost.50768: Flags [.], ack
 25, win 512, options [nop,nop,TS val 57162362 ecr 57162362], length
 0

Although, it's very quick and easy to run tcpdump, the command does not
interpret it in the same way as the other GUI tools, such as Wireshark, interpret
it. The preceding session can be captured in Wireshark, as shown in the
following screenshot:

This clearly shows how the first three packets complete the TCP handshake process.
Then, the subsequent SSH packets negotiate the connection between the client
and the server. It's interesting to see how the client and the server negotiate the
encryption protocols. In this example, the client port is 50768 and the server port is
22. The client first initiates the SSH packet exchange and then indicates that it would
like to talk over the SSHv2 protocol. Then, the server agrees on that and continues the
packet exchange.

Chapter 5

[139]

Transferring files through SFTP
SSH can be used effectively for securely transferring files between two computer
nodes. The protocol used in this case is the secure file transfer protocol (SFTP). The
Python paramiko module will supply the classes required for creating the SFTP
session. This session can then perform a regular SSH login.

ssh_transport = paramiko.Transport(hostname, port)
ssh_transport.connect(username='username', password='password')

The SFTP session can be created from the SSH transport. The paramiko's working in
the SFTP session will support the normal FTP commands such as get().

 sftp_session = paramiko.SFTPClient.from_transport(ssh_transport)
 sftp_session.get(source_file, target_file)

As you can see, the SFTP get command requires the source file's path and the target
file's path. In the following example, the script will download a test.txt file, which
is located on the user's home directory, through SFTP:

#!/usr/bin/env python3

import getpass
import paramiko

HOSTNAME = 'localhost'
PORT = 22
FILE_PATH = '/tmp/test.txt'

def sftp_download(username, password, hostname=HOSTNAME,
 port=PORT):
 ssh_transport = paramiko.Transport(hostname, port)
 ssh_transport.connect(username=username, password=password)
 sftp_session =
 paramiko.SFTPClient.from_transport(ssh_transport)
 file_path = input("Enter filepath: ") or FILE_PATH
 target_file = file_path.split('/')[-1]
 sftp_session.get(file_path, target_file)
 print("Downloaded file from: %s" %file_path)
 sftp_session.close()

if __name__ == '__main__':
 hostname = input("Enter the target hostname: ")
 port = input("Enter the target port: ")
 username = input("Enter yur username: ")
 password = getpass.getpass(prompt="Enter your password: ")
 sftp_download(username, password, hostname, int(port))

Interacting with Remote Systems

[140]

In this example, a file has been downloaded with the help of SFTP. Notice,
how paramiko has created the SFTP session by using the SFTPClient.from_
transport(ssh_transport) class.

The script can be run as shown in the following screenshot. Here, we will first create
a temporary file called /tmp/test.txt, then complete the SSH login, and then
download that file by using SFTP. Lastly, we will check the content of the file.

Transferring files with FTP
Unlike SFTP, FTP uses the plain-text file transfer method. This means any
username or password transferred through the wire can be detected by an
unrelated third-party. Even though FTP is a very popular file transfer protocol,
people frequently use this for transferring a file from their PCs to the remote servers.

In Python, ftplib is a built-in module used for transferring the files to and from
the remote machines. You can create an anonymous FTP client connection with the
FTP() class.

ftp_client = ftplib.FTP(path, username, email)

Then you can invoke the normal FTP commands, such as CWD. In order to download
a binary file, you need to create a file-handler such as the following:

file_handler = open(DOWNLOAD_FILE_NAME, 'wb')

In order to retrieve the binary file from the remote host, the syntax shown here can
be used along with the RETR command:

ftp_client.retrbinary('RETR remote_file_name', file_handler.write)

Chapter 5

[141]

In the following code snippet, an example of a full FTP file download can be seen:

#!/usr/bin/env python
import ftplib

FTP_SERVER_URL = 'ftp.kernel.org'
DOWNLOAD_DIR_PATH = '/pub/software/network/tftp'
DOWNLOAD_FILE_NAME = 'tftp-hpa-0.11.tar.gz'

def ftp_file_download(path, username, email):
 # open ftp connection
 ftp_client = ftplib.FTP(path, username, email)
 # list the files in the download directory
 ftp_client.cwd(DOWNLOAD_DIR_PATH)
 print("File list at %s:" %path)
 files = ftp_client.dir()
 print(files)
 # downlaod a file
 file_handler = open(DOWNLOAD_FILE_NAME, 'wb')
 #ftp_cmd = 'RETR %s ' %DOWNLOAD_FILE_NAME
 ftp_client.retrbinary('RETR tftp-hpa-0.11.tar.gz',
 file_handler.write)
 file_handler.close()
 ftp_client.quit()

if __name__ == '__main__':
 ftp_file_download(path=FTP_SERVER_URL, username='anonymous',
 email='nobody@nourl.com')

The preceding code illustrates how an anonymous FTP can be downloaded from
ftp.kernel.org, which is the official website that hosts the Linux kernel. The FTP()
class takes three arguments, such as the initial filesystem path on the remote server,
the username, and the email address of the ftp user. For anonymous downloads,
no username and password is required. So, the script can be downloaded from the
tftp-hpa-0.11.tar.gz file, which can be found on the /pub/software/network/
tftp path.

ftp.kernel.org

Interacting with Remote Systems

[142]

Inspecting FTP packets
If we capture the FTP session in Wireshark on port 21 of the public network
interface, then we can see how the communication happens in plain-text. This will
show you why SFTP should be preferred. In the following figure, we can see that,
after successfully establishing connection with a client the server sends the banner
message: 220 Welcome to kernel.org. Following this, the client will anonymously
send a request for login. In response, the server will ask for a password. The client
can send the user's e-mail address for authentication.

To your surprise, you can see that the password has been sent in clear-text. In the
following screenshot, the contents of the password packet have been displayed. It
shows the supplied fake e-mail address, nobody@nourl.com.

Chapter 5

[143]

Fetching Simple Network Management
Protocol data
SNMP is a ubiquitous network protocol that is used by the network routers, such
as switches, servers, and so on, for communicating the device's configuration,
performance data, and the commands that are meant for the control devices.
Although SNMP starts with the word simple, it's not a simple protocol. Internally,
each device's information is stored in a sort of a database of information called the
management information base (MIB). The SNMP protocol offers varying levels of
security depending on the protocol version number. In SNMP v1 and v2c, the data is
protected by a pass phrase known as the community string. In SNMP v3, a username
and a password are required for storing the data. And, the data can be encrypted
with the help of SSL. In our example, we will use the v1 and v2c versions of the
SNMP protocol.

Interacting with Remote Systems

[144]

SNMP is a client/server-based network protocol. The server daemon provides the
requested information to the clients. In your machine, if SNMP has been installed
and configured properly, then you can use the snmpwalk utility command to query
the basic system information by using the following syntax:

snmpwalk -v2c -c public localhost

iso.3.6.1.2.1.1.1.0 = STRING: "Linux debian6box 2.6.32-5-686 #1 SMP
 Tue May 13 16:33:32 UTC 2014 i686"

iso.3.6.1.2.1.1.2.0 = OID: iso.3.6.1.4.1.8072.3.2.10

iso.3.6.1.2.1.1.3.0 = Timeticks: (88855240) 10 days, 6:49:12.40

iso.3.6.1.2.1.1.4.0 = STRING: "Me <me@example.org>"

iso.3.6.1.2.1.1.5.0 = STRING: "debian6box"

iso.3.6.1.2.1.1.6.0 = STRING: "Sitting on the Dock of the Bay"

The output of the preceding command will show the MIB number and its values. For
example, the MIB number iso.3.6.1.2.1.1.1.0 shows that it's a string type value,
such as Linux debian6box 2.6.32-5-686 #1 SMP Tue May 13 16:33:32 UTC
2014 i686.

In Python, you can use a third-party library called pysnmp for interfacing with the
snmp daemon. You can install the pysnmp module by using pip.

$ pip install pysnmp

This module provides a useful wrapper for the snmp commands. Let's learn how to
create an snmpwalk command. To begin, import a command generator.

from pysnmp.entity.rfc3413.oneliner import cmdgen
cmd_generator = cmdgen.CommandGenerator()

Then define the necessary default values for the connection assuming that the snmpd
daemon has been running on port 161 of the local machine and the community
string has been set to public.

SNMP_HOST = 'localhost'
SNMP_PORT = 161
SNMP_COMMUNITY = 'public'

Now invoke the getCmd() method with the help of the necessary data.

 error_notify, error_status, error_index, var_binds =
 cmd_generator.getCmd(
 cmdgen.CommunityData(SNMP_COMMUNITY),
 cmdgen.UdpTransportTarget((SNMP_HOST, SNMP_PORT)),
 cmdgen.MibVariable('SNMPv2-MIB', 'sysDescr', 0),
 lookupNames=True, lookupValues=True
)

Chapter 5

[145]

You can see that cmdgen takes the following parameters:

• CommunityData(): Set the community string as public.
• UdpTransportTarget(): This is the host target, where the snmp agent is

running. This is specified in a pair of the hostname and the UDP port.
• MibVariable: This is a tuple of values that includes the MIB version number

and the MIB target string (which in this case is sysDescr; this refers to the
description of the system).

The output of this command consists of a four-value tuple. Out of those, three are
related to the errors returned by the command generator, and the fourth one is
related to the actual variables that bind the returned data.

The following example shows how the preceding method can be used for fetching
the SNMP host description string from a running SNMP daemon:

from pysnmp.entity.rfc3413.oneliner import cmdgen

SNMP_HOST = 'localhost'
SNMP_PORT = 161
SNMP_COMMUNITY = 'public'

if __name__ == '__manin__':
 cmd_generator = cmdgen.CommandGenerator()

 error_notify, error_status, error_index, var_binds =
 cmd_generator.getCmd(
 cmdgen.CommunityData(SNMP_COMMUNITY),
 cmdgen.UdpTransportTarget((SNMP_HOST, SNMP_PORT)),
 cmdgen.MibVariable('SNMPv2-MIB', 'sysDescr', 0),
 lookupNames=True, lookupValues=True
)

 # Check for errors and print out results
 if error_notify:
 print(error_notify)
 elif error_status:
 print(error_status)
 else:
 for name, val in var_binds:
 print('%s = %s' % (name.prettyPrint(),
 val.prettyPrint()))

Interacting with Remote Systems

[146]

After running the preceding example, an output similar to the following will appear:

$ python 5_4_snmp_read.py

SNMPv2-MIB::sysDescr."0" = Linux debian6box 2.6.32-5-686 #1 SMP Tue
 May 13 16:33:32 UTC 2014 i686

Inspecting SNMP packets
We can inspect the SNMP packet by capturing the packets on port 161 of
your network interface. If the server is running locally, then listening on the
loopbook interface is sufficient. The snmp-get request format and the snmp-get
response packet formats, which are produced by Wireshak, is shown in the
following screenshot:

Chapter 5

[147]

In response to the SNMP get request from the client, an SNMP get response will be
generated by the server. This can be seen in the following screenshot:

Reading Light-weight Directory Access
Protocol data
LDAP has been used for a long time for accessing and managing distributed
directory information. This is an application level protocol that works over the
IP network. Directory service is heavily used in organizations for managing the
information about the users, the computer systems, the networks, the applications,
and so on. The LDAP protocol contains plenty of technical jargon. It is a client/
server-based protocol. So, the LDAP client will make a request to a properly
configured LDAP server. After initializing the LDAP connection, the connection will
need to be authenticated by using a few parameters. A simple BIND operation will
establish an LDAP session. In a simple case, you can set up a simple anonymous
BIND that would not need no password or any other credentials.

Interacting with Remote Systems

[148]

If you a run a simple LDAP query with the help of ldapsearch, then you will see
results such as:

ldapsearch -x -b "dc=localdomain,dc=loc" -h 10.0.2.15 -p 389

extended LDIF

#

LDAPv3

base <dc=localdomain,dc=loc> with scope subtree

filter: (objectclass=*)

requesting: ALL

#

localdomain.loc

dn: dc=localdomain,dc=loc

objectClass: top

objectClass: dcObject

objectClass: organization

o: localdomain.loc

dc: localdomain

admin, localdomain.loc

dn: cn=admin,dc=localdomain,dc=loc

objectClass: simpleSecurityObject

objectClass: organizationalRole

cn: admin

description: LDAP administrator

groups, localdomain.loc

dn: ou=groups,dc=localdomain,dc=loc

ou: groups

objectClass: organizationalUnit

objectClass: top

Chapter 5

[149]

users, localdomain.loc

dn: ou=users,dc=localdomain,dc=loc

ou: users

objectClass: organizationalUnit

objectClass: top

admin, groups, localdomain.loc

dn: cn=admin,ou=groups,dc=localdomain,dc=loc

cn: admin

gidNumber: 501

objectClass: posixGroup

Faruque Sarker, users, localdomain.loc

dn: cn=Faruque Sarker,ou=users,dc=localdomain,dc=loc

givenName: Faruque

sn: Sarker

cn: Faruque Sarker

uid: fsarker

uidNumber: 1001

gidNumber: 501

homeDirectory: /home/users/fsarker

loginShell: /bin/sh

objectClass: inetOrgPerson

objectClass: posixAccount

search result

search: 2

result: 0 Success

numResponses: 7

numEntries: 6

Interacting with Remote Systems

[150]

The preceding communication can be captured with the help of Wireshark. You
need to capture the packets on port 389. As shown in the following screenshot, the
LDAP client-server communication will be established after a bindRequest has
been successfully sent. It's not secure to communicate anonymously with the LDAP
server. For the sake of simplicity, in the following example the search has been done
without binding with any of the credentials.

The Python's third-party python-ldap package provides the necessary functionality
for interacting with an LDAP server. You can install this package with the help
of pip.

$ pip install python-ldap

To begin with, you will have to initialize the LDAP connection:

import ldap
 ldap_client = ldap.initialize("ldap://10.0.2.15:389/")

Then the following code will show how a simple BIND operation can be performed:

 ldap_client.simple_bind("dc=localdomain,dc=loc")

Then you can perform an ldap search. It requires you to specify the necessary
parameters, such as base DN, filter, and attributes. Here is an example of the syntax
that is required for searching for the users on an LDAP server:

ldap_client.search_s(base_dn, ldap.SCOPE_SUBTREE, filter, attrs)

Here is a complete example for finding user information by using the LDAP protocol:

import ldap

Open a connection
ldap_client = ldap.initialize("ldap://10.0.2.15:389/")

Chapter 5

[151]

Bind/authenticate with a user with apropriate rights to add
 objects

ldap_client.simple_bind("dc=localdomain,dc=loc")

base_dn = 'ou=users,dc=localdomain,dc=loc'
filter = '(objectclass=person)'
attrs = ['sn']

result = ldap_client.search_s(base_dn, ldap.SCOPE_SUBTREE,
 filter, attrs)
print(result)

The preceding code will search the LDAP directory subtree with the
ou=users,dc=localdomain,dc=loc base DN and the [sn] attributes.
The search is limited to the person objects.

Inspecting LDAP packets
If we analyze the communication between the LDAP client and the server, then we
can see the format of the LDAP search request and response. The parameters that we
have used in our code have a direct relationship with the searchRequest section of
an LDAP packet. As shown in the following screenshot produced by Wireshark, it
contains data, such as baseObject, scope and Filter.

Interacting with Remote Systems

[152]

The LDAP search request generates a server response, which has been shown here:

When the LDAP server returns the search response, we can see the format of the
response. As shown in the preceding screenshot, it contains the result of the search
and the associated attributes.

Here is an example of searching a user from an LDAP server:

#!/usr/bin/env python
import ldap
import ldap.modlist as modlist

LDAP_URI = "ldap://10.0.2.15:389/"
BIND_TO = "dc=localdomain,dc=loc"
BASE_DN = 'ou=users,dc=localdomain,dc=loc'
SEARCH_FILTER = '(objectclass=person)'
SEARCH_FILTER = ['sn']

if __name__ == '__main__':
 # Open a connection
 l = ldap.initialize(LDAP_URI)
 # bind to the server
 l.simple_bind(BIND_TO)
 result = l.search_s(BASE_DN, ldap.SCOPE_SUBTREE,
 SEARCH_FILTER, SEARCH_FILTER)
 print(result)

Chapter 5

[153]

In a properly configured LDAP machine, the preceding script will return a result that
will be similar to the following:

$ python 5_5_ldap_read_record.py
[('cn=Faruque Sarker,ou=users,dc=localdomain,dc=loc', {'sn':
 ['Sarker']})]

Sharing files with SAMBA
In a LAN environment, you will often need to share the files between different types
of machines, such as Windows and Linux machines. The protocol used for sharing
the files and the printers among these machines is either the Server Message Block
(SMB) protocol or its enhanced version called the Common Internet File System
(CIFS) protocol. CIFS runs over TCP/IP and it is used by the SMB clients and
servers. In Linux, you will find a package called Samba, which implements the
SMB protocol.

If you are running a Linux virtual machine within a Windows box with the help of
software, such as VirtualBox, then we can test file sharing among the Windows and
the Linux machines. Let us create a folder at C:\share on the Windows machine as
you can see in the following screenshot:

Interacting with Remote Systems

[154]

Now, right-click on the folder and then go to the Sharing tab. There are two buttons:
Share and Advanced sharing. You can click on the latter and it will open the
advanced sharing dialog box. Now you can adjust the share permissions. If this share
is active, then you will be able to see this share from your Linux virtual machine. If
you run the following command on your Linux box, then you will see the previously
defined file-share:

$smbclient -L 10.0.2.2 -U WINDOWS_USERNAME%PASSWPRD -W WORKGROUP
Domain=[FARUQUESARKER] OS=[Windows 8 9200] Server=[Windows 8 6.2]

 Sharename Type Comment
 --------- ---- -------
 ADMIN$ Disk Remote Admin
 C$ Disk Default share
 IPC$ IPC Remote IPC
 Share Disk

The following screenshot shows how you can share a folder under Windows 7
as discussed previously:

The preceding file share can be accessed from your Python script by using a
third-party module called pysmb. You can use the pip command-line tool for
installing pysmb:

$ pip install pysmb

Chapter 5

[155]

This module provides an SMBConnection class, where you can pass the necessary
parameters for accessing an SMB/CIFS share. For example, the following code will
help you to access a file-share:

from smb.SMBConnection import SMBConnection
smb_connection = SMBConnection(username, password,
 client_machine_name, server_name, use_ntlm_v2 = True,
 domain='WORKGROUP', is_direct_tcp=True)

If the preceding works, then the following assertion will be true:

assert smb_connection.connect(server_ip, 445)

You can list the shared files by using the listShares() method:

shares = smb_connection.listShares()
for share in shares:
 print share.name

If you can use the tmpfile module copying a file from your windows share. For
example, if you create a file in the C:\Share\test.rtf path, then the additional
code shown here will copy that file by using the SMB protocol:

import tempfile
files = smb_connection.listPath(share.name, '/')

for file in files:
 print file.filename

file_obj = tempfile.NamedTemporaryFile()
file_attributes, filesize = smb_connection.retrieveFile('Share',
 '/test.rtf', file_obj)
file_obj.close()

If we put the entire code into a single source file, then it will look like the
following listing:

#!/usr/bin/env python
import tempfile
from smb.SMBConnection import SMBConnection

SAMBA_USER_ID = 'FaruqueSarker'
PASSWORD = 'PASSWORD'
CLIENT_MACHINE_NAME = 'debian6box'
SAMBA_SERVER_NAME = 'FARUQUESARKER'
SERVER_IP = '10.0.2.2'

Interacting with Remote Systems

[156]

SERVER_PORT = 445
SERVER_SHARE_NAME = 'Share'
SHARED_FILE_PATH = '/test.rtf'

if __name__ == '__main__':

 smb_connection = SMBConnection(SAMBA_USER_ID, PASSWORD,
 CLIENT_MACHINE_NAME, SAMBA_SERVER_NAME, use_ntlm_v2 = True,
 domain='WORKGROUP', is_direct_tcp=True)
 assert smb_connection.smb_connectionect(SERVER_IP, SERVER_PORT
 = 445)
 shares = smb_connection.listShares()

 for share in shares:
 print share.name

 files = smb_connection.listPath(share.name, '/')
 for file in files:
 print file.filename

 file_obj = tempfile.NamedTemporaryFile()
 file_attributes, filesize =
 smb_connection.retrieveFile(SERVER_SHARE_NAME,
 SHARED_FILE_PATH, file_obj)

 # Retrieved file contents are inside file_obj
 file_obj.close()

Inspecting SAMBA packets
If we capture the SMABA packets on port 445, then we can see how the Windows
Server communicates with the Linux SAMBA client over the CIFS protocol.
In the following two screenshots, a detailed communication between the client
and the server, has been presented. The connection setup has been shown in the
following screenshot:

Chapter 5

[157]

The following screenshot shows how a file copy session is performed:

Interacting with Remote Systems

[158]

A typical SAMBA packet format has been shown in the following screenshot. The
important field of this packet is the NT_STATUS field. Typically, if the connection is
successful, then it will show STATUS_SUCESS. Otherwise, it will print a different code.
This is shown in the following screenshot:

Summary
In this chapter, we have come across several network protocols and Python libraries,
which are used for interacting with remote systems. SSH and SFTP are used for
securely connecting and transferring files to the remote hosts. FTP is still used as
a simple file transfer mechanism. However, it's not secure due to user credentials
being transferred over the wire as plain-text. We also examined Python libraries for
dealing with SNMP, LDAP, and SAMBA packets.

In the next chapter, one of the most common networking protocols—that is, DNS
and IP—will be discussed. We will explore TCP/IP networking using Python scripts.

[159]

IP and DNS
Every computer that is connected to a network needs an IP address. In Chapter 1,
Network Programming and Python, an introduction to TCP/IP networking was
presented. The IP address labels a machine's network interface with a numeric
identifier, which also identifies the location of the machine, albeit with limited
reliability. Domain Name System (DNS) is a core network service that maps the
names to the IP addresses and vice-verse. In this chapter, we will mainly focus
on manipulating the IP and DNS protocols with the help of Python. In addition
to this, we will briefly discuss the Network Time Protocol (NTP), which helps in
synchronizing the time with a centralized time server. The following topics will be
discussed here:

• Retrieving the network configuration of a local machine
• Manipulating the IP addresses
• The GeoIP look-ups
• Working with DNS
• Working with NTP

Retrieving the network configuration of a
local machine
Before doing anything else, let's ask in the Python language, What's my name?. In
networking terms, this is equivalent to finding out the machine's name or the host's
name. On the shell command-line, this can be discovered by using the hostname
command. In Python, you can do this by using the socket module.

>>> import socket

>>> socket.gethostname()

'debian6box.localdomain.loc'

IP and DNS

[160]

Now, we would like to see the local machine IP. This can be seen by using the
ifconfig command in Linux and by using the ipconfig command in the Windows
OS. But, we'd like to do this in Python by using the following built-in function:

>>> socket.gethostbyname('debian6box.localdomain.loc')

'10.0.2.15'

As you can see, this is the IP of the first network interface. It can also show us the IP
of the loopback interface (127.0.0.1) if your DNS or hostfile has not been configured
properly. In Linux/UNIX, the following line can be added to your /etc/hosts file
for obtaining the correct IP address:

10.0.2.15 debian6box.localdomain.loc debian6box

This process is known as a host-file based name resolution. You can send a query
to a DNS server and ask for the IP address of a specific host. If the name has been
registered properly, then you will get a response from the server. But, before making
a query to the remote server, let us first discover some more information about the
network interface and the gateway machine of your network.

In every LAN, a host is configured to act as a gateway, which talks to the outside
world. In order to find the network address and the netmask, we can use the
Python third-party library netifaces (version > 0.10.0). This will pull all the relevant
information. For example, you can call netifaces.gateways() for finding the
gateways that are configured to the outside world. Similarly, you can enumerate
the network interfaces by calling netifaces.interfaces(). If you would like to
know all the IP addresses of a particular interface eth0, then you can call netifaces.
ifaddresses('eth0'). The following code listing shows the way in which you can
list all the gateways and IP addresses of a local machine:

#!/usr/bin/env python
import socket
import netifaces

if __name__ == '__main__':
 # Find host info
 host_name = socket.gethostname()
 ip_address = socket.gethostbyname(host_name)
 print("Host name: {0}".format(host_name))

 # Get interfaces list
 ifaces = netifaces.interfaces()
 for iface in ifaces:

Chapter 6

[161]

 ipaddrs = netifaces.ifaddresses(iface)
 if netifaces.AF_INET in ipaddrs:
 ipaddr_desc = ipaddrs[netifaces.AF_INET]
 ipaddr_desc = ipaddr_desc[0]
 print("Network interface: {0}".format(iface))
 print("\tIP address: {0}".format(ipaddr_desc['addr']))
 print("\tNetmask: {0}".format(ipaddr_desc['netmask']))
 # Find the gateway
 gateways = netifaces.gateways()
 print("Default gateway:
 {0}".format(gateways['default'][netifaces.AF_INET][0]))

If you run this code, then this will print a summary of the local network
configuration, which will be similar to the following:

$ python 6_1_local_network_config.py

Host name: debian6box

Network interface: lo

 IP address: 127.0.0.1

 Netmask: 255.0.0.0

Network interface: eth0

 IP address: 10.0.2.15

 Netmask: 255.255.255.0

Default gateway: 10.0.2.2

Manipulating IP addresses
Often you will need to manipulate IP addresses and perform some sort of
operations on them. Python3 has a built-in ipaddress module to help you in
carrying out this task. It has convenient functions for defining the IP addresses
and the IP networks and for finding lots of useful information. For example, if you
would like to know how many IP addresses exist in a given subnet, for instance,
10.0.1.0/255.255.255.0 or 10.0.2.0/24, then you can find them with the help of
the code snippet shown here. This module will provide several classes and factory
functions; for example, the IP address and the IP network has separate classes. Each
class has a variant for both IP version 4 (IPv4) and IP version 6 (IPv6). Some of the
features have been demonstrated in the following section:

IP and DNS

[162]

IP network objects
Let us import the ipaddress module and define a net4 network.

>>> import ipaddress as ip
>>> net4 = ip.ip_network('10.0.1.0/24')

Now, we can find some useful information, such as netmask, the network/broadcast
address, and so on, of net4:

>>> net4.netmask
IP4Address(255.255.255.0)

The netmask properties of net4 will be displayed as an IP4Address object. If you
are looking for its string representation, then you can call the str() method, as
shown here:

>>> str(net4.netmask)
'255.255.255.0'

Similarly, you can find the network and the broadcast addresses of net4, by doing
the following:

>>> str(net4.network_address)
10.0.1.0
>>> str(net4.broadcast_address)
10.0.1.255

How many addresses does net4 hold in total? This can be found by using the
command shown here:

>>> net4.num_addresses
256

So, if we subtract the network and the broadcast addresses, then the total
available IP addresses will be 254. We can call the hosts() method on the net4
object. It will produce a Python generator, which will supply all the hosts as
IPv4Adress objects.

>>> all_hosts = list(net4.hosts())
>>> len(all_hosts)
254

You can access the individual IP addresses by following the standard Python list
access notation. For example, the first IP address would be the following:

>>> all_hosts[0]
IPv4Address('10.0.1.1')

Chapter 6

[163]

You can access the last IP address by using the list notation for accessing the last item
of a list, as shown here:

>>> all_hosts[-1]
IPv4Address('10.0.1.1')

We can also find the subnet information from the IPv4Network objects, as follows:

>>> subnets = list(net4.subnets())
>>> subnets
[IPv4Network('10.0.1.0/25'), IPv4Network('10.0.1.128/25')]

Any IPv4Network object can tell about its parent supernet, which is the opposite of
the subnet.

>>> net4.supernet()
IPv4Network('10.0.1.0/23')

Network interface objects
In the ipaddress module, a convenient class is used for representing an interface's
IP configuration in detail. The IPv4 Interface class takes an arbitrary address and
behaves like a network address object. Let us define and discuss our network
interface eth0, as shown in following screenshot:

IP and DNS

[164]

As you can see in the preceding screenshot, a network interface eth0 with the
IPv4Address class has been defined. It has some interesting properties, such as IP,
network address, and so on. In the same way as with the network objects, you can
check if the address is private, reserved, or multicast. These address ranges have
been defined in various RFC documents. The ipaddress module's help page will
show you the links to those RFC documents. You can search this information in other
places as well.

The IP address objects
The IP address classes have many more interesting properties. You can perform
some arithmetic and logical operations on those objects. For example, if an IP address
is greater than another IP address, then you can add numbers to the IP address
objects, and this will give you a corresponding IP address. Let's see a demonstration
of this in the following screenshot:

Demonstration of the ipaddress module

Chapter 6

[165]

Here, the eth0 interface has been defined with a private IP address, which is
192.168.1.1, and eth1 has been defined with another private IP address, which
is 192.168.2.1. Similarly the loopback interface lo is defined with IP address
127.0.0.1. As you can see, you can add numbers to the IP address and it will give
you the next IP address with the same sequence.

You can check if an IP is a part of a specific network. Here, a network net has been
defined by the network address, which is 192.168.1.0/24, and the membership of
eth0 and eth1 has been tested against that. A few other interesting properties, such
as is_loopback, is_private, and so on, have also been tested here.

Planning IP addresses for your local area
network
If you are wondering how to pick-up a suitable IP subnet, then you can experiment
with the ipaddress module. The following code snippet will show an example of
how to choose a specific subnet, based on the number of necessary host IP addresses
for a small private network:

#!/usr/bin/env python
import ipaddress as ip

CLASS_C_ADDR = '192.168.0.0'

if __name__ == '__main__':
 not_configed = True
 while not_configed:
 prefix = input("Enter the prefixlen (24-30): ")
 prefix = int(prefix)
 if prefix not in range(23, 31):
 raise Exception("Prefixlen must be between 24 and 30")
 net_addr = CLASS_C_ADDR + '/' + str(prefix)
 print("Using network address:%s " %net_addr)
 try:
 network = ip.ip_network(net_addr)
 except:
 raise Exception("Failed to create network object")
 print("This prefix will give %s IP addresses"
 %(network.num_addresses))
 print("The network configuration will be")
 print("\t network address: %s"
 %str(network.network_address))
 print("\t netmask: %s" %str(network.netmask))

IP and DNS

[166]

 print("\t broadcast address: %s"
 %str(network.broadcast_address))
 first_ip, last_ip = list(network.hosts())[0],
 list(network.hosts())[-1]
 print("\t host IP addresses: from %s to %s" %(first_ip,
 last_ip))
 ok = input("Is this configuration OK [y/n]? ")
 ok = ok.lower()
 if ok.strip() == 'y':
 not_configed = False

If you run this script, then it will show an output similar to the following:

python 6_2_net_ip_planner.py

Enter the prefixlen (24-30): 28

Using network address:192.168.0.0/28

This prefix will give 16 IP addresses

The network configuration will be

 network address: 192.168.0.0

 netmask: 255.255.255.240

 broadcast address: 192.168.0.15

 host IP addresses: from 192.168.0.1 to 192.168.0.14

Is this configuration OK [y/n]? n

Enter the prefixlen (24-30): 26

Using network address:192.168.0.0/26

This prefix will give 64 IP addresses

The network configuration will be

 network address: 192.168.0.0

 netmask: 255.255.255.192

 broadcast address: 192.168.0.63

 host IP addresses: from 192.168.0.1 to 192.168.0.62

Is this configuration OK [y/n]? y

Chapter 6

[167]

GeoIP look-ups
At times, it will be necessary for many applications to look-up the location of the
IP addresses. For example, many website owners can be interested in tracking the
location of their visitors and in classifying their IPs according to criteria, such as
country, city, and so on. There is a third-party library called python-geoip, which
has a robust interface for giving you the answer to your IP location query. This
library is provided by MaxMind, which also provides the option for shipping a
recent version of the Geolite2 database as the python-geoip-geolite2 package.
This includes the GeoLite2 data created by MaxMind, which is available at www.
maxmind.com under the creative commons Attribution-ShareAlike 3.0 Unported
License. You can also buy a commercial license from their website.

Let's see an example of how to use this Geo-lookup library.:

import socket
from geoip import geolite2
import argparse

if __name__ == '__main__':
 # Setup commandline arguments
 parser = argparse.ArgumentParser(description='Get IP Geolocation
info')
 parser.add_argument('--hostname', action="store", dest="hostname",
required=True)

 # Parse arguments
 given_args = parser.parse_args()
 hostname = given_args.hostname
 ip_address = socket.gethostbyname(hostname)
 print("IP address: {0}".format(ip_address))

 match = geolite2.lookup(ip_address)
 if match is not None:
 print('Country: ',match.country)
 print('Continent: ',match.continent)
 print('Time zone: ', match.timezone)

www.maxmind.com
www.maxmind.com

IP and DNS

[168]

This script will show an output similar to the following:

$ python 6_3_geoip_lookup.py --hostname=amazon.co.uk

IP address: 178.236.6.251

Country: IE

Continent: EU

Time zone: Europe/Dublin

You can find more information about this package from the developer's website,
which is at http://pythonhosted.org/python-geoip/.

DNS look-ups
The IP address can be translated into human readable strings called domain
names. DNS is a big topic in the world of networking. In this section, we will
create a DNS client in Python, and see how this client will talk to the server
by using Wirshark.

A few DNS cleint libraries are available from PyPI. We will focus on the dnspython
library, which is available at http://www.dnspython.org/. You can install this
library by using either the easy_install command or the pip command:

$ pip install dnspython

Making a simple query regarding the IP address of a host is very simple. You can use
the dns.resolver submodule, as follows:

import dns.resolver

answers = dns.resolver.query('python.org', 'A')

for rdata in answers:

 print('IP', rdata.to_text())

If you want to make a reverse look-up, then you need to use the dns.reversename
submodule, as shown here:

import dns.reversename

name = dns.reversename.from_address("127.0.0.1")

print name

print dns.reversename.to_address(name)

http://pythonhosted.org/python-geoip/
http://www.dnspython.org/

Chapter 6

[169]

Now, let's create an interactive DNS client script that will do a complete look-up of
the possible records, as shown here:

import dns.resolver

if __name__ == '__main__':
 loookup_continue = True
 while loookup_continue:
 name = input('Enter the DNS name to resolve: ')
 record_type = input('Enter the query type
 [A/MX/CNAME]: ')
 answers = dns.resolver.query(name, record_type)
 if record_type == 'A':
 print('Got answer IP address: %s' %[x.to_text() for x
 in answers])
 elif record_type == 'CNAME':
 print('Got answer Aliases: %s' %[x.to_text() for x in
 answers])
 elif record_type == 'MX':
 for rdata in answers:
 print('Got answers for Mail server records:')
 print('Mailserver', rdata.exchange.to_text(), 'has
 preference', rdata.preference)
 print('Record type: %s is not implemented'
 %record_type)
 lookup_more = input("Do you want to lookup more
 records? [y/n]: ")
 if lookup_more.lower() == 'n':
 loookup_continue = False

If you run this script with some input, then you will have an output similar to
the following:

$ python 6_4_dns_client.py

Enter the DNS name to resolve: google.com

Enter the query type [A/MX/CNAME]: MX

Got answers for Mail server records:

Mailserver alt4.aspmx.l.google.com. has preference 50

Got answers for Mail server records:

Mailserver alt2.aspmx.l.google.com. has preference 30

Got answers for Mail server records:

IP and DNS

[170]

Mailserver alt3.aspmx.l.google.com. has preference 40

Got answers for Mail server records:

Mailserver aspmx.l.google.com. has preference 10

Got answers for Mail server records:

Mailserver alt1.aspmx.l.google.com. has preference 20

Do you want to lookup more records? [y/n]: y

Enter the DNS name to resolve: www.python.org

Enter the query type [A/MX/CNAME]: A

Got answer IP address: ['185.31.18.223']

Do you want to lookup more records? [y/n]: y

Enter the DNS name to resolve: pypi.python.org

Enter the query type [A/MX/CNAME]: CNAME

Got answer Aliases: ['python.map.fastly.net.']

Do you want to lookup more records? [y/n]: n

Inspecting DNS client/server communication
In previous chapters, perhaps you noticed how we captured network packets
between the client and the server by using Wireshark. Here is an example of the
session capturing, while a Python package was being installed from PyPI:

FDNS client/server communication

Chapter 6

[171]

In Wireshark you can specify port 53 by navigating to Capture | Options |
Capture filter. This will capture all the DNS packets that were sent to/from
your machine.

As you can see in the following screenshot, the client and the server have several
request/response cycles the DNS records. It was started with a standard request for
the host's address (A) and it was followed by a suitable response.

IP and DNS

[172]

If you look deep inside a packet, then you can see the request format of the response
from the server, as shown in the following screenshot:

NTP clients
The final topic that will be covered in this chapter is NTP. Synchronizing time
with a centralized time server is a key step in any corporate network. We would
like to compare the log files between various servers and see if the timestamp on
each server is accurate; the log events may not then co-relate. Many authentication
protocols, such as Kerberos, strictly rely on the accuracy of the time stamp reported
by the client to the servers. Here, a third-party Python ntplib library will be
introduced, and then the communication between the NTP client and the server
will be investigated.

Chapter 6

[173]

To create an NTP client, you need to call the ntplib's NTPCLient class.

import ntplib

from time import ctime

c = ntplib.NTPClient()

response = c.request('pool.ntp.org')

print ctime(response.tx_time)

Here, we have selected pool.ntp.org, which is a load-balanced webserver.
So, a pool of the NTP servers will be ready to respond to the client's request.
Let's find more information regarding this from the response that was returned
by an NTP server.

import ntplib
from time import ctime

HOST_NAME = 'pool.ntp.org'

if __name__ == '__main__':
 params = {}
 client = ntplib.NTPClient()
 response = client.request(HOST_NAME)
 print('Received time: %s' %ctime(response.tx_time))
 print('ref_clock: ',ntplib.ref_id_to_text(response.ref_id,
 response.stratum))
 print('stratum: ',response.stratum)
 print('last_update: ', response.ref_time)
 print('offset: %f' %response.offset)
 print('precision: ', response.precision)
 print('root_delay: %.6f' %response.root_delay)
 print('root_dispersion: %.6f' %response.root_dispersion)

The detailed response will look like the following:

$ python 6_5_ntp_client.py

Received time: Sat Feb 28 17:08:29 2015

ref_clock: 213.136.0.252

stratum: 2

last_update: 1425142998.2

offset: -4.777519

precision: -23

root_delay: 0.019608

root_dispersion: 0.036987

IP and DNS

[174]

The preceding information was supplied by the NTP server to the client. This
information can be used to determine the accuracy of the supplied time server. For
example, the stratum value 2 indicates that the NTP server will query another NTP
server with the stratum value 1, which may have a directly attached time source. For
more information about the NTP protocol, you may either read the RFC 958 document
at https://tools.ietf.org/html/rfc958 or visit http://www.ntp.org/.

Inspecting the NTP client/server
communication
You may be able to learn more about NTP by looking at captured packets. For this
purpose, the preceding NTP client/server communication has been captured as
shown in the following two screenshots:

The first screenshot shows the NTP client request. If you look inside the flag fields,
then you will see the client's version number.

https://tools.ietf.org/html/rfc958
http://www.ntp.org/

Chapter 6

[175]

Similarly, the NTP server response has been shown in the following screenshot:

Summary
In this chapter, the standard Python libraries for IP address manipulation were
discussed. Two third-party libraries dnspython and ntplib have been presented to
interact with the DNS and the NTP servers respectively. As you have seen through
the aforementioned examples, these libraries provide you with the necessary
interface for talking to those services.

In the following chapter, we will introduce socket programming in Python.
This is another interesting and popular topic for networking programmers.
There, you will find both low and high-level Python libraries for programming
with BSD sockets.

[177]

Programming with Sockets
After you have interacted with various clients/servers in Python, you will be keen to
create your own custom clients and servers for any protocol of your choice. Python
provides a good coverage on the low-level networking interface. It all starts with
BSD socket interface. As you can assume, Python has a socket module that gives
you the necessary functionality to work with the socket Interface. If you have ever
done socket programming in any other language like C/C++, you will love the
Python socket module.

In this chapter, we will explore the socket module by creating a diverse range of
Python scripts.

The following are the highlights of this chapter:

• Basics of sockets
• Working with TCP sockets
• Working with UDP sockets
• TCP port forwarding
• Non-blocking socket I/O
• Securing sockets with SSL/TLS
• Creating custom SSL client/server

Basics of sockets
Network programming in any programming language can begin with sockets. But
what is a socket? Simply put, a network socket is a virtual end point where entities
can perform inter-process communication. For example, one process sitting in a
computer, exchanges data with another process sitting on the same or another
computer. We typically label the first process which initiates the communication
as the client and the latter one as the server.

Programming with Sockets

[178]

Python has quite an easy way to start with the socket interface. In order to understand
this better, let's see the big picture first. In the following figure, a flow of client/server
interaction is shown. This will give you an idea of how to use the socket API.

client/server interaction through socket

In the interaction between a typical client and a server, the server process has to work
a bit more, as you may have thought. After creating a socket object, the server process
binds that socket to a particular IP address and port. This is much like a telephone
connection with an extension number. In a corporate office, after a new employee
has been allocated with his desk phone, usually he or she will be assigned to a new
extension number. So, if anybody makes a phone call to this employee, the connection
can be established using his phone number and extension. After the successful binding,
the server process will start listening for a new client connection. For a valid client
session, the server process can accept the request of the client process. At this point, we
can say that the connection between the server and the client has been established.

Chapter 7

[179]

Then the client/server enters into the request/response loop. The client process
sends data to the server process, and the server process processes the data and
returns a response to the client. When the client process finishes, it exits by closing
down the connection. At that moment, the server process probably goes back to the
listening state.

The above interaction between client and server is a very simplified representation
of the actual reality. In practice, any production server process has multiple threads
or subprocesses to handle concurrent connections from thousands of clients over
respective virtual channels.

Working with TCP sockets
Creating a socket object in Python is very straightforward. You just need to import
the socket module and call the socket() class:

from socket import*
import socket

#create a TCP socket (SOCK_STREAM)
s = socket.socket(family=AF_INET, type=SOCK_STREAM, proto=0)
print('Socket created')

Traditionally, the class takes plenty of parameters. Some of them are listed in
the following:

• Socket family: This is the domain of socket, such as AF_INET (about
90 percent of the sockets of the Internet fall under this category) or AF_UNIX,
which is sometimes used as well. In Python 3, you can create a Bluetooth
socket using AF_BLUETOOTH.

• Socket type: Depending on your need, you need to specify the type of
socket. For example, TCP and UDP-based sockets are created by specifying
SOCK_STREAM and SOCK_DGRAM, respectively.

• Protocol: This specifies the variation of protocol within a socket family
and type. Usually, it is left as zero.

For many reasons, socket operations may not be successful. For example, if you
don't have permission to access a particular port as a normal user, you may not be
able to bind to a socket. This is why it is a good idea to do proper error handling
when creating a socket or doing some network-bound communication.

Programming with Sockets

[180]

Let's try to connect a client socket to a server process. The following code is an
example of TCP client socket that makes a connection to server socket:

import socket
import sys

if __name__ == '__main__':

 try:
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 except socket.error as err:
 print("Failed to crate a socket")
 print("Reason: %s" %str(err))
 sys.exit();

 print('Socket created')

 target_host = input("Enter the target host name to connect: ")
 target_port = input("Enter the target port: ")

 try:
 sock.connect((target_host, int(target_port)))
 print("Socket Connected to %s on port: %s" %(target_host,
 target_port))
 sock.shutdown(2)
 except socket.error as err:
 print("Failed to connect to %s on port %s" %(target_host,
 target_port))
 print("Reason: %s" %str(err))
 sys.exit();

If you run the preceding TCP client, an output similar to the following will be shown:

python 7_1_tcp_client_socket.py

Socket created

Enter the target host name to connect: 'www.python.org'

Enter the target port: 80

Socket Connected to www.python.org on port: 80

However, if socket creation has failed for some reason, such as invalid DNS,
an output similar to the following will be shown:

python 7_1_tcp_client_socket.py

Socket created

Chapter 7

[181]

Enter the target host name to connect:
 www.asgdfdfdkflakslalalasdsdsds.invalid

Enter the target port: 80

Failed to connect to www.asgdfdfdkflakslalalasdsdsds.invalid on port
 80

Reason: [Errno -2] Name or service not known

Now, let's exchange some data with the server. The following code is an example of a
simple TCP client:

import socket

HOST = 'www.linux.org' # or 'localhost'
PORT = 80
BUFSIZ = 4096
ADDR = (HOST, PORT)

if __name__ == '__main__':
 client_sock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 client_sock.connect(ADDR)

 while True:
 data = 'GET / HTTP/1.0\r\n\r\n'
 if not data:
 break
 client_sock.send(data.encode('utf-8'))
 data = client_sock.recv(BUFSIZ)
 if not data:
 break
 print(data.decode('utf-8'))

 client_sock.close()

If you look carefully, you can see that the preceding code actually created a raw
HTTP client that fetches a web page from a web server. It sends an HTTP GET
request to pull the home page:

python 7_2_simple_tcp_client.py

HTTP/1.1 200 OK

Date: Sat, 07 Mar 2015 16:23:02 GMT

Server: Apache

Last-Modified: Mon, 17 Feb 2014 03:19:34 GMT

Accept-Ranges: bytes

Programming with Sockets

[182]

Content-Length: 111

Connection: close

Content-Type: text/html

<html><head><META HTTP-EQUIV="refresh" CONTENT="0;URL=/cgi-
 sys/defaultwebpage.cgi"></head><body></body></html>

Inspecting the client/server communication
The interaction between the client and server through the exchange of network
packets can be analyzed using any network packet capturing tool, such as Wireshark.
You can configure Wireshark to filter packets by port or host. In this case, we can
filter by port 80. You can get the options under the Capture | Options menu and
type port 80 in the input box next to the Capture Filter option, as shown in the
following screenshot:

Chapter 7

[183]

In the Interface option, we choose to capture packets passing through any interface.
Now, if you run the preceding TCP client to connect to www.linux.org, you can see
the sequence of packets exchanged in Wireshark, as shown in the following screenshot:

As you can see, the first three packets establish the TCP connection by a three-way
handshake process between the client and server. We are more interested in the fourth
packet that makes an HTTP GET request to the server. If you double-click the selected
row, you can see the details of the HTTP request, as shown in the following screenshot:

Programming with Sockets

[184]

As you can see, the HTTP GET request has other components such as Request URI,
version, and so on. Now you can check the HTTP response from the web server
to your client. It has come after the TCP acknowledgment packet, that is, the sixth
packet. Here, the server typically sends an HTTP response code (in this case 200),
content length, and the data or web page content. The structure of this packet is
shown in the following screenshot:

From the preceding analysis of the interaction between the client and server, you can
now understand, at a basic level, what happens behind the scenes when you visit
a web page using your web browser. In the next section, you will be shown how to
create your own TCP server and examine the interactions between your personal
TCP client and server.

Chapter 7

[185]

TCP servers
As you understood from the very first client/server interaction diagram, the server
process needs to carry out a bit of extra work. It needs to bind to a socket address
and listen for incoming connections. The following code snippet shows how to
create a TCP server:

import socket
from time import ctime

HOST = 'localhost'
PORT = 12345
BUFSIZ = 1024
ADDR = (HOST, PORT)

if __name__ == '__main__':
 server_socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 server_socket.bind(ADDR)
 server_socket.listen(5)
 server_socket.setsockopt(socket.SOL_SOCKET,
 socket.SO_REUSEADDR, 1)

 while True:
 print('Server waiting for connection...')
 client_sock, addr = server_socket.accept()
 print('Client connected from: ', addr)

 while True:
 data = client_sock.recv(BUFSIZ)
 if not data or data.decode('utf-8') == 'END':
 break
 print("Received from client: %s" % data.decode('utf-
 8'))
 print("Sending the server time to client: %s"
 %ctime())
 try:
 client_sock.send(bytes(ctime(), 'utf-8'))
 except KeyboardInterrupt:
 print("Exited by user")
 client_sock.close()
 server_socket.close()

Programming with Sockets

[186]

Let's modify our previous TCP client to send arbitrary data to any server.
The following is an example of an enhanced TCP client:

import socket

HOST = 'localhost'
PORT = 12345
BUFSIZ = 256

if __name__ == '__main__':
 client_sock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 host = input("Enter hostname [%s]: " %HOST) or HOST
 port = input("Enter port [%s]: " %PORT) or PORT

 sock_addr = (host, int(port))
 client_sock.connect(sock_addr)

 payload = 'GET TIME'
 try:
 while True:
 client_sock.send(payload.encode('utf-8'))
 data = client_sock.recv(BUFSIZ)
 print(repr(data))
 more = input("Want to send more data to server[y/n]
 :")
 if more.lower() == 'y':
 payload = input("Enter payload: ")
 else:
 break
 except KeyboardInterrupt:
 print("Exited by user")

 client_sock.close()

If you run the preceding TCP server in one console and the TCP client in another
console, you can see the following interaction between the client and server.
After running the TCP server script you will get the following output:

python 7_3_tcp_server.py

Server waiting for connection...

Client connected from: ('127.0.0.1', 59961)

Chapter 7

[187]

Received from client: GET TIME

Sending the server time to client: Sun Mar 15 12:09:16 2015

Server waiting for connection...

When you will run the TCP client script on another terminal then you will get the
following output:

python 7_4_tcp_client_socket_send_data.py

Enter hostname [www.linux.org]: localhost

Enter port [80]: 12345

b'Sun Mar 15 12:09:16 2015'

Want to send more data to server[y/n] :n

Inspecting client/server interaction
Now, once again, you can configure Wireshark to capture packets, as discussed
in the last section. But, in this case, you need to specify the port that your
server is listening on (in the preceding example it's 12345), as shown in the
following screenshot:

Programming with Sockets

[188]

As we are capturing packets on a non-standard port, Wireshark doesn't decode
it in the Data section (as shown in the middle pane of the preceding screenshot).
However, you can see the decoded text on the bottom pane where the server's
timestamp is shown on the right side.

Working with UDP sockets
Unlike TCP, UDP doesn't check for errors in the exchanged datagram. We can create
UDP client/servers similar to the TCP client/servers. The only difference is you have
to specify SOCK_DGRAM instead of SOCK_STREAM when you create the socket object.

Let us create a UDP server. Use the following code to create the UDP server:

from socket import socket, AF_INET, SOCK_DGRAM
maxsize = 4096

sock = socket(AF_INET,SOCK_DGRAM)
sock.bind(('',12345))
while True:
 data, addr = sock.recvfrom(maxsize)
 resp = "UDP server sending data"
 sock.sendto(resp,addr)

Now, you can create a UDP client to send some data to the UDP server, as shown in
the following code:

from socket import socket, AF_INET, SOCK_DGRAM

MAX_SIZE = 4096
PORT = 12345

if __name__ == '__main__':
 sock = socket(AF_INET,SOCK_DGRAM)
 msg = "Hello UDP server"
 sock.sendto(msg.encode(),('', PORT))
 data, addr = sock.recvfrom(MAX_SIZE)
 print("Server says:")
 print(repr(data))

In the preceding code snippet, the UDP client sends a single line of text Hello UDP
server and receives the response from the server. The following screenshot shows
the request sent from the client to the server:

Chapter 7

[189]

The following screenshot shows the server's response sent to the client. After
inspecting UDP client/server packets, we can easily see that UDP is much
simpler than TCP. It's often termed as a connectionless protocol as there is no
acknowledgment or error checking involved.

Programming with Sockets

[190]

TCP port forwarding
One of the interesting experiments we can do with TCP socket programming is to set
up a TCP port forwarding. This has very good use cases. Say, for example, if you are
running an insecure program like FTP in a public server that doesn't have any SSL
capability to do secure communication (FTP passwords can be seen clear-text over
the wires). Since this server is accessible from Internet, you must not login with your
password to the server without ensuring that the passwords are encrypted. One way
of doing this is to use Secure FTP or SFTP. We can use a simple SSH tunnel in order
to show how this approach works. So, any communication between your local FTP
client and remote FTP server will happen via this encrypted channel.

Let us run the FTP program to the same SSH server host. But create an SSH tunnel
from your local machine that will give you a local port number and will directly
connect you to the remote FTP server daemon.

Python has a third party sshtunnel module that is a wrapper around the Paramiko's
SSH library. The following is a code snippet of TCP port forwarding that shows how
the concept can be realized:

import sshtunnel
from getpass import getpass

ssh_host = '192.168.56.101'
ssh_port = 22
ssh_user = 'YOUR_SSH_USERNAME'

REMOTE_HOST = '192.168.56.101'
REMOTE_PORT = 21

from sshtunnel import SSHTunnelForwarder
ssh_password = getpass('Enter YOUR_SSH_PASSWORD: ')

server = SSHTunnelForwarder(
 ssh_address=(ssh_host, ssh_port),
 ssh_username=ssh_user,
 ssh_password=ssh_password,

Chapter 7

[191]

 remote_bind_address=(REMOTE_HOST, REMOTE_PORT))

server.start()
print('Connect the remote service via local port: %s'
 %server.local_bind_port)
work with FTP SERVICE via the `server.local_bind_port.
try:
 while True:
 pass
except KeyboardInterrupt:
 print("Exiting user user request.\n")
 server.stop()

Let us capture the packet transfer from the local machine 192.168.0.102 to the
remote machine 192.168.0.101. You will see all network traffic is encrypted. When
you run the preceding script, you will get a local port number. Use the ftp command
to connect to that local port number:

$ ftp <localhost> <local_bind_port>

If you run the preceding command, then you will get the following screenshot:

In the preceding screenshot, you cannot see any FTP traffic. As you can see, first we
connect to local port 5815 (see the first three packets) and suddenly an encrypted
session started with the remote host. You can continue watching the remote traffic,
but there is no trace of FTP.

Programming with Sockets

[192]

If you can also capture packets on your remote machine (192.168.56.101),
you could see FTP traffic, as shown in the following screenshot:

Interestingly, you can see your FTP password sent from the local machine (over SSH
tunnel) as clear-text only on your remote box, not over the network, as shown in the
following screenshot:

So, in this way, you can hide any sensitive network traffic in an SSL tunnel. Not only
the FTP, you can also pass remote desktop session encrypted over an SSH channel.

Chapter 7

[193]

A non-blocking socket I/O
In this section, we will see a small example code snippet to test a non-blocking socket
I/O. This is useful if you know that the synchronous blocking connection is not
necessary for your program. The following is an example of non-blocking I/O:

import socket

if __name__ == '__main__':
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.setblocking(0)
 sock.settimeout(0.5)
 sock.bind(("127.0.0.1", 0))

 socket_address =sock.getsockname()
 print("Asynchronous socket server launched on socket: %s"
 %str(socket_address))
 while(1):
 sock.listen(1)

This script will run a socket server and listen in a non-blocking style. This means you
can connect more clients who won't be necessarily blocked for I/O.

Securing sockets with TLS/SSL
You have probably come across the discussion around secure web communication
using Secure Socket Layer (SSL), or more precisely Transport Layer Security (TLS),
which is adopted by many other high-level protocols. Let us see how we can wrap a
plain sockets connection with SSL. Python has the built-in ssl module, which serves
this purpose.

In this example, we would like to create a plain TCP socket and connect to an HTTPS
enabled web server. Then, we can wrap that connection using SSL and check the
various properties of the connection. For example, to check the identity of the remote
web server, we can see if the hostname is same in the SSL certificate as we expect it to
be. The following is an example of a secure socket-based client:

import socket
import ssl
from ssl import wrap_socket, CERT_NONE, PROTOCOL_TLSv1, SSLError
from ssl import SSLContext

Programming with Sockets

[194]

from ssl import HAS_SNI

from pprint import pprint

TARGET_HOST = 'www.google.com'
SSL_PORT = 443
Use the path of CA certificate file in your system
CA_CERT_PATH = '/usr/local/lib/python3.3/dist-
 packages/requests/cacert.pem'

def ssl_wrap_socket(sock, keyfile=None, certfile=None,
 cert_reqs=None, ca_certs=None, server_hostname=None,
 ssl_version=None):

 context = SSLContext(ssl_version)
 context.verify_mode = cert_reqs

 if ca_certs:
 try:
 context.load_verify_locations(ca_certs)
 except Exception as e:
 raise SSLError(e)

 if certfile:
 context.load_cert_chain(certfile, keyfile)

 if HAS_SNI: # OpenSSL enabled SNI
 return context.wrap_socket(sock,
 server_hostname=server_hostname)

 return context.wrap_socket(sock)

if __name__ == '__main__':
 hostname = input("Enter target host:") or TARGET_HOST
 client_sock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 client_sock.connect((hostname, 443))

 ssl_socket = ssl_wrap_socket(client_sock,
 ssl_version=PROTOCOL_TLSv1,
 cert_reqs=ssl.CERT_REQUIRED,
 ca_certs=CA_CERT_PATH,
 server_hostname=hostname)

 print("Extracting remote host certificate details:")

Chapter 7

[195]

 cert = ssl_socket.getpeercert()
 pprint(cert)
 if not cert or ('commonName', TARGET_HOST) not in
 cert['subject'][4]:
 raise Exception("Invalid SSL cert for host %s. Check if
 this is a man-in-the-middle attack!")
 ssl_socket.write('GET / \n'.encode('utf-8'))
 #pprint(ssl_socket .recv(1024).split(b"\r\n"))
 ssl_socket.close()
 client_sock.close()

If you run the preceding example, you will see the details of the SSL certificate of a
remote web server such as www.google.com. Here we have created a TCP socket
and connected it to HTTPS port 443. Then that socket connection is wrapped
into SSL packets using our ssl_wrap_socket() function. This function takes
the following parameters as arguments:

• sock: TCP socket
• keyfile: SSL private key file path
• certfile: SSL public certificate path
• cert_reqs: Confirmation if certificate is required from other side to make

connection and if validation test is required
• ca_certs: Public certificate authority certificate path
• server_hostname: The target remote server's hostname
• ssl_version: The intended SSL version to be used by the client

At the beginning of the SSL socket wrapping process, we have created an SSL context
using the SSLContext() class. This is necessary to set up the SSL connection specific
properties. Instead of using a custom context, we could also use a default context,
supplied by default with the ssl module, using the create_default_context()
function. You can specify whether you'd like to create client or server side sockets
using a constant. The following is an example for creating a client side socket:

context = ssl.create_default_context(Purpose.SERVER_AUTH)

The SSLContext object takes the SSL version argument, that in our example is set to
PROTOCOL_TLSv1, or you should use the latest version. Note that SSLv2 and SSLv3
are broken and must not be used in any production code for serious security issues.

In the preceding example, CERT_REQUIRED indicates that server certificate is
necessary for the connection to continue, and this certificate will be validated later.

Programming with Sockets

[196]

If the CA certificate parameter has been presented with a certificate path, the
load_verify_locations() method is used to load the CA certificate files.
This will be used to verify the peer server certificates. If you'd like to use the
default certificate path on your system, you'd probably call another context
method; load_default_certs(purpose=Purpose.SERVER_AUTH).

When we operate on server side, usually the load_cert_chain() method is used
to load the key and certificate file so that clients can verify the server's authenticity.

Finally, the wrap_socket() method is called to return an SSL wrapped socket. Note
that, if OpenSSL library comes with Server Name Indication (SNI) support enabled,
you can pass the remote server's host name while wrapping the socket. This is useful
when the remote server uses different SSL certificates for different secure services
using a single IP address, for example, name-based virtual hosting.

If you run the preceding SSL client code, you will see the various properties of the
SSL certificate of the remote server, as shown in the following screenshot. This is
used to verify the authenticity of the remote server by calling the getpeercert()
method and comparing it with the returned hostname.

Chapter 7

[197]

Interestingly, if any other fake web server wants to pretend to be the Google's web
server, it simply can't do that, provided that you check the SSL certificate that is
signed by an accredited certificate authority, unless an accredited CA has been
compromised/subverted. This form of attack to your web browser is commonly
referred to as the man in the middle (MITM) attack.

Inspecting standard SSL client/server
communication
The following screenshot shows the interaction between the SSL client and the
remote server:

Programming with Sockets

[198]

Let us examine the SSL handshake process between the client and the server. In
the first step of a SSL handshake, the client sends a Hello message to the remote
server saying what it is capable of, in terms handling key files, encrypting messages,
doing message integrity checks, and so on. In the following screenshot, you can see
that the client is presenting a set of 38 cipher suites to the server to choose relevant
algorithms. It also sends the TLS version number 1.0 and a random number to
generate a master secret for encrypting the subsequent message exchanges. This
is helpful for preventing any third party to look inside the packets. The random
numbers seen in the hello messages are used to generate the pre-master secret,
which both ends will process further to arrive at the master secret, and then use
that to generate the symmetric key.

In the second packet from server to client, the server selects the cipher suite
TLS_ECDHE_RSA_WITH_RC4_128_SHA for the purpose of connecting to the client.
This roughly means the server wants to use the RSA algorithm for key handling,
RC4 for encryption, and SHA for integrity checking (hashing). This is shown in the
following screenshot:

Chapter 7

[199]

In the second phase of the SSL handshake, the server sends an SSL certificate to the
client. This certificate is issued by a CA, as mentioned earlier. It contains a serial
number, public key, validity period, and the details of the subject and the issuer.
The following screenshot show the remote server certificate. Can you locate the
server's public key inside the packet?

Programming with Sockets

[200]

In the third phase of the handshake, the client exchanges a key and calculates a
master secret to encrypt the messages and continue further communications. Client
also sends the request to change the cipher specification that was agreed on the
previous phase. It then indicates to start encrypting the message. The following
screenshot shows this process:

In the final task of the SSL handshake process, a new session ticket is generated by
the server for the client's particular session. This happens due to a TLS extension
where the client advertises its support by sending an empty session ticket extension
in the client Hello message. The server answers with an empty session ticket
extension in its server Hello message. This session ticket mechanism enables the
client to remember the whole session state, and the server becomes less engaged in
maintaining a server-side session cache. The following screenshot shows an example
for presenting an SSL session ticket:

Chapter 7

[201]

Creating a custom SSL client/server
So far, we have been dealing more with the SSL or TLS client. Now, let us have a
look at the server side briefly. As you are already familiar with the TCP/UDP socket
server creation process, let's skip that part and just concentrate on the SSL wrapping
part. The following code snippet shows an example of a simple SSL server:

import socket
import ssl

SSL_SERVER_PORT = 8000

if __name__ == '__main__':
 server_socket = socket.socket()

Programming with Sockets

[202]

 server_socket.bind(('', SSL_SERVER_PORT))
 server_socket.listen(5)
 print("Waiting for ssl client on port %s" %SSL_SERVER_PORT)
 newsocket, fromaddr = server_socket.accept()
 # Generate your server's public certificate and private key
 pairs.
 ssl_conn = ssl.wrap_socket(newsocket, server_side=True,
 certfile="server.crt", keyfile="server.key",
 ssl_version=ssl.PROTOCOL_TLSv1)
 print(ssl_conn.read())
 ssl_conn.write('200 OK\r\n\r\n'.encode())
 print("Served ssl client. Exiting...")
 ssl_conn.close()
 server_socket.close()

As you can see, the server socket is wrapped with the wrap_socket() method,
which uses some intuitive parameters such as certfile, keyfile, and SSL version
number. You can easily generate the certificate by following any step-by-step guide
found on the Internet. For example, http://www.akadia.com/services/ssh_test_
certificate.html suggests to generate the SSL certificate in a few steps.

Now, let's make a simplified version of a SSL client to talk with the above SSL server.
The following code snippet shows an example of a simple SSL client:

from socket import socket
import ssl

from pprint import pprint

TARGET_HOST ='localhost'
TARGET_PORT = 8000
CA_CERT_PATH = 'server.crt'

if __name__ == '__main__':

 sock = socket()
 ssl_conn = ssl.wrap_socket(sock, cert_reqs=ssl.CERT_REQUIRED,
 ssl_version=ssl.PROTOCOL_TLSv1, ca_certs=CA_CERT_PATH)
 target_host = TARGET_HOST
 target_port = TARGET_PORT
 ssl_conn.connect((target_host, int(target_port)))

http://www.akadia.com/services/ssh_test_certificate.html
http://www.akadia.com/services/ssh_test_certificate.html

Chapter 7

[203]

 # get remote cert
 cert = ssl_conn.getpeercert()
 print("Checking server certificate")
 pprint(cert)
 if not cert or ssl.match_hostname(cert, target_host):
 raise Exception("Invalid SSL cert for host %s. Check if
 this is a man-in-the-middle attack!" %target_host)
 print("Server certificate OK.\n Sending some custom request...
 GET ")
 ssl_conn.write('GET / \n'.encode('utf-8'))
 print("Response received from server:")
 print(ssl_conn.read())
 ssl_conn.close()

Running the client/server will show output similar to the following screenshot.
Can you see any difference in comparison to our last example client/server
communication?

Programming with Sockets

[204]

Inspecting interaction between a custom SSL
client/server
Let us inspect the SSL client/server interaction once again in order to observe the
differences. The first screenshot shows the entire communication sequence. In the
following screenshot we can see that the server's Hello and certificate are combined
in the same message.

Chapter 7

[205]

The client's Client Hello packet looks pretty similar to our previous SSL connection,
as shown in the following screenshot:

Programming with Sockets

[206]

The server's Server Hello packet is a bit different. Can you identify the differences?
The cipher specification is different that is TLS_RSA_WITH_AES_256_CBC_SHA, as
shown in the following screenshot:

Chapter 7

[207]

The Client key exchange packet also looks very familiar, as shown in the
following screenshot:

The following screenshot shows the New Session Ticket packet offered in
this connection:

Programming with Sockets

[208]

Now let's have a look at the application data. Is that encrypted? For the captured
packet, it looks like garbage. The following screenshot shows the encrypted message
that hides the real data. This is what we want to achieve using SSL/TLS.

Summary
In this chapter, we discussed basic TCP/IP socket programming using Python's
socket and ssl module. We demonstrated how simple TCP sockets can be wrapped
with TLS and used to carry encrypted data. We also found the ways to validate
the authenticity of a remote server using SSL certificates. Some other minor issues
around socket programming, such as non-blocking socket I/O were also presented.
The detailed packet analysis in each section helps us to understand what happens
under the hood in our socket programming exercises.

In the next chapter, we will learn about the socket server design, particularly the
popular multithreaded and event-driven approaches will be touched upon.

[209]

Client and Server
Applications

In the previous chapter, we looked at exchanging data between devices by using
the sockets interface. In this chapter, we're going to use sockets to build network
applications. Sockets follow one of the main models of computer networking, that
is, the client/server model. We'll look at this with a focus on structuring server
applications. We'll cover the following topics:

• Designing a simple protocol
• Building an echo server and client
• Building a chat server and client
• Multithreaded and event-driven server architectures
• The eventlet and asyncio libraries

The examples in this chapter are best run on Linux or a Unix operating system.
The Windows sockets implementation has some idiosyncrasies, and these can create
some error conditions, which we will not be covering here. Note that Windows does
not support the poll interface that we'll use in one example. If you do use Windows,
then you'll probably need to use ctrl + break to kill these processes in the console,
rather than using ctrl - c because Python in a Windows command prompt doesn't
respond to ctrl – c when it's blocking on a socket send or receive, which will be quite
often in this chapter! (and if, like me, you're unfortunate enough to try testing these
on a Windows laptop without a break key, then be prepared to get very familiar with
the Windows Task Manager's End task button).

Client and Server Applications

[210]

Client and server
The basic setup in the client/server model is one device, the server that runs a
service and patiently waits for clients to connect and make requests to the service.
A 24-hour grocery shop may be a real world analogy. The shop waits for customers
to come in and when they do, they request certain products, purchase them and
leave. The shop might advertise itself so people know where to find it, but the actual
transactions happen while the customers are visiting the shop.

A typical computing example is a web server. The server listens on a TCP port for
clients that need its web pages. When a client, for example a web browser, requires
a web page that the server hosts, it connects to the server and then makes a request
for that page. The server replies with the content of the page and then the client
disconnects. The server advertises itself by having a hostname, which the clients
can use to discover the IP address so that they can connect to it.

In both of these situations, it is the client that initiates any interaction – the server is
purely responsive to that interaction. So, the needs of the programs that run on the
client and server are quite different.

Client programs are typically oriented towards the interface between the user and
the service. They retrieve and display the service, and allow the user to interact
with it. Server programs are written to stay running for indefinite periods of time,
to be stable, to efficiently deliver the service to the clients that are requesting it, and
to potentially handle a large number of simultaneous connections with a minimal
impact on the experience of any one client.

In this chapter, we will look at this model by writing a simple echo server and client,
and then upgrading it to a chat server, which can handle a session with multiple
clients. The socket module in Python perfectly suits this task.

An echo protocol
Before we write our first client and server programs, we need to decide how
they are going to interact with each other, that is we need to design a protocol
for their communication.

Chapter 8

[211]

Our echo server should listen until a client connects and sends a bytes string, then
we want it to echo that string back to the client. We only need a few basic rules for
doing this. These rules are as follows:

1. Communication will take place over TCP.
2. The client will initiate an echo session by creating a socket connection to

the server.
3. The server will accept the connection and listen for the client to send a

bytes string.
4. The client will send a bytes string to the server.
5. Once it sends the bytes string, the client will listen for a reply from the server
6. When it receives the bytes string from the client, the server will send the

bytes string back to the client.
7. When the client has received the bytes string from the server, it will close its

socket to end the session.

These steps are straightforward enough. The missing element here is how the server
and the client will know when a complete message has been sent. Remember that
an application sees a TCP connection as an endless stream of bytes, so we need to
decide what in that byte stream will signal the end of a message.

Framing
This problem is called framing, and there are several approaches that we can take to
handle it. The main ones are described here:

1. Make it a protocol rule that only one message will be sent per connection,
and once a message has been sent, the sender will immediately close
the socket.

2. Use fixed length messages. The receiver will read the number of bytes and
know that they have the whole message.

3. Prefix the message with the length of the message. The receiver will read the
length of the message from the stream first, then it will read the indicated
number of bytes to get the rest of the message.

4. Use special character delimiters for indicating the end of a message. The
receiver will scan the incoming stream for a delimiter, and the message
comprises everything up to the delimiter.

Client and Server Applications

[212]

Option 1 is a good choice for very simple protocols. It's easy to implement and it
doesn't require any special handling of the received stream. However, it requires
the setting up and tearing down of a socket for every message, and this can impact
performance when a server is handling many messages at once.

Option 2 is again simple to implement, but it only makes efficient use of the network
when our data comes in neat, fixed-length blocks. For example in a chat server the
message lengths are variable, so we will have to use a special character, such as the
null byte, to pad messages to the block size. This only works where we know for sure
that the padding character will never appear in the actual message data. There is also
the additional issue of how to handle messages longer than the block length.

Option 3 is usually considered as one of the best approaches. Although it can
be more complex to code than the other options, the implementations are still
reasonably straightforward, and it makes efficient use of bandwidth. The overhead
imposed by including the length of each message is usually minimal as compared
to the message length. It also avoids the need for any additional processing of the
received data, which may be needed by certain implementations of option 4.

Option 4 is the most bandwidth-efficient option, and is a good choice when we know
that only a limited set of characters, such as the ASCII alphanumeric characters, will
be used in messages. If this is the case, then we can choose a delimiter character,
such as the null byte, which will never appear in the message data, and then the
received data can be easily broken into messages as this character is encountered.
Implementations are usually simpler than option 3. Although it is possible to employ
this method for arbitrary data, that is, where the delimiter could also appear as a
valid character in a message, this requires the use of character escaping, which needs
an additional round of processing of the data. Hence in these situations, it's usually
simpler to use length-prefixing.

For our echo and chat applications, we'll be using the UTF-8 character set to send
messages. The null byte isn't used in any character in UTF-8 except for the null byte
itself, so it makes a good delimiter. Thus, we'll be using method 4 with the null byte
as the delimiter to frame our messages.

So, our rule number 8 will become:

Messages will be encoded in the UTF-8 character set for transmission, and they
will be terminated by the null byte.

Now, let's write our echo programs.

Chapter 8

[213]

A simple echo server
As we work through this chapter, we'll find ourselves reusing several pieces of code,
so to save ourselves from repetition, we'll set up a module with useful functions
that we can reuse as we go along. Create a file called tincanchat.py and save the
following code in it:

import socket

HOST = ''
PORT = 4040

def create_listen_socket(host, port):
 """ Setup the sockets our server will receive connection
 requests on """
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 sock.bind((host, port))
 sock.listen(100)
 return sock

def recv_msg(sock):
 """ Wait for data to arrive on the socket, then parse into
 messages using b'\0' as message delimiter """
 data = bytearray()
 msg = ''
 # Repeatedly read 4096 bytes off the socket, storing the bytes
 # in data until we see a delimiter
 while not msg:
 recvd = sock.recv(4096)
 if not recvd:
 # Socket has been closed prematurely
 raise ConnectionError()
 data = data + recvd
 if b'\0' in recvd:
 # we know from our protocol rules that we only send
 # one message per connection, so b'\0' will always be
 # the last character
 msg = data.rstrip(b'\0')
 msg = msg.decode('utf-8')
 return msg

Client and Server Applications

[214]

def prep_msg(msg):
 """ Prepare a string to be sent as a message """
 msg += '\0'
 return msg.encode('utf-8')

def send_msg(sock, msg):
 """ Send a string over a socket, preparing it first """
 data = prep_msg(msg)
 sock.sendall(data)

First we define a default interface and a port number to listen on. The empty ''
interface, specified in the HOST variable, tells socket.bind() to listen on all available
interfaces. If you want to restrict access to just your machine, then change the value
of the HOST variable at the beginning of the code to 127.0.0.1.

We'll be using create_listen_socket() to set up our server listening connections.
This code is the same for several of our server programs, so it makes sense to reuse it.

The recv_msg() function will be used by our echo server and client for receiving
messages from a socket. In our echo protocol, there isn't anything that our programs
may need to do while they're waiting to receive a message, so this function just calls
socket.recv() in a loop until it has received the whole message. As per our framing
rule, it will check the accumulated data on each iteration to see if it has received a
null byte, and if so, then it will return the received data, stripping off the null byte
and decoding it from UTF-8.

The send_msg() and prep_msg() functions work together for framing and sending
a message. We've separated the null byte termination and the UTF-8 encoding into
prep_msg() because we will use them in isolation later on.

Handling the received data
Note that we're drawing ourselves a careful line with these send and receive
functions as regards string encoding. Python 3 strings are Unicode, while the data
that we receive over the network is bytes. The last thing that we want to be doing
is handling a mixture of these in the rest of our program code, so we're going to
carefully encode and decode the data at the boundary of our program, where the
data enters and leaves the network. This will ensure that any functions in the rest of
our code can assume that they'll be working with Python strings, which will later on
make things much easier for us.

Chapter 8

[215]

Of course, not all the data that we may want to send or receive over a network will
be text. For example, images, compressed files, and music, can't be decoded to a
Unicode string, so a different kind of handling is needed. Usually this will involve
loading the data into a class, such as a Python Image Library (PIL) image for
example, if we are going to manipulate the object in some way.

There are basic checks that could be done here on the received data, before
performing full processing on it, to quickly flag any problems with the data.
Some examples of such checks are as follows:

• Checking the length of the received data
• Checking the first few bytes of a file for a magic number to confirm a file type
• Checking values of higher level protocol headers, such as the Host header in

an HTTP request

This kind of checking will allow our application to fail fast if there is an
obvious problem.

The server itself
Now, let's write our echo server. Open a new file called 1.1-echo-server-uni.py
and save the following code in it:

import tincanchat

HOST = tincanchat.HOST
PORT = tincanchat.PORT

def handle_client(sock, addr):
 """ Receive data from the client via sock and echo it back """
 try:
 msg = tincanchat.recv_msg(sock) # Blocks until received
 # complete message
 print('{}: {}'.format(addr, msg))
 tincanchat.send_msg(sock, msg) # Blocks until sent
 except (ConnectionError, BrokenPipeError):
 print('Socket error')
 finally:
 print('Closed connection to {}'.format(addr))
 sock.close()

Client and Server Applications

[216]

if __name__ == '__main__':
 listen_sock = tincanchat.create_listen_socket(HOST, PORT)
 addr = listen_sock.getsockname()
 print('Listening on {}'.format(addr))

 while True:
 client_sock, addr = listen_sock.accept()
 print('Connection from {}'.format(addr))
 handle_client(client_sock, addr)

This is about as simple as a server can get! First, we set up our listening socket with
the create_listen_socket() call. Second, we enter our main loop, where we listen
forever for incoming connections from clients, blocking on listen_sock.accept().
When a client connection comes in, we invoke the handle_client() function, which
handles the client as per our protocol. We've created a separate function for this
code, partly to keep the main loop tidy, and partly because we'll want to reuse this
set of operations in later programs.

That's our server, now we just need to make a client to talk to it.

A simple echo client
Create a file called 1.2-echo_client-uni.py and save the following code in it:

import sys, socket
import tincanchat

HOST = sys.argv[-1] if len(sys.argv) > 1 else '127.0.0.1'
PORT = tincanchat.PORT

if __name__ == '__main__':
 while True:
 try:
 sock = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 sock.connect((HOST, PORT))
 print('\nConnected to {}:{}'.format(HOST, PORT))
 print("Type message, enter to send, 'q' to quit")
 msg = input()
 if msg == 'q': break
 tincanchat.send_msg(sock, msg) # Blocks until sent
 print('Sent message: {}'.format(msg))

Chapter 8

[217]

 msg = tincanchat.recv_msg(sock) # Block until
 # received complete
 # message
 print('Received echo: ' + msg)
 except ConnectionError:
 print('Socket error')
 break
 finally:
 sock.close()
 print('Closed connection to server\n')

If we're running our server on a different machine from the one on which we are
running the client, then we can supply the IP address or the hostname of the server
as a command line argument to the client program. If we don't, then it will default to
trying to connect to the localhost.

The third and forth lines of the code check the command line arguments for a server
address. Once we've determined which server to connect to, we enter our main loop,
which loops forever until we kill the client by entering q as a message. Within the
main loop, we first create a connection to the server. Second, we prompt the user
to enter the message to send and then we send the message using the tincanchat.
send_msg() function. We then wait for the server's reply. Once we get the reply,
we print it and then we close the connection as per our protocol.

Give our client and server a try. Run the server in a terminal by using the
following command:

$ python 1.1-echo_server-uni.py

Listening on ('0.0.0.0', 4040)

In another terminal, run the client and note that you will need to specify the server if
you need to connect to another computer, as shown here:

$ python 1.2-echo_client.py 192.168.0.7

Type message, enter to send, 'q' to quit

Running the terminals side by side is a good idea, because you can simultaneously
see how the programs behave.

Type a few messages into the client and see how the server picks them up and
sends them back. Disconnecting with the client should also prompt a notification
on the server.

Client and Server Applications

[218]

Concurrent I/O
If you're adventurous, then you may have tried connecting to our server using more
than one client at once. If you tried sending messages from both of them, then you'd
have seen that it does not work as we might have hoped. If you haven't tried this,
then give it a go.

A working echo session on the client should look like this:

Type message, enter to send. 'q' to quit

hello world

Sent message: hello world

Received echo: hello world

Closed connection to server

However, when trying to send a message by using a second connected client, we'll
see something like this:

Type message, enter to send. 'q' to quit

hello world

Sent message: hello world

The client will hang when the message is sent, and it won't get an echo reply.
You may also notice that if we send a message by using the first connected client,
then the second client will get its response. So, what's going on here?

The problem is that the server can only listen for the messages from one client at a
time. As soon as the first client connects, the server blocks at the socket.recv() call
in tincanchat.recv_msg(), waiting for the first client to send a message. The server
isn't able to receive messages from other clients while this is happening and so, when
another client sends a message, that client blocks too, waiting for the server to send
a reply.

This is a slightly contrived example. The problem in this case could easily be fixed
in the client end by asking the user for an input before establishing a connection to
the server. However in our full chat service, the client will need to be able to listen
for messages from the server while simultaneously waiting for user input. This is not
possible in our present procedural setup.

There are two solutions to this problem. We can either use more than one thread
or process, or use non-blocking sockets along with an event-driven architecture.
We're going to look at both of these approaches, starting with multithreading.

Chapter 8

[219]

Multithreading and multiprocessing
Python has APIs that allow us to write both multithreading and multiprocessing
applications. The principle behind multithreading and multiprocessing is simply
to take copies of our code and run them in additional threads or processes. The
operating system automatically schedules the threads and processes across available
CPU cores to provide fair processing time allocation to all the threads and processes.
This effectively allows a program to simultaneously run multiple operations. In
addition, when a thread or process blocks, for example, when waiting for IO, the
thread or process can be de-prioritized by the OS, and the CPU cores can be allocated
to other threads or processes that have actual computation to do.

Here is an overview of how threads and processes relate to each other:

Threads exist within processes. A process can contain multiple threads but it always
contains at least one thread, sometimes called the main thread. Threads within
the same process share memory, so data transfer between threads is just a case of
referencing the shared objects. Processes do not share memory, so other interfaces,
such as files, sockets, or specially allocated areas of shared memory, must be used for
transferring data between processes.

Client and Server Applications

[220]

When threads have operations to execute, they ask the operating system thread
scheduler to allocate them some time on a CPU, and the scheduler allocates the
waiting threads to CPU cores based on various parameters, which vary from OS to
OS. Threads in the same process may run on separate CPU cores at the same time.

Although two processes have been displayed in the preceding diagram,
multiprocessing is not going on here, since the processes belong to different
applications. The second process is displayed to illustrate a key difference between
Python threading and threading in most other programs. This difference is the
presence of the GIL.

Threading and the GIL
The CPython interpreter (the standard version of Python available for download
from www.python.org) contains something called the Global Interpreter Lock
(GIL). The GIL exists to ensure that only a single thread in a Python process can run
at a time, even if multiple CPU cores are present. The reason for having the GIL is
that it makes the underlying C code of the Python interpreter much easier to write
and maintain. The drawback of this is that Python programs using multithreading
cannot take advantage of multiple cores for parallel computation.

This is a cause of much contention; however, for us this is not so much of a problem.
Even with the GIL present, threads that are blocking on I/O are still de-prioritized
by the OS and put into the background, so threads that do have computational work
to do can run instead. The following figure is a simplified illustration of this:

The Waiting for GIL state is where a thread has sent or received some data and so is
ready to come out of the blocking state, but another thread has the GIL, so the ready
thread is forced to wait. In many network applications, including our echo and chat
servers, the time spent waiting on I/O is much higher than the time spent processing
data. As long as we don't have a very large number of connections (a situation we'll
discuss later on when we come to event driven architectures), thread contention
caused by the GIL is relatively low, and hence threading is still a suitable architecture
for these network server applications.

www.python.org

Chapter 8

[221]

With this in mind, we're going to use multithreading rather than multiprocessing
in our echo server. The shared data model will simplify the code that we'll need for
allowing our chat clients to exchange messages with each other, and because we're
I/O bound, we don't need processes for parallel computation. Another reason for
not using processes in this case is that processes are more "heavyweight" in terms of
the OS resources, so creating a new process takes longer than creating a new thread.
Processes also use more memory.

One thing to note is that if you need to perform an intensive computation in your
network server application (maybe you need to compress a large file before sending
it over the network), then you should investigate methods for running this in a
separate process. Because of quirks in the implementation of the GIL, having even
a single computationally intensive thread in a mainly I/O bound process when
multiple CPU cores are available can severely impact the performance of all the I/O
bound threads. For more details, go through the David Beazley presentations linked
to in the following information box:

Processes and threads are different beasts, and if you're not clear on
the distinctions, it's worthwhile to read up. A good starting point is
the Wikipedia article on threads, which can be found at http://
en.wikipedia.org/wiki/Thread_(computing).
A good overview of the topic is given in Chapter 4 of Benjamin Erb's
thesis, which is available at http://berb.github.io/diploma-
thesis/community/.
Additional information on the GIL, including the reasoning behind
keeping it in Python can be found in the official Python documentation at
https://wiki.python.org/moin/GlobalInterpreterLock.
You can also read more on this topic in Nick Coghlan's Python 3 Q&A,
which can be found at http://python-notes.curiousefficiency.
org/en/latest/python3/questions_and_answers.html#but-
but-surely-fixing-the-gil-is-more-important-than-
fixing-unicode.
Finally, David Beazley has done some fascinating research on the
performance of the GIL on multi-core systems. Two presentations of
importance are available online. They give a good technical background,
which is relevant to this chapter. These can be found at http://
pyvideo.org/video/353/pycon-2010--understanding-
the-python-gil---82 and at https://www.youtube.com/
watch?v=5jbG7UKT1l4.

http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Thread_(computing)
http://berb.github.io/diploma-thesis/community/
http://berb.github.io/diploma-thesis/community/
https://wiki.python.org/moin/GlobalInterpreterLock
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#but-but-surely-fixing-the-gil-is-more-important-than-fixing-unicode
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#but-but-surely-fixing-the-gil-is-more-important-than-fixing-unicode
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#but-but-surely-fixing-the-gil-is-more-important-than-fixing-unicode
http://python-notes.curiousefficiency.org/en/latest/python3/questions_and_answers.html#but-but-surely-fixing-the-gil-is-more-important-than-fixing-unicode
http://pyvideo.org/video/353/pycon-2010--understanding-the-python-gil---82
http://pyvideo.org/video/353/pycon-2010--understanding-the-python-gil---82
http://pyvideo.org/video/353/pycon-2010--understanding-the-python-gil---82
https://www.youtube.com/watch?v=5jbG7UKT1l4
https://www.youtube.com/watch?v=5jbG7UKT1l4

Client and Server Applications

[222]

A multithreaded echo server
A benefit of the multithreading approach is that the OS handles the thread switches
for us, which means we can continue to write our program in a procedural style.
Hence we only need to make small adjustments to our server program to make it
multithreaded, and thus, capable of handling multiple clients simultaneously.

Create a new file called 1.3-echo_server-multi.py and add the following code
to it:

import threading
import tincanchat

HOST = tincanchat.HOST
PORT = tincanchat.PORT

def handle_client(sock, addr):
 """ Receive one message and echo it back to client, then close
 socket """
 try:
 msg = tincanchat.recv_msg(sock) # blocks until received
 # complete message
 msg = '{}: {}'.format(addr, msg)
 print(msg)
 tincanchat.send_msg(sock, msg) # blocks until sent
 except (ConnectionError, BrokenPipeError):
 print('Socket error')
 finally:
 print('Closed connection to {}'.format(addr))
 sock.close()

if __name__ == '__main__':
 listen_sock = tincanchat.create_listen_socket(HOST, PORT)
 addr = listen_sock.getsockname()
 print('Listening on {}'.format(addr))

 while True:
 client_sock,addr = listen_sock.accept()
 # Thread will run function handle_client() autonomously
 # and concurrently to this while loop
 thread = threading.Thread(target=handle_client,
 args=[client_sock, addr],
 daemon=True)
 thread.start()
 print('Connection from {}'.format(addr))

Chapter 8

[223]

You can see that we've just imported an extra module and modified our main loop
to run our handle_client() function in separate threads, rather than running it in
the main thread. For each client that connects, we create a new thread that just runs
the handle_client() function. When the thread blocks on a receive or send, the OS
checks the other threads to see if they have come out of a blocking state, and if any
have, then it switches to one of them.

Notice that we have set the daemon argument in the thread constructor call to True.
This will allow the program to exit if we hit ctrl - c without us having to explicitly
close all of our threads first.

If you try this echo server with multiple clients, then you'll see that a second client
that connects and sends a message will immediately get a response.

Designing a chat server
We've got a working echo server and it can handle multiple clients simultaneously,
so we're pretty close to having a functional chat client. However, our server needs
to broadcast the messages it receives to all the connected clients. Sounds simple, but
there are two problems that we need to overcome to make this happen.

First, our protocol needs an overhaul. If we think about what needs to happen from a
client's point of view, then we can no longer rely on the simple work flow:

client connect > client send > server send > client disconnect.

Clients can now potentially receive messages at any time, and not just when they
send a message to the server themselves.

Second, we need to modify our server to send messages to all of the connected
clients. As we are using multiple threads to handle our clients, this means that we
need to set up communication between the threads. With this, we're dipping our
toe into the world of concurrent programming, and it should be approached with
care and forethought. While the shared state of threads is useful, it is also deceptive
in its simplicity. Having multiple threads of control asynchronously accessing and
changing the same resources is a perfect breeding ground for race conditions and
subtle deadlock bugs. While a full discussion on concurrent programming is well
beyond the scope of this text, we'll cover some simple principles, which can help
preserve your sanity.

Client and Server Applications

[224]

A chat protocol
The main purpose of our protocol update will be to specify that clients must be able
to accept all messages that are sent to them, whenever they are sent.

In theory, one solution for this would be for our client itself to set up a listening
socket, so that the server can connect to it whenever it has a new message to deliver.
In the real world, this solution will rarely be applicable. Clients are almost always
protected by some kind of firewall, which prevents any new inbound connections
from connecting to the client. In order for our server to make a connection to a port
on our client, we would need to ensure that any intervening firewalls are configured
to allow our server to connect. This requirement would make our software much
less appealing to most users since there are already chat solutions which don't
require this.

If we can't assume that the server can connect to the client, then we need to meet
our requirement by only using the client-initiated connection to the server. There
are two ways in which we can do this. First, we can have our clients run in a
disconnected state by default, then have them periodically connect to the server,
download any waiting messages, and then disconnect again. Alternatively, we can
have our clients connect to the server and then leave the connection open. They can
then continuously listen on the connection and handle new messages sent by the
server in one thread, while accepting user input and sending messages over the
same connection in another thread.

You may recognize these scenarios as the pull and push options that are available
in some e-mail clients. They are called pull and push because of how the operations
appear to the client. The client either pulls data from the server, or the server pushes
data to the client.

There are pros and cons to using either of the two approaches, and the decision
depends on an application's needs. Pull results in a lower load on the server, but
higher latency for the client in receiving messages. While this is fine for many
applications, such as e-mail, in a chat server we usually expect immediate updates.
While we could poll very frequently, this imposes unneeded load on the client,
server, and network as the connections are repeatedly set up and torn down.

Push is better suited for a chat server. As the connection remains open continuously
the amount of network traffic is limited to the initial connection setup, and
the messages themselves. Also, the client gets new messages from the server
almost immediately.

Chapter 8

[225]

So, we'll use a push approach, and we will now write our chat protocol as follows:

1. Communication will be conducted over TCP.
2. The client will initiate a chat session by creating a socket connection to

the server.
3. The server will accept the connection, listen for any messages from the client,

and accept them.
4. The client will listen on the connection for any messages from the server,

and accept them.
5. The server will send any messages from the client to all the other

connected clients.
6. Messages will be encoded in the UTF-8 character set for transmission,

and they will be terminated by the null byte.

Handling data on persistent connections
A new problem which our persistent connection approach raises is that we can no
longer assume that our socket.recv() call will contain data from only one message.
In our echo server, because of how we have defined the protocol, we know that as
soon as we see a null byte, the message that we have received is complete, and that
the sender won't be sending anything further. That is, everything we read in the last
socket.recv() call is a part of that message.

In our new setup, we'll be reusing the same connection to send an indefinite number
of messages, and these won't be synchronized with the chunks of data that we will
pull from each socket.recv(). Hence, it's quite possible that the data from one
recv() call will contain data from multiple messages. For example, if we send
the following:

caerphilly,
illchester,
brie

Then on the wire they will look like this:

caerphilly\0illchester\0brie\0

Due to the vagaries of network transmission though, a set of successive recv() calls
may receive them as:

recv 1: caerphil
recv 2: ly\0illches
recv 3: ter\0brie\0

Client and Server Applications

[226]

Notice that recv 1 and recv 2, when taken together contain a complete message,
but they also contain the beginning of the next message. Clearly, we need to update
our parsing. One option is to read data from the socket one byte at a time, that is, use
recv(1), and check every byte to see if it's a null byte. This is a dismally inefficient
way to use a network socket though. We want to read as much data in our call to
recv() as we can. Instead, when we encounter an incomplete message we can cache
the extraneous bytes and use them when we next call recv(). Lets do this, add these
functions to the tincanchat.py file:

def parse_recvd_data(data):
 """ Break up raw received data into messages, delimited
 by null byte """
 parts = data.split(b'\0')
 msgs = parts[:-1]
 rest = parts[-1]
 return (msgs, rest)

def recv_msgs(sock, data=bytes()):
 """ Receive data and break into complete messages on null byte
 delimiter. Block until at least one message received, then
 return received messages """
 msgs = []
 while not msgs:
 recvd = sock.recv(4096)
 if not recvd:
 raise ConnectionError()
 data = data + recvd
 (msgs, rest) = parse_recvd_data(data)
 msgs = [msg.decode('utf-8') for msg in msgs]
 return (msgs, rest)

From now on, we'll be using recv_msgs() wherever we were using recv_msg()
before. So, what are we doing here? Starting with a quick scan through recv_msgs(),
you can see that it's similar to recv_msg(). We make repeated calls to recv() and
accumulate the received data as before, but now we will be using parse_recvd_
data() to parse it, with the expectation that it may contain multiple messages. When
parse_recvd_data() finds one or more complete messages in the received data,
it splits them into a list and returns them, and if there is anything left after the last
complete message, then it additionally returns this using the rest variable. The
recv_msgs() function then decodes the messages from UTF-8, and returns them
and the rest variable.

Chapter 8

[227]

The rest value is important because we will feed it back to recv_msgs() next time
we call it, and it will be prefixed to the data from the recv() calls. In this way, the
leftover data from the last recv_msgs() call won't be lost.

So, in our preceding example, parsing the messages would take place as shown here:

recv_msgs call data argument recv result Accumulated data msgs rest

1 - 'caerphil' 'caerphil' [] b''

1 - 'ly\0illches' 'caerphilly\0illches' ['caerphilly'] 'illches'

2 'illches' 'ter\0brie\0' 'illchester\0brie\0' ['illchester',
'brie']

b''

Here, we can see that the first recv_msgs() call doesn't return after its first iteration.
It loops again because msgs is still empty. This is why the recv_msgs call numbers
are 1, 1, and 2.

A multithreaded chat server
So let's put this to use and write our chat server. Make a new file called 2.1-chat_
server-multithread.py and put the following code in it:

import threading, queue
import tincanchat

HOST = tincanchat.HOST
PORT = tincanchat.PORT

send_queues = {}
lock = threading.Lock()

def handle_client_recv(sock, addr):
 """ Receive messages from client and broadcast them to
 other clients until client disconnects """
 rest = bytes()
 while True:
 try:
 (msgs, rest) = tincanchat.recv_msgs(sock, rest)
 except (EOFError, ConnectionError):
 handle_disconnect(sock, addr)
 break

Client and Server Applications

[228]

 for msg in msgs:
 msg = '{}: {}'.format(addr, msg)
 print(msg)
 broadcast_msg(msg)

def handle_client_send(sock, q, addr):
 """ Monitor queue for new messages, send them to client as
 they arrive """
 while True:
 msg = q.get()
 if msg == None: break
 try:
 tincanchat.send_msg(sock, msg)
 except (ConnectionError, BrokenPipe):
 handle_disconnect(sock, addr)
 break

def broadcast_msg(msg):
 """ Add message to each connected client's send queue """
 with lock:
 for q in send_queues.values():
 q.put(msg)

def handle_disconnect(sock, addr):
 """ Ensure queue is cleaned up and socket closed when a client
 disconnects """
 fd = sock.fileno()
 with lock:
 # Get send queue for this client
 q = send_queues.get(fd, None)
 # If we find a queue then this disconnect has not yet
 # been handled
 if q:
 q.put(None)
 del send_queues[fd]
 addr = sock.getpeername()
 print('Client {} disconnected'.format(addr))
 sock.close()

if __name__ == '__main__':
 listen_sock = tincanchat.create_listen_socket(HOST, PORT)
 addr = listen_sock.getsockname()
 print('Listening on {}'.format(addr))

Chapter 8

[229]

 while True:
 client_sock,addr = listen_sock.accept()
 q = queue.Queue()
 with lock:
 send_queues[client_sock.fileno()] = q
 recv_thread = threading.Thread(target=handle_client_recv,
 args=[client_sock, addr],
 daemon=True)
 send_thread = threading.Thread(target=handle_client_send,
 args=[client_sock, q,
 addr],
 daemon=True)
 recv_thread.start()
 send_thread.start()
 print('Connection from {}'.format(addr))

We're now using two threads per client. One thread handles the messages received
and the other thread handles the task of sending messages. The idea here is to
break out each place a block might happen into its own thread. This will give us
the lowest latency for each client, but it does come at the cost of system resources.
We're reducing the potential number of clients that we may be able to handle
simultaneously. There are other models that we could use, such as having a single
thread for each client which receives messages and then sends them itself to all the
connected clients, but I've chosen to optimize for latency.

To facilitate the separate threads, we've broken the receiving code and the sending
code into the handle_client_recv() function and handle_client_send()
function respectively.

Our handle_client_recv threads are tasked with receiving messages from the
clients, and our handle_client_send threads are tasked with sending messages
to the clients, but how do the received messages get from the receive threads to the
send threads? This is where the queue, send_queue, dict and lock objects come in.

Queues
A Queue is a first-in first-out (FIFO) pipe. You add items to it by using the put()
method, and pull them out by using the get() method. The important thing about
Queue objects is that they are completely thread safe. Objects in Python are generally
not thread safe unless it is explicitly specified in their documentation. Being thread
safe means that operations on the object are guaranteed to be atomic, that is, they
will always complete without any chance of another thread getting to that object and
doing something unexpected to it.

Client and Server Applications

[230]

Hang on, you might ask, earlier, didn't you say that because of the GIL the OS is
running only one Python thread per process at any given moment in time? If that's
so, then how could two threads perform an operation on an object simultaneously?
Well, this is a fair question. Most operations in Python are, in fact, made up of
many operations at the OS level, and it is at the OS level that threads are scheduled.
A thread could start an operation on an object—say by appending an item to a
list—and when the thread gets halfway through its OS level operations the OS
could switch to another thread, which also starts appending to the same list. Since
list objects provide no warranty of their behavior when abused like this by threads
(they're not thread safe), anything could happen next, and it's unlikely to be a useful
outcome. This situation can be called a race condition.

Thread safe objects remove this possibility, so they should absolutely be preferred
for sharing state among threads.

Getting back to our server, the other useful behavior of Queues is that if get() is
called on an empty Queue, then it will block until something is added to the Queue.
We take advantage of this in our send threads. Notice, how we go into an infinite
loop, with the first operation being a get() method call on a Queue. The thread will
block there and patiently wait until something is added to its Queue. And, you've
probably guessed it, our receive threads add the messages to the queues.

We create a Queue object for each send thread as it's being created and then we
store the queues in the send_queues dict. For our receive threads to broadcast new
messages, they just need to add the message to each Queue in send_queues, which
we do in the broadcast_msgs() function. Our waiting send threads will then
unblock, pick the message out of their Queue and then send it to their client.

We've also added a handle_disconnect() function, which gets called whenever
a client disconnects or a socket error occurs. This function ensures that queues
associated with closed connections are cleaned up, and that the socket is closed
properly from the server end.

Locks
Contrast our use of the Queues object with our use of send_queues. Dict objects
are not thread safe, and unfortunately there isn't a thread safe associative array
type in Python. Since we need to share this dict, we need to take extra precautions
whenever we access it, and this is where the Lock comes in. Lock objects are a type of
synchronization primitive. These are special objects built with functionality to help
manage our threads and ensure that they don't trip over each others' accesses.

Chapter 8

[231]

A Lock is either locked or unlocked. A thread can lock a thread by either calling
acquire() on it, or as in our program, using it as a context manager. If a thread has
acquired a lock and another thread also tries to acquire the lock, then the second
thread will block on the acquire() call until the first thread releases the lock or exits
the context. There is no limit on the number of threads that can try to acquire a lock
at once – all but the first will block. By wrapping all the accesses to a non-thread safe
object with a lock, we can ensure that no two threads operate on the object at the
same time.

So, every time we add or remove something from send_queues, we wrap it in a
Lock context. Notice that we're also protecting send_queues when we iterate over
it. Even though we're not changing it, we want to be sure that it doesn't get modified
while we're working with it.

Although we're being careful and using locks and thread safe primitives, we're not
protected against all possible thread related pitfalls. Since the thread synchronization
mechanisms themselves block, it's still quite possible to create deadlocks, where
two threads are simultaneously blocking on objects locked by the other thread. The
best approach to managing thread communication is to keep all the accesses to your
shared state restricted to as small an area of your code as you can. In the case of this
server, this module could be reworked as a class providing a minimum number of
public methods. It could also be documented such that it discourages the changing
of any internal state. This will keep this chunk of threading strictly confined to
this class.

A multithreaded chat client
Now that we have a new, all receiving and broadcasting chat server, we just need
a client to go with it. We have mentioned before that we will hit a problem with
our procedural client when trying to listen for both network data and user input
at the same time. Well, now that we have some idea of how to employ threads, we
can have a go at addressing this. Create a new text file called 2.2-chat_client-
multithread.py and save the following code in it:

import sys, socket, threading
import tincanchat

HOST = sys.argv[-1] if len(sys.argv) > 1 else '127.0.0.1'
PORT = tincanchat.PORT

def handle_input(sock):
 """ Prompt user for message and send it to server """
 print("Type messages, enter to send. 'q' to quit")

Client and Server Applications

[232]

 while True:
 msg = input() # Blocks
 if msg == 'q':
 sock.shutdown(socket.SHUT_RDWR)
 sock.close()
 break
 try:
 tincanchat.send_msg(sock, msg) # Blocks until sent
 except (BrokenPipeError, ConnectionError):
 break

if __name__ == '__main__':
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.connect((HOST, PORT))
 print('Connected to {}:{}'.format(HOST, PORT))

 # Create thread for handling user input and message sending
 thread = threading.Thread(target=handle_input,
 args=[sock],
 daemon=True)
 thread.start()
 rest = bytes()
 addr = sock.getsockname()
 # Loop indefinitely to receive messages from server
 while True:
 try:
 # blocks
 (msgs, rest) = tincanchat.recv_msgs(sock, rest)
 for msg in msgs:
 print(msg)
 except ConnectionError:
 print('Connection to server closed')
 sock.close()
 break

We've updated our client to honor our new chat protocol by creating a new thread
to handle user input and send messages, while handling receiving messages in
the main thread. This allows the client to deal with the user input and receive the
messages at the same time.

Note that there's no shared state here, so we didn't have to get clever with Queues or
synchronization primitives.

Chapter 8

[233]

Let's give our new programs a try. Fire up the multithreaded chat server, and then
launch at least two clients. If you can, run them in terminals such that you can watch
all of them at once. Now, try and send some messages from the clients and see how
they are sent to all of the other clients.

Event-driven servers
For many purposes threads are great, especially because we can still program
in the familiar procedural, blocking-IO style. But they suffer from the drawback
that they struggle when managing large numbers of connections simultaneously,
because they are required to maintain a thread for each connection. Each thread
consumes memory, and switching between threads incurs a type of CPU overhead
called context switching. Although these aren't a problem for small numbers of
threads, they can impact performance when there are many threads to manage.
Multiprocessing suffers from similar problems.

An alternative to threading and multiprocessing is using the event-driven model.
In this model, instead of having the OS automatically switch between active threads
or processes for us, we use a single thread which registers blocking objects, such as
sockets, with the OS. When these objects become ready to leave the blocking state,
for example a socket receives some data, the OS notifies our program; our program
can then access these objects in non-blocking mode, since it knows that they are in
a state that is ready for immediate use. Calls made to objects in non-blocking mode
always return immediately. We structure our application around a loop, where we
wait for the OS to notify us of activity on our blocking objects, then we handle that
activity, and then we go back to waiting. This loop is called the event loop.

This approach provides comparable performance to threading and multiprocessing,
but without the memory or context switching overheads, and hence allows for
greater scaling on the same hardware. The challenge of engineering applications
that can efficiently handle very large numbers of simultaneous connections
has historically been called the c10k problem, referring to the handling of ten-
thousand concurrent connections in a single thread. With the help of event-driven
architectures, this problem was solved, though the term is still often used to refer to
the challenges of scaling when it comes to handling many concurrent connections.

Client and Server Applications

[234]

On modern hardware it's actually possible to handle ten-thousand
concurrent connections using a multithreading approach as well, see this
Stack Overflow question for some numbers https://stackoverflow.
com/questions/17593699/tcp-ip-solving-the-c10k-with-
the-thread-per-client-approach.
The modern challenge is the "c10m problem", that is, ten million
concurrent connections. Solving this involves some drastic software and
even operating system architecture changes. Although this is unlikely
to be manageable with Python any time soon, an interesting (though
unfortunately incomplete) general introduction to the topic can be found
at http://c10m.robertgraham.com/p/blog-page.html.

The following diagram shows the relationship of processes and threads in an
event-driven server:

Although the GIL and the OS thread scheduler are shown here for completeness,
in the case of an event-driven server, they have no impact on performance because
the server only uses a single thread. The scheduling of I/O handling is done by
the application.

https://stackoverflow.com/questions/17593699/tcp-ip-solving-the-c10k-with-the-thread-per-client-approach
https://stackoverflow.com/questions/17593699/tcp-ip-solving-the-c10k-with-the-thread-per-client-approach
https://stackoverflow.com/questions/17593699/tcp-ip-solving-the-c10k-with-the-thread-per-client-approach
http://c10m.robertgraham.com/p/blog-page.html

Chapter 8

[235]

A low-level event-driven chat server
So the event-driven architecture has a few great benefits, the catch is that for a
low-level implementation, we need to write our code in a completely different
style. Let's write an event-driven chat server to illustrate this.

Note that this example will not at all work on Windows as Windows lacks the poll
interface which we will be employing here. There is an older interface, called select,
which Windows does support, however it is slower and more complicated to work
with. The event-driven frameworks that we look at later do automatically switch to
select for us though, if we're running on Windows.

There is a higher performance alternative to poll called epoll, available on Linux
operating systems, however it also more complicated to use, so for simplicity we'll
stick with poll here. Again, the frameworks we discuss later automatically take
advantage of epoll if it is available.

Finally, counter-intuitively, Python's poll interface lives in a module called select,
hence we will import select in our program.

Create a file called 3.1-chat_server-poll.py and save the following code in it:

import select
import tincanchat
from types import SimpleNamespace
from collections import deque

HOST = tincanchat.HOST
PORT = tincanchat.PORT
clients = {}

def create_client(sock):
 """ Return an object representing a client """
 return SimpleNamespace(
 sock=sock,
 rest=bytes(),
 send_queue=deque())

def broadcast_msg(msg):
 """ Add message to all connected clients' queues """
 data = tincanchat.prep_msg(msg)
 for client in clients.values():
 client.send_queue.append(data)
 poll.register(client.sock, select.POLLOUT)

Client and Server Applications

[236]

if __name__ == '__main__':
 listen_sock = tincanchat.create_listen_socket(HOST, PORT)
 poll = select.poll()
 poll.register(listen_sock, select.POLLIN)
 addr = listen_sock.getsockname()
 print('Listening on {}'.format(addr))

 # This is the event loop. Loop indefinitely, processing events
 # on all sockets when they occur
 while True:
 # Iterate over all sockets with events
 for fd, event in poll.poll():
 # clear-up a closed socket
 if event & (select.POLLHUP |
 select.POLLERR |
 select.POLLNVAL):
 poll.unregister(fd)
 del clients[fd]

 # Accept new connection, add client to clients dict
 elif fd == listen_sock.fileno():
 client_sock,addr = listen_sock.accept()
 client_sock.setblocking(False)
 fd = client_sock.fileno()
 clients[fd] = create_client(client_sock)
 poll.register(fd, select.POLLIN)
 print('Connection from {}'.format(addr))

 # Handle received data on socket
 elif event & select.POLLIN:
 client = clients[fd]
 addr = client.sock.getpeername()
 recvd = client.sock.recv(4096)
 if not recvd:
 # the client state will get cleaned up in the
 # next iteration of the event loop, as close()
 # sets the socket to POLLNVAL
 client.sock.close()
 print('Client {} disconnected'.format(addr))
 continue
 data = client.rest + recvd
 (msgs, client.rest) = \

Chapter 8

[237]

 tincanchat.parse_recvd_data(data)
 # If we have any messages, broadcast them to all
 # clients
 for msg in msgs:
 msg = '{}: {}'.format(addr, msg)
 print(msg)
 broadcast_msg(msg)

 # Send message to ready client
 elif event & select.POLLOUT:
 client = clients[fd]
 data = client.send_queue.popleft()
 sent = client.sock.send(data)
 if sent < len(data):
 client.sends.appendleft(data[sent:])
 if not client.send_queue:
 poll.modify(client.sock, select.POLLIN)

The crux of this program is the poll object, which we create at the start of execution.
This is an interface for the kernel's poll service, which lets us register sockets for the
OS to watch and notify us when they are ready for us work with them.

We register a socket by calling the poll.register() method, passing the socket as
an argument along with the type of activity that we want the kernel to watch out for.
There are several conditions which we can monitor by specifying various select.
POLL* constants. We're using POLLIN and POLLOUT in this program to watch out
for when a socket is ready to receive and send data respectively. Accepting a new
incoming connection on our listening socket will be counted as a read.

Once a socket is registered with poll, the OS will watch it and record when the
socket is ready to carry out the activity that we requested. When we call poll.
poll(), it returns a list of all the sockets that have become ready for us to work with.
For each socket, it also returns an event flag, which indicates the state of the socket.
We can use this event flag to tell whether we can read from (POLLIN event) or write
to the socket (POLLOUT event), or whether an error has occurred (POLLHUP, POLLERR,
POLLNVAL events).

To make use of this, we enter our event loop, repeatedly calling poll.poll(),
iterating through the ready objects it returns and operating on them as per their
event flags.

Client and Server Applications

[238]

Because we're only running in a single thread, we don't need any of the
synchronization mechanisms which we had to employ in the multithreaded server.
We're just using a regular dict to keep track of our clients. If you've not come across
it before, the SimpleNamespace object that we use in the create_client() function
is just a new idiom for creating an empty object with a __dict__ (this is needed
because Object instances don't have a __dict__ so they won't accept arbitrary
attributes). Previously, we may have used the following to give us an object which
we can assign arbitrary attributes to:

class Client:
 pass
client = Client()

Python version 3.3 and later versions give us the new, more explicit
SimpleNamespace object.

We can run our multithreaded client against this server. The server is still using the
same network protocol, and the architecture of the two programs won't affect the
communication. Give it a try and verify if it works as expected.

This style of programming, employing poll and non-blocking sockets, is often
referred to as non-blocking and asynchronous, since we use sockets in non-blocking
mode, and the thread of control handles I/O reactively, as it needs to happen, rather
than locking to a single I/O channel until it's done. However, you should note that
our program isn't completely non-blocking, since it still blocks on the poll.poll()
call. This is pretty much inevitable in an I/O bound system because when nothing's
happening, you've got to wait for the I/O activity somewhere.

Frameworks
As you can see, writing servers using these lower level threading and poll APIs
can be quite involved, especially considering that various things which would be
expected in a production system, such as logging and comprehensive error handling,
haven't been included in our examples due to brevity.

Many people have hit these problems before us, and several libraries and
frameworks are available for taking some of the leg work out of writing the
network servers.

Chapter 8

[239]

An eventlet-based chat server
The eventlet library provides a high-level API for event-driven programming, but
it does so in a style that mimics the procedural, blocking-IO style that we used in our
multithreaded servers. The upshot is that we can effectively take our multithreaded
chat server code, make a few minor modifications to it to use eventlet instead,
and immediately gain the benefits of the event-driven model!

The eventlet library is available in PyPi, and it can be installed with pip,
as shown here:

$ pip install eventlet

Downloading/unpacking eventlet

The eventlet library automatically falls back to select if poll is not
available, so it will run properly on Windows.

Once it's installed, create a new file called 4.1-chat_server-eventlet.py and save
the following code in it:

import eventlet
import eventlet.queue as queue
import tincanchat

HOST = tincanchat.HOST
PORT = tincanchat.PORT
send_queues = {}

def handle_client_recv(sock, addr):
 """ Receive messages from client and broadcast them to
 other clients until client disconnects """
 rest = bytes()
 while True:
 try:
 (msgs, rest) = tincanchat.recv_msgs(sock)
 except (EOFError, ConnectionError):
 handle_disconnect(sock, addr)
 break
 for msg in msgs:
 msg = '{}: {}'.format(addr, msg)
 print(msg)
 broadcast_msg(msg)

Client and Server Applications

[240]

def handle_client_send(sock, q, addr):
 """ Monitor queue for new messages, send them to client as
 they arrive """
 while True:
 msg = q.get()
 if msg == None: break
 try:
 tincanchat.send_msg(sock, msg)
 except (ConnectionError, BrokenPipe):
 handle_disconnect(sock, addr)
 break

def broadcast_msg(msg):
 """ Add message to each connected client's send queue """
 for q in send_queues.values():
 q.put(msg)

def handle_disconnect(sock, addr):
 """ Ensure queue is cleaned up and socket closed when a client
 disconnects """
 fd = sock.fileno()
 # Get send queue for this client
 q = send_queues.get(fd, None)
 # If we find a queue then this disconnect has not yet
 # been handled
 if q:
 q.put(None)
 del send_queues[fd]
 addr = sock.getpeername()
 print('Client {} disconnected'.format(addr))
 sock.close()

if __name__ == '__main__':
 server = eventlet.listen((HOST, PORT))
 addr = server.getsockname()
 print('Listening on {}'.format(addr))

 while True:
 client_sock,addr = server.accept()
 q = queue.Queue()
 send_queues[client_sock.fileno()] = q
 eventlet.spawn_n(handle_client_recv,
 client_sock,
 addr)

Chapter 8

[241]

 eventlet.spawn_n(handle_client_send,
 client_sock,
 q,
 addr)
 print('Connection from {}'.format(addr))

We can test this with our multithreaded client to ensure that it works as expected.

As you can see, it's pretty much identical to our multithreaded server, with a few
changes made so as to use eventlet. Notice that we've removed the synchronization
code and the lock around send_queues. We're still using queues, although they're
the eventlet library's queues, because we want to retain the blocking behavior of
Queue.get().

There are more examples of using eventlet for programming on the
eventlet site at http://eventlet.net/doc/examples.html.

An asyncio-based chat server
The asyncio Standard Library module is new in Python 3.4 and it is an effort at
bringing some standardization around asynchronous I/O into the Standard Library.
The asyncio library uses a co-routine based style of programming. It provides a
powerful loop class, which our programs can submit prepared tasks, called
co-routines, to, for asynchronous execution. The event loop handles the scheduling
of the tasks and optimization of performance around blocking I/O calls.

It has built-in support for socket-based networking, which makes building a basic
server a straightforward task. Let's see how this can be done. Create a new file called
5.1-chat_server-asyncio.py and save the following code in it:

import asyncio
import tincanchat

HOST = tincanchat.HOST
PORT = tincanchat.PORT
clients = []

class ChatServerProtocol(asyncio.Protocol):
 """ Each instance of class represents a client and the socket
 connection to it. """

http://eventlet.net/doc/examples.html

Client and Server Applications

[242]

 def connection_made(self, transport):
 """ Called on instantiation, when new client connects """
 self.transport = transport
 self.addr = transport.get_extra_info('peername')
 self._rest = b''
 clients.append(self)
 print('Connection from {}'.format(self.addr))

 def data_received(self, data):
 """ Handle data as it's received. Broadcast complete
 messages to all other clients """
 data = self._rest + data
 (msgs, rest) = tincanchat.parse_recvd_data(data)
 self._rest = rest
 for msg in msgs:
 msg = msg.decode('utf-8')
 msg = '{}: {}'.format(self.addr, msg)
 print(msg)
 msg = tincanchat.prep_msg(msg)
 for client in clients:
 client.transport.write(msg) # <-- non-blocking

 def connection_lost(self, ex):
 """ Called on client disconnect. Clean up client state """
 print('Client {} disconnected'.format(self.addr))
 clients.remove(self)

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 # Create server and initialize on the event loop
 coroutine = loop.create_server(ChatServerProtocol,
 host=HOST,
 port=PORT)
 server = loop.run_until_complete(coroutine)
 # print listening socket info
 for socket in server.sockets:
 addr = socket.getsockname()
 print('Listening on {}'.format(addr))
 # Run the loop to process client connections
 loop.run_forever()

Again, we can test this with our multithreaded client to make sure that it works as
we expect it to.

Chapter 8

[243]

Let's step through the code, as it's quite different from our previous servers. We
begin by defining our server behavior in a subclass of the asyncio.Protocol
abstract class. We're required to override the three methods connection_made(),
data_received(), and connection_lost(). By using this class we can instantiate
a new server scheduled on the event loop, which will listen on a socket and behave
according to the contents of these three methods. We perform this instantiation in the
main section further down with the loop.create_server() call.

The connection_made() method is called when a new client connects to our socket,
which is equivalent to socket.accept() receiving a connection. The transport
argument that it receives is a writable stream object, that is, it is an asyncio.
WriteTransport instance. We will use this to write data to the socket, so we hang on
to it by assigning it to the self.transport attribute. We also grab the client's host
and port by using transport.get_extra_info('peername'). This is the transport's
equivalent of socket.getpeername(). We then set up a rest attribute to hold the
leftover data from tincanchat.parse_recvd_data() calls, and then we add our
instance to the global clients list so that the other clients can broadcast to it.

The data_received() method is where the action happens. This function is called
every time the Protocol instance's socket receives any data. This is equivalent to
poll.poll() returning a POLLIN event, and then us performing a recv() on the
socket. When called, this method is passed the data that is received from the socket
as the data argument, which we then parse using tincanchat.parse_recvd_
data(), as we have done before.

We then iterate over any received messages, and for each one, send it to every client
in the clients list by calling the write() method on the clients' transport objects.
The important thing to note here is that the Transport.write() call is non-blocking
and so returns immediately. The send just gets submitted to the event loop, to be
scheduled for completion soon. Hence the broadcast itself completes quickly.

The connection_lost() method is called when the client disconnects or the
connection is lost, which is equivalent to a socket.recv() returning an empty
result, or a ConnectionError. Here, we just remove the client from the clients
global list.

In the main module code we acquire an event loop, and then create an instance of
our Protocol server. The call to loop.run_until_complete() runs the initialization
phase of our server on the event loop, setting up the listening socket. Then we call
loop.run_forever(), which starts our server listening for incoming connections.

Client and Server Applications

[244]

More on frameworks
I've broken from our usual procedural form and used an object-oriented approach
in the last example for two reasons. First, although it is possible to write a purely
procedural style server with asyncio, it requires a deeper understanding of co-
routines than what we were able to provide here. If you're curious, then you can
go through an example co-routine style echo server, which is in the asyncio
documentation at https://docs.python.org/3/library/asyncio-stream.
html#asyncio-tcp-echo-server-streams.

The second reason is that this kind of class-based approach is generally a more
manageable model to follow in a full system.

There is in fact a new module called selectors in Python 3.4, which provides an
API for quickly building an object-oriented server based on the IO primitives in the
select module (including poll). The documentation and an example can be seen at
https://docs.python.org/3.4/library/selectors.html.

There are other third-party event-driven frameworks available, popular ones are
Tornado (www.tornadoweb.org) and circuits (https://github.com/circuits/
circuits). Both are worth investigating for comparison, if you intend to choose a
framework for a project.

Moreover, no discussion of Python asynchronous I/O would be complete without a
mention of the Twisted framework. Until Python 3, this has been the go to solution
for any serious asynchronous I/O work. It is an event-driven engine, with support
for a large number of network protocols, good performance, and a large and active
community. Unfortunately, it hasn't finished the jump to Python 3 yet (a view of the
migration progress can be seen at https://rawgit.com/mythmon/twisted-py3-
graph/master/index.html). Since we're focused squarely on Python 3 in this book,
we decided to not include a detailed treatment of it. However, once it does get there,
Python 3 will have another very powerful asynchronous framework, which will be
well worth investigating for your projects.

Taking our servers forward
There are a number of things that we can do to improve our servers. For
multithreaded systems, it's common to have a mechanism for capping the number
of threads in use at any one time. This can be done by keeping a count of the active
threads and immediately closing any new incoming connections from clients while
it's above a threshold.

https://docs.python.org/3/library/asyncio-stream.html#asyncio-tcp-echo-server-streams
https://docs.python.org/3/library/asyncio-stream.html#asyncio-tcp-echo-server-streams
https://docs.python.org/3.4/library/selectors.html
www.tornadoweb.org
https://github.com/circuits/circuits
https://github.com/circuits/circuits
https://rawgit.com/mythmon/twisted-py3-graph/master/index.html
https://rawgit.com/mythmon/twisted-py3-graph/master/index.html

Chapter 8

[245]

For all our servers, we would also want to add a logging mechanism. I strongly
recommend the standard library logging module for this, the documentation for
this is complete and full of good examples. The basic tutorial is a good place to start
if you've not used it before, and it can be found at https://docs.python.org/3/
howto/logging.html#logging-basic-tutorial.

We also want to handle errors more comprehensively. Since the intention is that
our server should be long running with minimal intervention, we want to make sure
that nothing less than a critical exception causes the process to exit. We also want
to make sure that errors that occur when handling one client do not affect other
connected clients.

Finally there are some basic features of chat programs that it may be fun to add:
letting users enter a name, which would be shown beside their messages on the other
clients; adding chat rooms; and adding TLS encryption to the socket connections to
provide privacy and security.

Summary
We looked at how to develop network protocols while considering aspects such
as the connection sequence, framing of the data on the wire, and the impact these
choices will have on the architecture of the client and server programs.

We worked through different architectures for network servers and clients,
demonstrating the differences between the multithreaded and event-driven models
by writing a simple echo server and upgrading it to a multi-client chat server. We
discussed performance issues around threaded and event-driven architectures.
Finally, we looked at the eventlet and asyncio frameworks, which can greatly
simplify the process of writing servers when using an event-driven approach.

In the next and final chapter of this book, we will look at bringing several threads of
this book together for writing server-side web applications.

https://docs.python.org/3/howto/logging.html#logging-basic-tutorial
https://docs.python.org/3/howto/logging.html#logging-basic-tutorial

[247]

Applications for the Web
In Chapter 2, HTTP and Working with the Web, we explored the HTTP protocol—the
primary protocol used by the World Wide Web—and we learned how to use Python
as an HTTP client. In Chapter 3, APIs in Action, we expanded on this and looked at
ways to consume web APIs. In this chapter, we'll be turning our focus around and
looking at how we can use Python to build applications that serve responses to
HTTP requests.

In this chapter, we'll cover the following:

• Python web frameworks
• A Python web application
• Hosting Python and WSGI

I should note up front that hosting modern web applications is a very large topic,
and a complete treatment is well beyond the scope of this book, where we're focusing
on applying Python code to network problems. Topics such as database access,
selecting and configuring load balancers and reverse-proxies, containerization,
and the system administration techniques needed to keep the whole show up and
running won't be covered here. There are many great resources online though that
can give you a start, and we'll try to mention as many as we can where relevant,
as we go along.

Having said that, the technologies listed above aren't a requirement for creating
and serving Python-based web applications, they're simply what a service comes
to require as it reaches scale. As we'll see, there are options for easily manageable
small-scale application hosting too.

Applications for the Web

[248]

What's in a web server?
To understand how we can employ Python in responding to HTTP requests, we
need to know a bit about what typically needs to occur in order to respond to a
request, and what tools and patterns already exist to do this.

A basic HTTP request and response might look like this:

Here our web client sends an HTTP request to a server, where a web server program
interprets the request, creates a suitable HTTP response, and sends it back. In this
case, the response body is simply the contents of an HTML file read from, with the
response headers added by the web server program.

The web server is responsible for the entire process of responding to the client's
request. The basic steps it needs to perform are:

Chapter 9

[249]

First the web server program needs to accept the TCP connection attempt by the
client. It then receives the HTTP request from the client over the TCP connection. The
server needs to keep the TCP connection open while it generates the HTTP response,
and it uses the connection to send the response back to the client. What the server
does with the connection after that depends on the HTTP version in use and the
value of a possible Connection header in the request (see the RFC for full details at
http://tools.ietf.org/html/rfc7230#section-6.3).

Once the web server has received the request, it parses it, then generates the
response. When the requested URL maps to a valid resource on the server, the server
will respond with the resource at that URL. The resource could be a file on disk
(so-called static content), as shown in the diagram of a basic HTTP request and
response from before, it could be an HTTP redirect, or it could be a dynamically
generated HTML page. If something goes wrong, or the URL is not valid, then
instead the response will include a status code in the 4xx or 5xx range. Once the
response is prepared, the server sends it back to the client over the TCP connection.

In the early days of the Web, when almost all requested resources consisted of
static files read from disk, web servers could be written in a single language and
could easily handle all four steps shown in the preceding image. However, as
more and more dynamic content came into demand, such as shopping baskets
and database-driven resources such as blogs, wikis, and social media, it was
quickly found that hard-coding these functionalities into the web server itself was
impractical. Instead, facilities were built into web servers to allow the invocation of
external code as part of the page generation process.

Hence, web servers could be written in a fast language such as C and could deal
with the low-level TCP connections, initial parsing and validating of requests,
and handling static content, but then could invoke external code to handle page
generation duties when a dynamic response was needed.

http://tools.ietf.org/html/rfc7230#section-6.3

Applications for the Web

[250]

This external code is what we commonly refer to when we talk about web
applications. So the response process duties can be split, as shown in the
following figure:

Web applications can be written in any language that the web server is able to
invoke, providing great flexibility and allowing higher level languages to be used.
This can drastically reduce the time it takes to develop a new web service. These
days there is a great range of languages that can be used to write web applications,
and Python is no exception.

Python and the Web
Using some of the techniques discussed in this book, in particular Chapter 8, Client
and Server Applications, it is possible to use Python to write a full web server that
handles all four of the steps of handling an HTTP request that we listed in the
previous section. There are several actively developed web servers already in
existence written in pure Python, including Gunicorn (http://gunicorn.org),
and CherryPy (http://www.cherrypy.org). There is even a very basic HTTP
server in the standard library http.server module.

Writing a full HTTP server is not a trivial task and a detailed treatment is well
beyond the scope of this book. It is also not a very common requirement nowadays,
primarily due to the prevalence of excellent web servers that are already ready to
deploy. If you do feel the need to have a crack at this challenge though, I would start
with looking through the source code of the web servers mentioned earlier, looking
in more detail at the frameworks listed in Chapter 8, Client and Server Applications, and
reading the full HTTP specifications in the relevant RFCs. You may also want to read
the WSGI specifications, discussed in the WSGI section later on, so as to allow the
server to act as a host for other Python web applications.

http://gunicorn.org
http://www.cherrypy.org

Chapter 9

[251]

The much stronger requirement is to build a web service application to generate
some dynamic content, and to get it up and running quickly. In this situation,
Python provides us with some excellent options in the form of web frameworks.

Web frameworks
A web framework is a layer that sits between the web server and our Python code,
which provides abstractions and streamlined APIs to perform many of the common
operations of interpreting HTTP requests and generating responses. Ideally, it is
also structured so that it guides us into employing well-tested patterns for good
web development. Frameworks for Python web applications are usually written in
Python, and can be considered part of the web application.

The basic services a framework provides are:

• Abstraction of HTTP requests and responses
• Management of the URL space (routing)
• Separation of Python code and markup (templating)

There are many Python web frameworks in use today, and here's a non-exhaustive
list of some popular ones, in no particular order:

• Django (www.djangoproject.com)
• CherryPy (www.cherrypy.org)
• Flask (flask.pocoo.org)
• Tornado (www.tornadoweb.org)
• TurboGears (www.turbogears.org)
• Pyramid (www.pylonsproject.org)

An up-to-date list of frameworks is maintained at http://wiki.
python.org/moin/WebFrameworks and http://docs.python-
guide.org/en/latest/scenarios/web/#frameworks.

There are so many frameworks because there are many approaches that can be taken
to the tasks they perform, and many different opinions about what tasks they should
even perform.

www.djangoproject.com
www.cherrypy.org
flask.pocoo.org
www.tornadoweb.org
www.turbogears.org
www.pylonsproject.org
http://docs.python-guide.org/en/latest/scenarios/web/#frameworks
http://docs.python-guide.org/en/latest/scenarios/web/#frameworks
http://wiki.python.org/moin/WebFrameworks
http://wiki.python.org/moin/WebFrameworks

Applications for the Web

[252]

Some frameworks provide the minimum to quickly build a simple web application.
These are often called microframeworks, the most popular here being Armin
Ronacher's excellent Flask. Although they may not include the functionality of some
of the heavyweight frameworks, what they do, they generally do very well, and
provide hooks to allow easy extension for more complex tasks. This allows a fully
customizable approach to web application development.

Other frameworks take a much more batteries-included stance, providing for all the
common needs of modern web applications. The major contender here is Django,
which includes everything from templating to form management and database
abstraction, and even a complete out-of-the-box web-based database admin interface.
TurboGears provides similar functionality by integrating a core microframework
with several established packages for the other features.

Yet other frameworks provide features such as supporting web applications with an
event-driven architecture, such as Tornado, and CherryPy. Both of these also feature
their own built-in production quality web servers.

Choosing a framework can be a tricky decision, and there is no right answer. We're
going to take a quick look at one of today's most popular frameworks to get an
idea of the services a framework can offer, then discuss how you might approach
choosing one.

Flask – a microframework
To get a taste of working with a Python web framework, we're going to write a small
app with Flask. We've chosen Flask because it provides a lean interface, giving us
the features we need while getting out of the way and letting us code. Also, it doesn't
require any significant preconfiguration, all we need to do is install it, like this:

>>> pip install flask

Downloading/unpacking flask

Flask can also be downloaded from the project's homepage at http://flask.pocoo.
org. Note that to run Flask under Python 3, you will need Python 3.3 or higher.

Now create a project directory, and within the directory create a text file called
tinyflaskapp.py. Our app is going to allow us to browse the docstrings for the
Python built-in functions. Enter this into tinyflaskapp.py:

from flask import Flask, abort
app = Flask(__name__)
app.debug = True

objs = __builtins__.__dict__.items()

http://flask.pocoo.org
http://flask.pocoo.org

Chapter 9

[253]

docstrings = {name.lower(): obj.__doc__ for name, obj in objs if
 name[0].islower() and hasattr(obj, '__name__')}

@app.route('/')
def index():
 link_template = '{}</br>'
 links = []
 for func in sorted(docstrings):
 link = link_template.format(func, func)
 links.append(link)
 links_output = '\n'.join(links)
 return '<h1>Python builtins docstrings</h1>\n' + links_output

@app.route('/functions/<func_name>')
def show_docstring(func_name):
 func_name = func_name.lower()
 if func_name in docstrings:
 output = '<h1>{}</h1>\n'.format(func_name)
 output += '<pre>{}</pre>'.format(docstrings[func_name])
 return output
 else:
 abort(404)

if __name__ == '__main__':
 app.run()

This code can be found in this book's source code download for this chapter within
the 1-init folder.

Flask includes a development web server, so to try out our application all we need to
do is run the following command:

$ python3.4 tinyflaskapp.py

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 * Restarting with stat

We can see that the Flask server tells us the IP address and port it's listening
on. Connect to the URL it displays (in the preceding example this is
http://127.0.0.1:5000/) now in a web browser, and you should see a
page with a list of Python built-in functions. Clicking on one should display
a page showing the function name and its docstring.

If you want to run the server on another interface or port, you can change the
app.run() call, for example, to app.run(host='0.0.0.0', port=5001).

http://127.0.0.1:5000/

Applications for the Web

[254]

Let's go through our code. From the top, we create our Flask app by creating a Flask
instance, in this case giving it the name of our main module. We then set debug
mode to active, which provides nice tracebacks in the browser when something goes
wrong, and also sets the development server to automatically reload code changes
without needing a restart. Note that debug mode should never be left active in a
production app! This is because the debugger has an interactive element, which
allows code to be executed on the server. By default, debug is off, so all we need to
do is delete the app.config.debug line when we put the app into production.

Next we filter the built-in function objects out of the globals and extract their
docstrings for later use. Now we have the main section of the app, and we encounter
the first of Flask's superpowers: URL routing. The heart of a Flask app is a set of
functions, usually called views, that handle requests for various parts of our URL
space—index() and show_docstring() are such functions. You will see both are
preceded by a Flask decorator function, app.route(). This tells Flask which parts of
our URL space the decorated function should handle. That is, when a request comes
in with a URL that matches a pattern in an app.route() decorator, the function with
the matching decorator is called to handle the request. View functions must return a
response that Flask can return to the client, but more on that in a moment.

The URL pattern for our index() function is just the site root, '/', meaning that
only requests for the root will be handled by index().

In index(), we just compile our output HTML as a string—first our list of links
to the functions' pages, then a header—and then we return the string. Flask takes
the string and creates a response out of it, using the string as the response body
and adding a few HTTP headers. In particular, for str return values, it sets
Content-Type to text/html.

The show_docstrings() view does a similar thing—it returns the name of the
built-in function we're viewing in an HTML header tag, plus the docstring
wrapped in a <pre> tag (to preserve new lines and whitespace).

The interesting part is the app.route('/functions/<func_name>') call. Here we're
declaring that our functions' pages will live in the functions directory, and we're
capturing the name of the requested function using the <func_name> segment.
Flask captures the section of the URL in angle brackets and makes it available to our
view. We pull it into the view namespace by declaring the func_name argument for
show_docstring().

Chapter 9

[255]

In the view, we check that the name supplied is valid by seeing whether it appears in
the docstrings dict. If it's okay, we build and return the corresponding HTML. If it's
not okay, then we return a 404 Not Found response to the client by calling Flask's
abort() function. This function raises a Flask HTTPException, which if not handled
by our application, will cause Flask to generate an error page and return it to the
client with the corresponding status code (in this case 404). This is a good way to fail
fast when we encounter bad requests.

Templating
You can see from our preceding views that even when cheekily omitting the usual
HTML formalities such as <DOCTYPE> and the <html> tag to save complexity,
constructing HTML in Python code is clunky. It's difficult to get a feel for the
overall page, and it's impossible for designers with no Python knowledge to work
on the page design. Also, mixing the generation of the presentation code with the
application logic makes both harder to test.

Pretty much all web frameworks solve this problem by employing the template
idiom. Since the bulk of the HTML is static, the question arises: Why keep it in
the application code at all? With templates, we extract the HTML entirely into
separate files. These then comprise HTML code, with the inclusion of some special
placeholder and logic markup to allow dynamic elements to be inserted.

Flask uses another Armin Ronacher creation, the Jinja2 templating engine, for this
task. Let's adapt our application to use templates. In your project folder, create a
folder called templates. In there, create three new text files, base.html, index.
html, and docstring.html. Fill them out as follows:

The base.html file will be like this:

<!DOCTYPE html>
<html>
<head>
 <title>Python Builtins Docstrings</title>
</head>
<body>
{% block body %}{% endblock %}
</body>
</html>

Applications for the Web

[256]

The index.html file will be like this:

{% extends "base.html" %}
{% block body %}
 <h1>Python Builtins Docstrings</h1>
 <div>
 {% for func in funcs %}
 <div class="menuitem link">
 {{ func }}
 </div>
 {% endfor %}
 </table>
{% endblock %}

The docstring.html file will be like this:

{% extends 'base.html' %}
{% block body %}
 <h1>{{ func_name }}</h1>
 <pre>{{ doc }}</pre>
 <p>Home</p>
{% endblock %}

Add render_template to the from flask import... line at the top of
tinyflaskapp.py, then modify your views to look like this:

@app.route('/')
def index():
 return render_template('index.html', funcs=sorted(docstrings))

@app.route('/functions/<func_name>')
def show_docstring(func_name):
 func_name = func_name.lower()
 if func_name in docstrings:
 return render_template('docstring.html',
 func_name=func_name,
 doc=docstrings[func_name])
 else:
 abort(404)

This code can be found in the 2-templates folder of this chapter's source code.

Notice how the views become much simpler, and the HTML is much more
readable now? Instead of composing a return string by hand, our views simply
call render_template() and return the result.

Chapter 9

[257]

So what does render_template() do? Well, it looks in the templates folder for the
file supplied as the first argument, reads it, runs any processing instructions in the
file, then returns the processed HTML as a string. Any keyword arguments supplied
to render_template() are passed to the template and become available to its
processing instructions.

Looking at the templates, we can see they are mostly HTML, but with some extra
instructions for Flask, contained in {{ }} and {% %} tags. The {{ }} instructions
simply substitute the value of the named variable into that point of the HTML. So
for example the {{ func_name }} in docstrings.html substitutes the value of the
func_name value we passed to render_template().

The {% %} instructions contain logic and flow control. For example, the {% for func
in funcs %} instruction in index.html loops over values in funcs and repeats the
contained HTML for each value.

Finally, you may have spotted that templates allow inheritance. This is provided by
the {% block %} and {% extends %} instructions. In base.html we declare some
shared boilerplate HTML, then in the <body> tag we just have a {% block body %}
instruction. In index.html and docstring.html, we don't include the boilerplate
HTML; instead we extend base.html, meaning that these templates will fill the
block instructions declared in base.html. In both index.html and docstring.
html, we declare a body block, the contents of which Flask inserts into the HTML in
base.html, replacing the matching {% block body %} there. Inheritance allows the
reuse of common code, and it can cascade through as many levels as needed.

There is a lot more functionality available in Jinja2 template instructions; check out
the template designer documentation for a full list at http://jinja.pocoo.org/
docs/dev/templates/.

Other templating engines
Jinja2 is certainly not the only templating package in existence; you can find a
maintained list of Python templating engines at https://wiki.python.org/moin/
Templating.

Like frameworks, different engines exist because of differing philosophies on what
makes a good engine. Some feel that logic and presentation should be absolutely
separate and that flow control and expressions should never be available in
templates, providing only value substitution mechanisms. Others take the opposite
tack and allow full Python expressions within template markup. Others, such as
Jinja2, take a middleground approach. And some engines use different schemes
altogether, such as XML-based templates or declaring logic via special HTML
tag attributes.

http://jinja.pocoo.org/docs/dev/templates/
http://jinja.pocoo.org/docs/dev/templates/
https://wiki.python.org/moin/Templating
https://wiki.python.org/moin/Templating

Applications for the Web

[258]

There isn't a "right" approach; it's best to experiment with a few and see what works
best for you. Where a framework has its own engine though, like Django, or is tightly
integrated with an existing engine, like Flask, you'll usually have a smoother run
sticking with what they supply, if you can.

Adding some style
At the moment, our pages look a little plain. Let's add some style. We'll do this by
including a static CSS document, but the same approach can be used to include
images and other static content. The code for this section can be found in the
3-style folder in this chapter's source code.

First create a new static folder in your project folder, and in there create a new text
file called style.css. Save the following to it:

body { font-family: Sans-Serif; background: white; }
h1 { color: #38b; }
pre { margin: 0px; font-size: 1.2em; }
.menuitem { float: left; margin: 1px 1px 0px 0px; }
.link { width: 100px; padding: 5px 25px; background: #eee; }
.link a { text-decoration: none; color: #555; }
.link a:hover { font-weight: bold; color: #38b; }

Next update the <head> section of your base.html file to look like this:

<head>
 <title>Python Builtins Docstrings</title>
 <link rel="stylesheet" href="{{ url_for('static', filename='style.
css') }}"/>
</head>

Note the third and forth lines in the preceding code—that is the <link> tag—should
be a single line in your code. Try your web application in the browser again and
notice that it looks (hopefully) a little more up to date.

Here we've just added a stylesheet to our boilerplate HTML in base.html, adding
a <link> tag pointing to our static/style.css file. We use Flask's url_for()
function for this. The url_for() function returns paths to named parts of our URL
space. In this case, it's the special static folder, which by default Flask looks for in
the root of our web application. Another thing we can use url_for() for is to get the
paths of our view functions, for example, url_for('index') would return /.

Chapter 9

[259]

You can put images and other resources in the static folder, and reference them in
the same way.

A note on security
If you're new to web programming, then I strongly recommend you read up on two
common types of security flaw in web applications. Both are fairly easily avoided but
can have serious consequences if not addressed.

XSS
The first is Cross-Site Scripting (XSS). This is where an attacker injects malicious
script code into a site's HTML, causing a user's browser to carry out operations in
the security context of that site without the user's knowledge. A typical vector is user
submitted info being redisplayed to users without proper sanitization or escaping.

For example, one method is to trick users into visiting URLs containing carefully
crafted GET parameters. As we saw in Chapter 2, HTTP and Working with the Web,
these parameters can be used by web servers to generate pages, and sometimes
their content is included in the HTML of the response page itself. If the server is not
careful to replace special characters in the URL parameters with their HTML escape
codes when displayed, an attacker can put executable code, for example Javascript,
into URL parameters and actually have it executed when that URL is visited. If they
can trick a victim into visiting that URL, that code will be executed in the user's
browser, enabling the attacker to potentially perform any action the user could.

The basic XSS prevention is to ensure that any input received from outside the web
application is escaped properly when returned to the client. Flask is very helpful in
this regard since it activates Jinja2's auto-escaping feature by default, meaning that
anything we render via template is automatically protected. Not all frameworks
have this feature though, and some that do need it to be manually set. Also, this only
applies in situations where your user-generated content can't include markup. In
situations like a wiki that allows some markup in user-generated content, you need
to take much greater care—see the source code download for this chapter in the
5-search folder for an example of this. You should always make sure you check out
your framework's documentation.

Applications for the Web

[260]

CSRF
The second form of attack is the Cross-Site Request Forgery (CSRF). In this attack,
a site is tricked into carrying out actions in the security context of a user, without
the user's knowledge or consent. Frequently this is initiated by an XSS attack that
causes a user's browser to perform an operation on the target site while the user is
logged in. It should be noted that this can affect sites even when a user isn't actively
browsing them; sites often clear cookie authentication tokens only when a user
explicitly logs out, and hence from the site and browser's point of view, any request
coming from the browser even after the user has stopped browsing a site—if they
haven't logged out—will be as if the user is still logged in.

One technique to help prevent CSRF attacks is to make potentially abusable
operations, such as submitting forms, require a one-time nonce value that is
only known to the server and the client. CRSF attacks often take the form of a
pre-composed HTTP request, mimicking a user submitting a form or similar.
However, if every time a server sends a form to a client it includes a different
nonce value, then the attacker has no way of including this in the pre-composed
request, and hence the attack attempt can be detected and rejected. This technique
is less effective against XSS initiated attacks, and attacks where an attacker is
eavesdropping the HTTP traffic of a browsing session. The former is difficult to
completely protect against, and the best solution is to ensure XSS vulnerabilities are
not present in the first place. The latter can be mitigated using HTTPS rather than
HTTP. See the OWASP pages linked to below for further information.

Different frameworks have different approaches to providing nonce-based CSRF
protection. Flask doesn't have this functionality built in, but it is very easy to add
something, for example:

@app.before_request
def csrf_protect():
 if request.method == "POST":
 token = session.pop('_csrf_token', None)
 if not token or token != request.form.get('_csrf_token'):
 abort(403)

def generate_csrf_token():
 if '_csrf_token' not in session:
 session['_csrf_token'] = some_random_string()
 return session['_csrf_token']

app.jinja_env.globals['csrf_token'] = generate_csrf_token

Chapter 9

[261]

Then in templates with forms, just do the following:

<form method="post" action="<whatever>">
 <input name="_csrf_token" type="hidden" value="{{ csrf_token()
 }}">

This is from the Flask site: http://flask.pocoo.org/snippets/3/. Although this
contains some Flask functionality, we haven't covered, including sessions and the
@app.before_request() decorator, you just need to include the above code in
your app, and make sure you include a _csrf_token hidden input in every form.
An alternative approach is to use the Flask-WTF plugin that provides integration
with the WTForms package, which has built-in CSRF protection.

Django on the other hand has built-in protection, though you need to enable and use
it. Other frameworks vary. Always check your chosen framework's documentation.

There is more information on XSS and CSRF on the Flask and
Django sites:

• http://flask.pocoo.org/docs/latest/security/

• https://docs.djangoproject.com/en/1.7/topics/
security/

Also on the OWASP site, there is a repository of all sorts of computer
security related information:

• https://www.owasp.org/index.php/XSS

• https://www.owasp.org/index.php/CSRF

Finishing up with frameworks
That's as far as we're going to take our dip into Flask, here. There are some examples
of further adaptations to our application in the downloadable source code of this
chapter, notably form submission, accessing form values in the request, and sessions.
The Flask tutorial covers many of these elements in some detail, and is well worth
checking out http://flask.pocoo.org/docs/0.10/tutorial/.

So that's a taste of what a very basic Python web application can look like. There are
obviously as many ways to write the same app as there are frameworks though, so
how do you choose a framework?

Firstly, it helps to have a clear idea of what you're looking to achieve with your
application. Do you require database interaction? If so, a more integrated solution
like Django may be quicker to get started with. Will you need a web-based data entry
or administration interface? Again if so, Django has this out of the box.

http://flask.pocoo.org/snippets/3/
http://flask.pocoo.org/docs/latest/security/
https://docs.djangoproject.com/en/1.7/topics/security/
https://docs.djangoproject.com/en/1.7/topics/security/
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/CSRF
http://flask.pocoo.org/docs/0.10/tutorial/

Applications for the Web

[262]

Next you can look at your environment. Are there already preferred packages in
your organization for operations you might want to perform, such as database
access or unit testing? If so, do any frameworks already use these? If not then a
microframework might be a better option, plugging in your required packages.
Do you have a preferred operating system or web server for hosting, and which
frameworks support these? Does your hosting restrict you in terms of Python
version, database technology, or similar? Also, if you have web designers, do you
have time to get them up to speed on a complex templating language, or must it be
kept simple?

Answers to these questions can help you narrow down your choices. Then,
researching the frameworks, asking people who are using them, and trying
out a few likely looking ones will get you where you need to go.

Having said that, for a general web application that needs some user form
submission and database access, you can't really go wrong with Django. It really is
"batteries included", its database model is elegant, and its out-of-the box database
administration and data entry interface is very powerful and can be a huge
timesaver. And for simpler applications such as APIs, Flask is also a great choice,
coupled with SQLAlchemy if database access is needed.

As I mentioned before, there's no right answer, but there's a lot to be learned
by exploring what's available and seeing the different approaches that the
frameworks take.

Of course, once we've got our web application, we need a way to host it. We're going
to look at some options now.

Hosting Python web applications
As we discussed at the beginning of this chapter, in order to run a Python web
application, we need a web server to host it. There are many web servers in existence
today, and you will very likely have heard of several. Popular examples are Apache,
nginx (pronounced engine-x), lhttpd (pronounced lighty), and Microsoft's Internet
Information Services (IIS).

There is a lot of terminology around web servers and various mechanisms they can
use to invoke Python web applications. We're going to take a very brief tour of the
history of web applications to help explain some of these concepts.

Chapter 9

[263]

CGI
In the early days of the Web, web servers would mostly only be required to send
clients HTML pages, or the occasional image file. As in the earlier figure of a HTTP
request journey, these static resources would live on the hard disk of the server, and
the web server's main task would be to accept socket connections from clients, map
the URL of a request to a local file, and send the file back over the socket as an
HTTP response.

However, with the rise of the need for dynamic content, web servers were given
the ability to generate pages by invoking external programs and scripts, which we
today call web applications. Web applications originally took the form of scripts or
compiled executables that lived on disk next to the regular static content as part of
the published web tree. The web server would be configured so that when a client
requested these web application files, instead of just reading the file and returning
it, the web server would launch a new operating system process and execute the file,
returning the result as the requested HTML web page.

If we update our HTTP request's journey from our earlier image, our request's
journey would now look something like this:

Applications for the Web

[264]

There obviously needs to be some kind of protocol for the web server and the web
application to pass the HTTP request and the returned HTML page between them.
The earliest mechanism for this was called the Common Gateway Interface (CGI).
The web server would decompose the request into environment variables, which it
would add to the environment of the handler program when it was invoked, and
pass the body of the request, if there was one, to the program via its standard input.
The program would then simply pipe the HTTP response it generated to its standard
output, which the web server would catch and return to the client.

Due to performance issues however, CGI is slowly falling out of favor these days,
and writing a Python CGI application is something that should be avoided if at
all possible.

Recycling for a better world
CGI works, but the major drawback is that a new process has to be launched for each
request. Launching processes is expensive in terms of operating system resources,
and so this approach is very inefficient. Alternatives have been developed.

Two approaches became common. The first was to make web servers launch and
maintain multiple processes at startup, ready to accept new connections— a technique
known as pre-forking. With this technique, there is still a one-process-per- client
relationship, but the processes are already created when a new client connects,
improving response time. Also the processes can be reused instead of being
re-created anew with each connection.

Alongside this, web servers were made extensible and bindings were created to
different languages so that the web application could be embedded within the web
server processes themselves. The most commonly seen examples of these are the
various language modules for the Apache web server for languages such as PHP
and Perl.

Chapter 9

[265]

With pre-forking and web application embedding, our request's journey might look
like this:

Here, the request is transformed by the language binding code, and the request our
web application sees depends on the design of the binding itself. This approach to
managing a web application works fairly well for general web loads, and remains
a popular way to host web applications today. Modern browsers usually also offer
multithreaded variants, where each process can handle requests using multiple
threads, one for each client connection, further improving efficiency.

Applications for the Web

[266]

The second approach to solving CGI's performance problems was to hand off the
management of the web application processes completely to a separate system. The
separate system would pre-fork and maintain a pool of processes running the web
application code. Like web server pre-forking, these could be reused for each client
connection. New protocols were developed to allow the web server to pass requests
to the external processes, the most notable being FastCGI and SCGI. In this situation,
our journey would be:

Again, how the request is transformed and presented to the web application depends
on the protocol used.

Although in practice this is somewhat more complex to configure, it has advantages
over embedding a copy of the application code in pre-forked web server processes.
Primarily, the web application process pool can be managed independently of the
web server process pool, allowing more efficient tuning of both.

Chapter 9

[267]

Event-driven servers
Web client numbers continued to grow though, and the need arose for servers to
be able to handle very large numbers of simultaneous client connections, numbers
that proved problematic using the multiprocessing approaches. This spurred the
development of event-driven web servers, such as nginx and lighttpd, which can
handle many thousands of simultaneous connections in a single process. These
servers also leverage preforking, maintaining a number of event-driven processes
in line with the number of CPU cores in a machine, and hence making sure the
server's resources are fully utilized while also receiving the benefits of the
event-driven architecture.

WSGI
Python web applications were originally written against these early integration
protocols: CGI, FastCGI, and a now mostly defunct mod_python Apache module.
This proved troublesome though since Python web applications were tied to the
protocol or server they had been written for. Moving them to a different server or
protocol required some reworking of the application code.

This problem was solved with PEP 333, which defined the Web Services Gateway
Interface (WSGI) protocol. This established a common calling convention for web
servers to invoke web application code, similar to CGI. When web servers and web
applications both support WSGI, servers and applications can be exchanged with
ease. WSGI support has been added to many modern web servers and is nowadays
the main method of hosting Python applications on the Web. It was updated for
Python 3 in PEP 3333.

Many of the web frameworks we discussed earlier support WSGI behind the scenes
to communicate with their hosting web servers, Flask and Django included. This is
another big benefit to using such a framework— you get full WSGI compatibility
for free.

There are two ways a web server can use WSGI to host a web application. Firstly
it can directly support hosting WSGI applications. Pure Python servers such as
Gunicorn follow this approach, and they make serving Python web applications
very easy. This is becoming a very popular way to host Python web applications.

Applications for the Web

[268]

The second approach is for a non-Python server to use an adapter plugin, such as
Apache's mod_wsgi, or the mod_wsgi plugin for nginx.

The exception to the WSGI revolution is event-driven servers. WSGI doesn't include
a mechanism to allow a web application to pass control back to the calling process,
hence there is no benefit to using an event-driven server with a blocking-IO style
WSGI web application because as soon as the application blocks, for example, for
database access, it will block the whole web server process.

Hence, most event-driven frameworks include a production-ready web
server—making the web application itself event-driven and embedding it in
the web server process is really the only way to host it. To host web applications
with these frameworks, check out the framework's documentation.

Hosting in practice
So how does this all work in practice? Well as we saw with Flask, many frameworks
come with their own built-in development web servers. However, these are not
recommended for use in a production environment as they're generally not designed
to be used where security and scalability are important.

Currently, probably the quickest way to host a Python web application with a
production quality server is with the Gunicorn server. Using our Flask application from
earlier, we can get it up and running using just a few steps. First we install Gunicorn:

$ pip install gunicorn

Next we need to slightly modify our Flask app so that it's use of __builtins__
works correctly under Gunicorn. In your tinyflaskapp.py file, find the line:

objs = __builtins__.__dict__.items()

Change it to:

objs = __builtins__.items()

Now we can run Gunicorn. From within your Flask application project folder, run
the following command:

$ gunicorn --bind 0.0.0.0:5000 tinyflaskapp:app

This will launch the Gunicorn web server, listening on port 5000 on all available
interfaces and serving our Flask application. If we now visit it in a web browser via
http://127.0.0.1:5000, we should see our documentation index page. There are
instructions to daemonize Gunicorn, so that it runs in the background and starts
and stops automatically with the system, available in the documentation pages at
http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#monitoring.

http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#monitoring

Chapter 9

[269]

Gunicorn uses the pre-fork process model described earlier. You can set the number
of processes (Gunicorn calls them workers) using the -w command line option.
The 'Design' section of the documentation contains details on determining the best
number of workers to use, though a good place to start is (2 x $num_cores) + 1,
where $num_cores is the number of CPU cores available to Gunicorn.

Gunicorn offers two standard worker types: sync and async. The sync type provides
strictly one-worker-per-client-connection behavior, the async type uses eventlet
(see Chapter 8, Client and Server Applications, for details and installation instructions
for this library) to provide an event-based worker, which can handle multiple
connections. The sync type is only recommended if you are using Gunicorn behind
a reverse proxy (see below), as using the sync type to serve directly to the Internet
leaves your application vulnerable to Denial of Service attacks (see the Design
section of the documentation for more details). If you are not using a reverse proxy,
the async type should be used instead. The worker type is set on the command line
using the -k option.

One effective way to improve performance and scale further is to employ a fast,
event-driven web server, such as nginx, as a reverse proxy in front of your Gunicorn
instance. A reverse proxy acts as a first line server for incoming web requests. It
directly responds to any requests it can determine are erroneous, and can also be
configured to serve static content in place of our Gunicorn instance. However, it
is also configured to forward any requests that do require dynamic content to our
Gunicorn instance so our Python web application can handle them. In this way, we
get the performance benefits of nginx to deal with the bulk of our web traffic, and
Gunicorn and our web application can focus on delivering just the dynamic pages.

Detailed instructions on configuring this reverse proxy configuration
can be found on the Gunicorn pages at http://gunicorn-
docs.readthedocs.org/en/latest/deploy.html#nginx-
configuration.

If you're more comfortable with Apache, then another effective hosting method
is Apache with the mod_wsgi module. This takes a little more configuring, and
full instructions can be found at: https://code.google.com/p/modwsgi/.
mod_wsgi defaults to running applications in embedded mode, where the web
application is hosted in each Apache process, and which results in a setup like the
preceding pre-forking example. Alternatively it provides a daemon mode, where
mod_wsgi manages a pool of processes external to Apache, similar to the earlier
FastCGI example. Daemon mode is in fact recommended for stability and memory
performance. See the mod_wsgi quick configuration documentation for instructions
on this configuration, it can be found at: https://code.google.com/p/modwsgi/
wiki/QuickConfigurationGuide.

http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#nginx-configuration
http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#nginx-configuration
http://gunicorn-docs.readthedocs.org/en/latest/deploy.html#nginx-configuration
https://code.google.com/p/modwsgi/
https://code.google.com/p/modwsgi/wiki/QuickConfigurationGuide
https://code.google.com/p/modwsgi/wiki/QuickConfigurationGuide

Applications for the Web

[270]

Summary
We've taken a whistle-stop tour of putting Python applications on the Web. We got
an overview of web application architectures and their relationship to web servers.
We looked at the utility of Python web frameworks, noting how they give us tools
and structure to write better web applications more quickly, and help us integrate
our applications with web servers.

We wrote a tiny application in the Flask web framework, we saw how it can help us
elegantly manage our URL space, and how templating engines can help us cleanly
manage the seperation of application logic and HTML. We also highlighted a couple
of common potential security vulnerabilities— XSS and CSRF— and looked at some
basic mitigation techniques.

Finally, we discussed web hosting architectures and the various methods that can
be used to deploy Python web applications to the Web. In particular, WSGI is the
standard protocol of web server/web application interaction, and Gunicorn can be
used for rapid deployment and scaled with an nginx reverse proxy. Apache with
mod_wsgi is also an effective hosting approach.

We've covered a lot of ground in this book, and there's still plenty more exploring to
be done. We hope this book has given you a taste of what's possible and an appetite
for discovering more, and that this is just the start of your adventures in network
programming with Python.

[271]

Working with Wireshark
When developing network applications, it's often useful to be able to see exactly
what's being transmitted over the network. Maybe something weird is going on with
your framing, you're trying to discover the user agent for your browser, or you want
to see what's happening in the IP protocol or lower layers. We can employ a class of
tools called packet sniffers to do this.

Packet sniffers
Packet sniffers are designed to capture all the network traffic that enters and leaves
a computer, allowing us to see the full, raw contents of all packets that our programs
send and receive, and all the headers and payloads of all the protocols on the stack.

We're going to take a quick look at one of these applications. It not only provides
us with a very useful debugging tool for network programming, it also gives you
a direct view of the structure of network traffic and gives you a better feel for the
concepts of layering and encapsulation.

A small word of caution before we begin though; if you're using a computer on a
network you do not own, such as at your place of work or study, you should get
permission from your network administrator before running a packet sniffer. On
networks that use network hubs rather than switches, sniffers may capture data
destined for computers other than your own. Also, running a packet sniffer may be
against your network's usage policy. Even if it's not, packet sniffers are powerful
network monitoring tools and administrators generally like to be aware of when
they're being used.

If this turns out to be difficult, don't panic! This book doesn't rely on having access
to a packet sniffer at any point; we just think that you'll find them handy while
programming for networks.

Working with Wireshark

[272]

Wireshark
The program that we're going to take a look at is called Wireshark. It's an open
source packet sniffer with support for interpreting a vast range of network protocols.

Installation
For Windows and Linux, Wireshark can be downloaded from http://www.
wireshark.org. On Debian, Ubuntu, RHEL, CentOS, and Fedora it's available
as the wireshark package.

You'll need to have root or administrator access in order to install this. On Windows,
make sure that you install or update the WinPcap library if it asks you to do so, and
also allow it to start the WinPcap driver at boot time when prompted.

On Debian and Ubuntu, you will need to configure Wireshark to allow regular users
to run captures. Run the following command:

$ sudo dpkg-reconfigure wireshark-common

Say Yes to Should non-superusers be able to capture packets? Note that this
doesn't automatically allow all non-super users to use Wireshark, they still need to
be added to the wireshark group. Do this now for your own user, for example:

$ sudo usermod -aG wireshark myuser

You may need to log out and log in again for this to take effect, or possibly even
reboot. For other Linux distributions, check their documentation, or there are
instructions on the Wireshark wiki for assigning these rights at http://wiki.
wireshark.org/CaptureSetup/CapturePrivileges.

If you run into trouble at any point, you can get further help regarding the
installation on the wiki at http://wiki.wireshark.org/CaptureSetup.

Once configured, on Linux, just run wireshark in an X session to start the
graphical interface.

Capturing some packets
Once you have Wireshark installed and running, you'll see a window that looks
like this:

http://www.wireshark.org
http://www.wireshark.org
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
http://wiki.wireshark.org/CaptureSetup/CapturePrivileges
http://wiki.wireshark.org/CaptureSetup

Appendix

[273]

Packet sniffing usually works in two steps: first, we run a traffic capture session, and
then we analyze the captured traffic. During a capture, Wireshark asks the operating
system for a copy of all the network traffic it processes, which Wireshark then keeps
in a buffer for us to analyze. Wireshark provides us with tools that let us filter the
captured data so that we can work on only the data streams we want, and drill into
each packet in order to take a look at the header data and the payloads.

So first, we need to select the interfaces on which we want to capture the traffic.
We can see that there's a list of interfaces below the Start button. Wireshark captures
all the network traffic that passes over all the interfaces that we select; this usually
means that we end up capturing a lot of data that we're not actually interested in.
In order to reduce this noise, it's best to capture as few interfaces as possible, ideally
just one.

We're going to use the first RFC downloader, from Chapter 1, Network Programming
and Python, RFC_downloader.py, to generate some network traffic to analyze. Since
this program communicates with a host on the Internet, we want to capture the
network interface that provides our Internet connection.

Working with Wireshark

[274]

If you're not sure which interface is your Internet interface, then click on the
Interface List button above the Start button to bring up the window, as shown
in the following screenshot:

On the right-side of the dialog box, you can see the live counts of the number
of packets that have passed through each of the interfaces, since we opened the
window. You can generate some Internet traffic by browsing a website if there's
not much happening. The interface with the fastest rising packet count will be the
Internet interface (ignore the any interface on Linux). Make a note of the interface's
name and close the window.

Network interfaces can capture packets in one of two modes: promiscuous mode
and non-promiscuous mode. In promiscuous mode, the interface will pass all
traffic that it receives on to the sniffer, even if it is traffic that is not destined for our
computer. In non-promiscuous mode, the interface filters out any traffic that is not
for our computer. Unless you have a very specific reason to, it's usually best to run
in non-promiscuous mode, as this reduces the amount of extraneous traffic we need
to filter manually. Wireshark enables promiscuous mode by default. To disable, go
into Capture | Options... and ensure 'Use promiscuous mode on all interfaces' is
unticked. Then check the 'Prom Mode' column in the interfaces list at the top of the
options window, and ensure it's says disabled for the interfaces you're capturing on.
When done, close the options window to return to the main screen.

Select your Internet interface from the interface list, which is below the Start button
on the main screen, and click on Start to begin a capture. After a moment or two, we
should see some packets coming in:

Appendix

[275]

While Wireshark is capturing packets, let's generate some traffic that we're interested
in analyzing. Run the RFC_downloader.py RFC downloader program in a terminal
to download RFC 2324:

$ python3 RFC_downloader.py 2324

...

Network Working Group L. Masinter

Request for Comments: 2324 1 April 1998

Category: Informational

...

Once the download has run, return to Wireshark and stop the capture by clicking
on the Stop button in the toolbar. If something goes awry with the capture, don't
worry, we can try it again; just stop the capture, then click on the Start a new live
capture button in the toolbar, and don't save changes to the previous capture when
prompted. When it's running, run RFC_downloader.py again. Once you have a
capture that contains the RFC downloader traffic, let's take a closer look at it.

Working with Wireshark

[276]

As shown in the preceding screenshot, the Wireshark capture screen is broken
into three sections. The top section lists the captured packets, one packet per
row, and provides basic information for each packet, such as the source and
destination addresses, and the name of the highest layer protocol for which the
packet contains data.

The middle section contains a breakdown of the protocols present in the selected
packet. The top line is equivalent to layer 1 in the network stack, with subsequent
lines corresponding to the higher layers.

The bottom section contains a raw listing of the entire captured packet. This is
broken into three main vertical areas. The numbers in the first column on the left-
hand side are the byte offsets in hex of the start of the line from the beginning of
the packet. The middle section consists of two columns of 8 hexadecimal numbers
each; this section shows each byte in the packet as a hexadecimal integer. The section
on the right-hand side, consisting of two columns of ASCII characters, is the ASCII
representation of the bytes in the packet. Dots are used here, where a byte value
maps to a nonprintable character.

Filtering
Let's see if we can find the packets that our downloader program has generated.
There's probably a fair amount of extra network data in the capture, so first,
we need to filter this out.

Wireshark lets us filter using any property of any of the protocols it supports. To
filter, we use the filter box that is under the toolbar. Wireshark has a complete filter
language, which you can investigate with the help system. For now, we're just going
to do a few basic queries to find our packets. Type http in the filter box, and click on
the Apply button. This restricts the displayed packets to just those that involve the
HTTP protocol, as shown in the following screenshot:

Appendix

[277]

Even if the only HTTP traffic that you deliberately generated during the capture
session was through the downloader program, it's possible that we'll see more HTTP
packets than just those. This is because some programs, such as file cloud storage
clients, communicate with their services in the background quite frequently through
HTTP. Also, Wireshark currently identifies SSDP protocol packets as HTTP, since
SSDP is derived from HTTP.

Not a problem though, we can refine our filter. The unique identifying feature of our
downloader packets is the server that we communicated with, www.ietf.org. If we
take a look at the packet list, you can see that the source and destination addresses of
the captured packets are IP addresses, so before we write our new filter, we need to
find out the IP address of www.ietf.org.

www.ietf.org
www.ietf.org

Working with Wireshark

[278]

Retrieving the IP address of a hostname is called name resolution, and this is exactly
the task that DNS was designed for. There are several mechanisms that we can use to
interact with DNS. On Linux and Windows, we can use the nslookup command-line
tool. Run the following command:

$ nslookup www.ietf.org

Server: 127.0.1.1

Address: 127.0.1.1#53

Non Authoritative answer:

www.ietf.org canonical name = www.ietf.org.cdn.cloudflare-

 dnssec.net.

Name: www.ietf.org.cdn.cloudflare-dnssec.net

Address: 104.20.1.85

Name: www.ietf.org.cdn.cloudflare-dnssec.net

Address: 104.20.0.85

The output indicates that www.ietf.org is actually hosted at two IP addresses:
104.20.1.85 and 104.20.0.85. This is becoming increasingly frequent as more
websites deploy load balancing and content delivery networks to spread the
workload across servers.

A quick glance at our captured HTTP packets list will probably allow us to see which
server we ended up connecting to. In the preceding example, it's 104.20.0.85.
However, to make sure, we can filter for both the IP addresses.

Note that nslookup may return different IP addresses than those shown in the
preceding example. Web services can change IP addresses of their servers for
various reasons.

So now, we can filter for www.ietf.org. Using the IP addresses you just resolved,
enter this new query in the filter box:

http and (ip.addr == 104.20.1.85 or ip.addr == 104.20.0.85)

Click on the Apply button again. This query adds the extra condition that, as well as
involving the HTTP protocol, packets must have an IP source or destination address
of either 104.20.1.85 or 104.20.0.85.

Appendix

[279]

The ip.addr syntax is a typical example of filtering on a property of a protocol.
There are many more. For example, if we want to filter by just the source address
rather than both the source and destination addresses, we can use the following
command:

http and (ip.src == 104.20.1.85 or ip.src == 104.20.0.85)

To explore all the available protocols and their properties, click on the Expression...
button to the right of the filter box. In the left-hand pane of the window that appears,
we can see all the protocols listed, and we can expand one by clicking on the
corresponding triangle or + symbol, which will show its properties. In this
window, IP is listed as IPv4.

Inspecting packets
Getting back to our RFC downloader packets, let's close the expression window if
it's open, and turn our attention to the main window. After applying the http and
(ip.addr == 104.20.1.85 or ip.addr == 104.20.0.85) filter, we should see
two packets listed in the top section of the screen:

The first is the HTTP request that urlopen() sent to the server, and the second is the
server's HTTP response.

Working with Wireshark

[280]

Click on the first packet to select it, and turn your attention to the middle section of
the window. We can see five lines of information. Each corresponds to a layer in the
network stack and the protocol that is being used in this layer. While keeping an
eye on the raw listing of the packets in the bottom section of the screen, click on the
different lines in the middle section. You'll see that different areas of the raw packet
listing get highlighted. The highlighted areas are the sections of the raw packet that are
relevant for the protocol that you clicked on. For the first layer (the line beginning in
Frame), it highlights the whole packet, since the whole packet is what's sent over the
wire. For the last layer, Hypertext Transfer Protocol, it highlights the section of the
packet that is the HTTP request, as shown in the preceding example. For the layers in
between, it just highlights the header for that protocol's encapsulated packet.

We can drill into the header data for each encapsulated packet by clicking on the
triangle or + symbols to the left of each protocol line in the middle section. If we do
this for the Hypertext Transfer Protocol line, we get something like this:

The HTTP headers in our request have been interpreted by Wireshark and broken
out to make them more readable. You can explore the other protocols' data in the
same way.

Let's inspect the second packet that we captured, the HTTP response. Click on it now
in the top section of the window:

Appendix

[281]

You'll notice some extra lines for this packet in the middle section. The line that
refers to reassembled TCP segments indicates that the HTTP response was actually
large enough to be broken across four TCP packets. Wireshark recognized this and
reassembled the full HTTP packet by combining the relevant TCP packets, so when
we click on the Hypertext Transport Protocol line, we see the whole HTTP packet.

If you don't see this, you may need to switch it on in the options menu.
Go to Edit | Preferences… to bring up the preference window, then
expand Protocols in the list on the left-hand side of the screen, and scroll
down and find HTTP. Make sure that both the options that mention
spanning multiple TCP segments are checked.

Finally, the Line-based text data line shows us the response content media type
(described in Chapter 2, HTTP and Working with the Web), and expanding the line
shows us the text data of the body of the response.

A versatile tool
As you'll probably notice from browsing the menus, Wireshark is a very feature-rich
network analyzer, and we've barely even scratched the surface of its full capabilities.
I encourage you to keep it handy as you work with this book, and do use it wherever
you'd like to take a closer look at the data being sent or received over the network.

[283]

Index
A
absolute URL 49
access 100
Access ID 72
Access Secret 72
ACK 15
Amazon S3 API

about 70
AWS, registering with 71
boto package 85, 86
elements, searching 83
enhancements 84
error handling 82, 84
file, downloading with 81
objects 74
regions 73
S3 buckets 74
S3 command-line client 74-76
wrapping up 87
XML, parsing 82

Amazon Web Services (AWS)
about 70
Amazon S3 API, registering with 71
URL 71

application layer, TCP/IP networks 16
asyncio-based chat server 241-243
asyncio documentation

URL 244
atomic 229
attribute 69
authentication, Amazon S3 API

about 71
AWS user, setting up 72, 73

authentication, for Twitter
about 91
application, registering for Twitter API 91
requests, authenticating 92
Twitter client 92, 93

AWS console
URL 72

B
Baiduspider

URL 108
base.html file 255
boto package 85, 86
broadcast address 10

C
canned ACLs

(canned Access Control Lists) 80
chat protocol 224
chat server

designing 223
CherryPy

URL 250
CIDR notation 9
client/server model 209, 210
Common Gateway Interface (CGI) 263
CommunityData() parameter 145
concurrent I/O 218
consumer 100
content negotiation

about 40
content types 40

[284]

cookies
about 43-46
handling 44

CPython interpreter 220
Cross-Site Request Forgery (CSRF) 260
custom SSL client/server

creating 201-203
interaction, inspecting 204-208

D
data handling, on persistent

connections 225-227
dele() method 121
Django

URL 251
DNS look-ups

about 168, 169
DNS client/server communications,

inspecting 170-172
dnspython library

URL 168
docstring.html file 256
Domain Name System (DNS) 10, 11, 159
dot-decimal notation 2
Dynamic Host Configuration

Protocol (DHCP) 4

E
echo protocol

about 210, 211
framing 211, 212

ElementTree
about 67
basics 67
child 67
converting, to text 70
element attributes 69
output format 68, 69
parent 67
siblings 67

e-mail
about 111
retrieving, IMAP used with

imaplib 123-125
retrieving, POP3 used with poplib 121, 122
sending, via logging module 128-131

sending, with SMTP 112
sending, with TLS 117-120

e-mail attachments
sending 126, 127

e-mail message
composing 113
sending 114-116

event-driven servers 233, 267
eventlet-based chat server 239-241
event loop 233
Extended SMTP (ESMTP) protocol 112
Extensible Markup Language

API. See XML API

F
files

sharing, with SAMBA 153-155
transferring, through FTP 140, 141
transferring, through SFTP 139, 140

first-in first-out (FIFO) 229
Flask

about 252-255
finishing up, with frameworks 261, 262
security 259
style, adding 258
templating 255-257
templating engines 257
URL 251
URL, for tutorial 261

frameworks 238
framing 211, 212
FTP

files, transferring through 140, 141
FTP packets, inspecting 142
URL 141

G
gateway 7
GeoIP look-ups 167, 168
Global Interpreter Lock (GIL)

about 220, 221
URL 221

graphical user interface (GUI) 111
Gunicorn

URL 250

[285]

H
handshake 15
header 5
host identifier 9
HTTP (Hypertext Transfer Protocol)

about 29
content negotiation 40
cookies 43
formal inspection 56-58
problems, handling 33
redirects 47
request 30
requests, customizing 36
requests, with urllib 31
response 30
response objects 31
status codes 32
URLs 48
user agents 42

HTTP headers
about 34-36
body 34
headers 34

HTTP methods
about 55
HEAD method 55
POST method 55, 56

HTTPS 58
HTTP status code 24

I
IETF landing page, for RFCs

URL 20
imaplib 123
IMAP, with imaplib

used, for retrieving e-mail 123-125
index.html file 256
inheritance 257
installation

Wireshark 272
Internet Assigned Numbers Authority

(IANA) 4
Internet Engineering Task Force (IETF)

about 2
URL 2

Internet media types 40
Internet Message Access

Protocol (IMAP) 112
Internet Message Format (IMF) 112
Internet Protocol (IP) 1
Internet Protocol version 4 (IPv4) 2
Internet Service Provider (ISP) 7
IP addresses, manipulating

about 161
IP address objects 164, 165
IP address, planning for local area

network 165, 166
IP network objects 162
network interface objects 163

J
JavaScript Object Notation (JSON)

about 87
decoding 88
dicts, using with 88
encoding 88
object types 89, 90

L
layer 4, TCP/IP networks

network ports 13
TCP 15
UDP 14

Light-weight Directory Access
Protocol (LDAP)

about 147
data, reading 147-150
LDAP packets, inspecting 151-153

list() method 121
local area network (LAN) 133
localhost 4
locks 230, 231
logging module

e-mail, sending via 128-131
loopback interface 4
low-level event-driven chat server 235-238

[286]

M
Mail Transfer Agent (MTA) 111
main thread 219
management information base (MIB) 143
man in the middle (MITM) attack 197
MibVariable parameter 145
microframeworks 252
Microsoft's Internet Information

Services (IIS) 262
MIME types 40
multiprocessing 219
Multi-purpose Internet Mail

Extensions (MIME) 113
multithreaded chat client 231, 232
multithreaded chat server

about 227-229
locks 230, 231
queues 229, 230

multithreaded echo server 222, 223
multithreading 218, 219

N
name resolution 278
netmask 9
network address 10
Network Address Translation (NAT) 5
network configuration, of local machine

retrieving 159-161
network location 48
network ports 13
network prefix 9
network programming, with Python 17
network stack

about 17
program, modifying 21-24
RFC, downloading 20
TCP/IP networks, programming for 24
traceback, generating 17, 18
using 19, 20

Network Time Protocol (NTP) 159
non-blocking socket I/O 193
nslookup tool 11
NTP client

about 172, 173

NTP client/server communication,
inspecting 174

NTP protocol
URL 174

O
oAuth

URL 92
octets 2
OWASP site

URL 261

P
packet 5
packetization 5
packet sniffers 271
parameters, Twitter

'count' 94
'include_entities' 94
'include_rts' 94
'since_id' 95

path 48
payload 5
percent encoding 52
persistent connections

data, handling on 225-227
POP3, with poplib

used, for retrieving e-mail 121, 122
poplib 121
ports 13
POST method 55, 56
Post Office Protocol 3 (POP3) 112
pre-forking technique 264
private addresses 5
programming Q&A page

URL 20
protocol 179
protocols, e-mail

Internet Message Access
Protocol (IMAP) 112

Post Office Protocol 3 (POP3) 112
Simple Mail Transfer Protocol (SMTP) 112

pull option 224
push option 224

[287]

PyPI
URL 134

Pyramid
URL 251

Python
URL 220
web framework 251
web server 250

python-geoip 167
Python package index

URL 20
Python Standard library

documentation page
URL 124

Python templating engines
about 257, 258
URL 257

Python web applications
CGI 263
event-driven servers 267
hosting 262
hosting, in practice 268, 269
recycling 264-266
WSGI 267

Python web frameworks
CherryPy 251
Django 251
Flask 251
Pyramid 251
Tornado 251
TurboGears 251

Q
queues 229, 230
quit() method 121

R
race condition 230
redirects 47, 48
Regional Internet Registries (RIRs) 4
regional routers 8
relative URLs 49
request 30

Request for Comments (RFC) 19
request line 35
request method 35
requests, customizing

about 36, 37
content compression 38, 39
multiple values 39

Requests library
about 59-62
errors handling with 63
URL 59

requests-oauthlib documentation
URL 100

requests, with urllib 31
response 30
response objects 31, 32
REST API 70
REST (Representational State Transfer) 70
retr() method 121
reverse proxy 269
Robots.txt file

about 108
URL 108

root 49
router 7
routing table 7

S
S3 buckets 74
S3 command-line client

about 74-76
bucket, creating with API 76-78
file, uploading 78, 79
uploaded file, displaying

in web browser 80, 81
uploaded file, retrieving through web

browser 79, 80
SAMBA

files, sharing with 153-155
SAMBA packets, inspecting 156-158

SAX 67
scheme 48

[288]

screen scraping, HTML
about 100
data, displaying 102
HTML parsers 101
HTML, parsing with lxml 102, 103
script, writing 106
XPath conditions 105, 106
XPath, searching with 104, 105
zeroing in 103, 104

secure file transfer protocol (SFTP)
about 139
files, transferring through 139, 140

secure shell. See SSH
Secure Socket Layer (SSL) 117, 193
security

about 259
Cross-Site Request Forgery (CSRF) 260
Cross-Site Scripting (XSS) 259

Server Name Indication (SNI) support 196
simple echo client 216, 217
simple echo server

about 213-216
received data, handling 214

Simple Object Access Protocol (SOAP) 17
SMTP (Simple Mail Transfer Protocol)

about 112
e-mail message, composing 113
e-mail message, sending 114-116
e-mail, sending with 112

SNMP (Simple Network Management
Protocol)

about 143
data, fetching 143-146
SNMP packets, inspecting 146, 147

socket family 179
sockets

basics 177, 178
securing, with TLS/SSL 193-197

socket type 179
source port number 14
spoofing 43
SSH

about 134
accessing, Python used 134-136
SSH packets, inspecting 137, 138

ssl_wrap_socket() function
ca_certs parameter 195

certfile parameter 195
cert_reqs parameter 195
keyfile parameter 195
server_hostname parameter 195
sock parameter 195
ssl_version parameter 195

standard SSL client/server communication
inspecting 197-200

stateless protocol 44
static content 249
stat() method 121
status codes

about 32
reference 33

streaming API 99
subnet 10
subnet mask 9
synchronization primitive 230

T
TCP/IP networks

about 2
DNS 10, 11
IP addresses 2
IP addresses, assigning 4
IP addresses, on Internet 4
layer 4 13
layer 5 16
network interfaces 3
networks 7, 8
packets 5, 6
protocol stack 11, 12
routing, with IP 9, 10

TCP/IP networks, programming for
firewall 24, 25
IPv6 26, 27
Network Address Translation (NAT) 25, 26

TCP port forwarding 190-192
TCP sockets

client/server communications,
inspecting 182-184

client/server interaction,
inspecting 187, 188

TCP servers 185, 186
working with 179-181

[289]

template designer documentation
URL 257

templating 255-257
threading 220, 221
threads 219
thread safe 229
TLS (Transport Layer Security)

about 117, 193
e-mail, sending with 117-120

Tornado
URL 251

Transmission Control Protocol (TCP) 13-15
TurboGears

URL 251
Twitter API

about 90
authentication 91
final touches 98
rate limits 96, 97
reply, sending 97, 98
tweets, polling for 94
tweets, processing 95, 96
Twitter world clock 91
URL 90

Twitter streaming APIs
about 99
alternative oAuth flows 99, 100

U
UDP sockets

working with 188, 189
UdpTransportTarget() parameter 145
upstream 7
urllib package 29
URLs

about 48, 49
absolute URL 49
in summary 54
path URLs 49, 50
query string 51, 52
relative URLs 49, 50
URL encoding 52-54

user agents
about 42, 43
URL 108

User Datagram Protocol (UDP)
about 13, 14
versus TCP 16

V
views 254

W
web API 65
web framework

about 251
basic services 251

webmaster
about 107
Robots.txt file 108
user agent, selecting 108

web server 248-250
Web Services Gateway Interface (WSGI)

protocol 267, 268
Wireshark

about 272
filtering 276-278
installing 272
packets, capturing 272-276
packets, inspecting 279-281
URL 272
URL, for wiki 272
versatile tool 281

X
XML API

about 66
approaches 66
ElementTree 67, 68

XML parsing, Amazon S3 API 82
XSS (Cross-Site Scripting)

about 259
URL 261

Thank you for buying
Learning Python Network

Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Python Network
Programming Cookbook
ISBN: 978-1-84951-346-3 Paperback: 234 pages

Over 70 detailed recipes to develop practical
solutions for a wide range of real-world network
programming tasks

1. Demonstrates how to write various besopke
client/server networking applications
using standard and popular third-party
Python libraries.

2. Learn how to develop client programs for
networking protocols such as HTTP/HTTPS,
SMTP, POP3, FTP, CGI, XML-RPC, SOAP
and REST.

Functional Python Programming
ISBN: 978-1-78439-699-2 Paperback: 360 pages

Create succinct and expressive implementations
with functional programming in Python

1. Implement common functional
programming design patterns
and techniques in Python.

2. Learn how to choose between imperative
and functional approaches based on
expressiveness, clarity, and performance.

Please check www.PacktPub.com for information on our titles

Mastering Object-oriented Python
ISBN: 978-1-78328-097-1 Paperback: 634 pages

Grasp the intricacies of object-oriented programming
in Python in order to efficiently build powerful
real-world applications

1. An object-oriented approach to Python
web development gives you a much more
fully-realised experience of the language.
The flexibility and power of Python, combined
with the improvements in design, coding
and software maintenance that object-oriented
programming allows, is built to respond to
the challenges of increasingly more complex
and data-intensive application development,
making difficult tasks much more manageable.

Parallel Programming
with Python
ISBN: 978-1-78328-839-7 Paperback: 128 pages

Develop efficient parallel systems using
the robust Python environment

1. Demonstrates the concepts of Python
parallel programming.

2. Boosts your Python computing capabilities.

3. Contains easy-to-understand explanations
and plenty of examples.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Network Programming
and Python

	An introduction to TCP/IP networks
	IP addresses
	Network Interfaces
	Assigning IP addresses
	IP addresses on the Internet
	Packets
	Networks
	Routing with IP
	DNS
	The protocol stack or why the Internet is
like a cake
	Layer 4 – TCP and UDP
	Network ports
	UDP
	TCP
	UDP versus TCP

	Layer 5 – The application layer
	On to Python!

	Network programming with Python
	Breaking a few eggs
	Taking it from the top
	Downloading an RFC
	Looking deeper
	Programming for TCP/IP networks
	Firewalls
	Network Address Translation
	IPv6

	Summary

	Chapter 2
: HTTP and Working
with the Web
	Request and response
	Requests with urllib
	Response objects
	Status codes
	Handling problems
	HTTP headers
	Customizing requests
	Content compression
	Multiple values

	Content negotiation
	Content types

	User agents
	Cookies
	Cookie handling
	Know your cookies

	Redirects
	URLs
	Paths and relative URLs
	Query strings
	URL encoding
	URLs in summary

	HTTP methods
	The HEAD method
	The POST method

	Formal inspection
	HTTPS
	The Requests library
	Handling errors with Requests

	Summary

	Chapter 3
: APIs in Action
	Getting started with XML
	The XML APIs
	The basics of ElementTree
	Pretty printing
	Element attributes
	Converting to text

	The Amazon S3 API
	Registering with AWS
	Authentication
	Setting up an AWS user

	Regions
	S3 buckets and objects
	An S3 command-line client
	Creating a bucket with the API
	Uploading a file
	Retrieving an uploaded file through a web browser
	Displaying an uploaded file in a web browser
	Downloading a file with the API

	Parsing XML and handling errors
	Parsing XML
	Finding elements
	Handling errors

	Further enhancements
	The Boto package
	Wrapping up with S3

	JSON
	Encoding and decoding
	Using dicts with JSON
	Other object types

	The Twitter API
	A Twitter world clock
	Authentication for Twitter
	Registering your application for the Twitter API
	Authenticating requests
	A Twitter client

	Polling for Tweets
	Processing the tweets
	Rate limits
	Sending a reply
	Final touches
	Taking it further
	Polling and the Twitter streaming APIs

	Alternative oAuth flows

	HTML and screen scraping
	HTML parsers
	Show me the data
	Parsing HTML with lxml
	Zeroing in
	Searching with XPath
	XPath conditions

	Pulling it together

	With great power...
	Choosing a User Agent
	The Robots.txt file

	Summary

	Chapter 4
: Engaging with E-mails
	E-mail terminologies
	Sending e-mails with SMTP
	Composing an e-mail message
	Sending an e-mail message

	Sending e-mails securely with TLS
	Retrieving e-mails by using POP3 with poplib
	Retrieving e-mails by using IMAP with imaplib
	Sending e-mail attachments
	Sending e-mails via the logging module
	Summary

	Chapter 5
: Interacting with
Remote Systems
	Secure shell – access using Python
	Inspecting the SSH packets

	Transferring files through SFTP
	Transferring files with FTP
	Inspecting FTP packets

	Fetching Simple Network Management Protocol data
	Inspecting SNMP packets

	Reading Light-weight Directory Access Protocol data
	Inspecting LDAP packets

	Sharing files with SAMBA
	Inspecting SAMBA packets

	Summary

	Chapter 6
: IP and DNS
	Retrieving the network configuration of a local machine
	Manipulating IP addresses
	IP network objects
	Network interface objects
	The IP address objects
	Planning IP addresses for your local area network

	GeoIP look-ups
	DNS look-ups
	Inspecting DNS client/server communications

	NTP clients
	Inspecting the NTP client/server communication

	Summary

	Chapter 7
: Programming with Sockets
	Basics of sockets
	Working with TCP sockets
	Inspecting the client/server communications
	TCP servers
	Inspecting client/server interaction

	Working with UDP sockets
	TCP port forwarding
	A non-blocking socket I/O
	Securing sockets with TLS/SSL
	Inspecting standard SSL client/server communication

	Creating a custom SSL client/server
	Inspecting interaction between a custom SSL client/server

	Summary

	Chapter 8
: Client and Server Applications
	Client and server
	An echo protocol
	Framing

	A simple echo server
	Handling the received data
	The server itself

	A simple echo client
	Concurrent I/O
	Multithreading and multiprocessing
	Threading and the GIL

	A multithreaded echo server
	Designing a chat server
	A chat protocol
	Handling data on persistent connections
	A multithreaded chat server
	Queues
	Locks

	A multithreaded chat client
	Event-driven servers
	A low-level event-driven chat server
	Frameworks
	An eventlet-based chat server
	An asyncio-based chat server
	More on frameworks
	Taking our servers forward
	Summary

	Chapter 9
: Applications for the Web
	What's in a web server?
	Python and the Web
	Web frameworks

	Flask – a microframework
	Templating
	Other templating engines
	Adding some style
	A note on security
	XSS
	CSRF

	Finishing up with frameworks

	Hosting Python web applications
	CGI
	Recycling for a better world
	Event-driven servers
	WSGI

	Hosting in practice
	Summary

	Appendix:
 Working with Wireshark
	Packet sniffers
	Wireshark
	Installation
	Capturing some packets
	Filtering
	Inspecting packets
	A versatile tool

	Index

