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Preface

This book describes the mathematics required for the full range of topics that make up
a university degree course in chemistry. It has been designed as a textbook for courses
in ‘mathematics for chemists’.

Structure of the book

The subject is developed in a logical and consistent way with few assumptions
made of prior knowledge of mathematics. The material is organized in three largely
independent parts: Chapters 1 to 15 on algebra, the calculus, differential equations,
and expansions in series; Chapters 16 to 19 on vectors, determinants, and matrices;
Chapters 20 and 21 are introductions to the big topics of numerical analysis and
statistics.

A feature of the book is the extensive use of examples to illustrate every important
concept and method in the text. Some of these examples have also been used to
demonstrate applications of the mathematics in chemistry and several basic concepts
in physics. The exercises at the end of each chapter are an essential element of the
development of the subject, and have been designed to give the student a working
understanding of the material in the text. The text is accompanied by a ‘footnote
history’ of mathematics.

Several topics in chemistry are given extended treatments. These include the
concept of pressure-volume work in thermodynamics in Chapter 5, periodic systems
in Chapter 8, the differential equations of chemical kinetics in Chapter 11, and several
applications of the Schrdédinger equation in Chapters 12 and 14. In addition, the
contents of several chapters are largely dictated by their applications in the physical
sciences: Chapter 9, the mathematics of thermodynamics; Chapters 10 and 16, the
description of systems and processes in three dimensions; Chapter 13 (advanced),
some important differential equations and special functions in mathematical chemistry
and physics; Chapter 15 (advanced), intermolecular forces, wave analysis, and Fourier
transform spectroscopy; Chapters 18 and 19, molecular symmetry and symmetry
operations, molecular orbital theory, molecular dynamics, and advanced quantum
mechanics.

Global changes in this edition

1. An overall reorganization has been carried out to link the text and examples more
closely to the exercises at the end of each chapter. The symbol » has been placed at
appropriate places within the body of the text as a pointer to the relevant exercises.
New examples and exercises have been inserted to give a more complete coverage
of the development of the mathematics.

2. In addition to the solutions to the numerical exercises given at the back of the
book, a full set of worked solutions of the end-of-chapter exercises has been placed
on the book’s companion website at www.oxfordtextbooks.co.uk/orc/steiner2e

3. The opportunity has been taken to consolidate the several major and many minor
corrections and improvements that have been made over the years since publication
of the first edition in 1996. A small number of new historical footnotes have been
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added to accompany new material. The material within some chapters has been
reordered to make the development of the subject more logical.

Other principal changes

Chapter 1. A new section, Factorization, factors, and factorials, fills a gap in the coverage
of elementary topics. The rules of precedence for arithmetic operations has been
brought forward from chapter 2 and extended with examples and exercises,
providing further revision and practice of the arithmetic that is so important for
the understanding of the material in subsequent chapters. The biggest change in
the chapter, reflected in the change of title to Numbers, variables, and units, is a
rewritten and much enlarged section on units to make it a more authoritative and
useful account of this important but often neglected topic. It includes new examples
of the type met in the physical sciences, a brief subsection on dimensional analysis,
and a new example and exercise on the structure of atomic units.

Chapter 2. Parts of the chapter have been rewritten to accommodate more discussion
of the factorization and manipulation of algebraic expressions.

Chapter 7. Numerous small changes have been made, including an introduction to
the multinomial expansion, and revision of the discussion of the Taylor series.

Chapter 9. Section 9.8 has been rewritten to clarify the relevance of line integrals to
change of state in thermodynamics.

Chapter 13. The section on the Frobenius method has been revised, with new and
more demanding examples and exercises.

Chapter 19. Sections 19.2 and 19.3 on eigenvalues and eigenvectors have been
rewritten, with new examples and exercises, to improve the flow and clarity of the
discussion.
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1 Numbers, variables,
and units

1.1 Concepts

Chemistry, in common with the other physical sciences, comprises

(i) experiment: the observation of physical phenomena and the measurement of
physical quantities, and
(ii) theory: the interpretation of the results of experiment, the correlation of one set
of measurements with other sets of measurements, the discovery and application
of rules to rationalize and interpret these correlations.

Both experiment and theory involve the manipulation of numbers and of the symbols
that are used to represent numbers and physical quantities. Equations containing
these symbols provide relations amongst physical quantities. Examples of such
equations are
1. the equation of state of the ideal gas

pV=nRT (1.1)
2. Bragg’s Law in the theory of crystal structure

nA=2dsin@ (1.2)

3. the Arrhenius equation for the temperature dependence of rate of reaction

k= Ao B/RT (1.3)
4. the Nernst equation for the emf of an electrochemical cell
RT
E=E°-""InQ (14)
nkF

When an equation involves physical quantities, the expressions on the two sides of the
equal sign' must be of the same kind as well as the same magnitude.

! The sign for equality was introduced by Robert Recorde (c. 1510-1558) in his The whetstone of witte (London,
1557); ‘T will sette as I doe often in woorke use, a paire of paralleles, or Gemowe (twin) lines of one lengthe, thus:
=, bicause noe.2. thynges can be moare equalle.”
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EXAMPLE 1.1 The equation of state of the ideal gas, (1.1), can be written as an
equation for the volume,

_ nRT
p

v

in which the physical quantities on the right of the equal sign are the pressure p of
the gas, the temperature 7, the amount of substance n, and the molar gas constant
R=8.31447 JK™' mol™".

We suppose that we have one tenth of a mole of gas, n=0.1 mol, at temperature
T=298 K and pressure p = 10° Pa. Then

_ nRT _0.1molx8.31447 J K™ mol™' x298 K
p 10° Pa

_[0.1x8.31447><298]><[mou K™ mol”! KJ

vV

10° Pa
=2.478x107 m’
The quantities on the right side of the equation have been expressed in terms of SI

units (see Section 1.8), and the combination of these units is the SI unit of volume, m?>
(see Example 1.17).

Example 1.1 demonstrates a number of concepts:

(i) Function. Given any particular set of values of the pressure p, temperature 7,
and amount of substance #, equation (1.1) allows us to calculate the corresponding
volume V. The value of V' is determined by the values of p, T, and n; we say

V is a function of p, T, and n.

This statement is usually expressed in mathematics as

V=f(p, T, n)

and means that, for given values of p, T'and n, the value of V is given by the value of a
function f(p, T, n). In the present case, the function is f(p, T, n) =nRT/p. A slightly
different form, often used in the sciences, is

V=WV(p, T, n)

which means that Vis some function of p, T 'and », which may or may not be known.

Algebraic functions are discussed in Chapter 2. Transcendental functions, including
the trigonometric, exponential and logarithmic functions in equations (1.2) to (1.4),
are discussed in Chapter 3.



1.2 Real numbers

(ii) Constant and variable. Equation (1.1) contains two types of quantity:

Constant: a quantity whose value is fixed for the present purposes. The quantity
R=8.31447 J K™ mol™ is a constant physical quantity.” A constant number is any
particular number; for example, a=0.1 and n=3.14159...

Variable: a quantity that can have any value of a given set of allowed values. The
quantities p, 7, and n are the variables of the function f(p, T, n) =nRT/p.

Two types of variable can be distinguished. An independent variable is one whose
value does not depend on the value of any other variable. When equation (1.1) is
written in the form V'=nRT/p, it is implied that the independent variables are p, T,
and n. The quantity Vis then the dependent variable because its value depends on the
values of the independent variables. We could have chosen the dependent variable
to be T'and the independent variables as p, V, and n; that is, T=pV/nR. In practice,
the choice of independent variables is often one of mathematical convenience, but it
may also be determined by the conditions of an experiment; it is sometimes easier
to measure pressure p, temperature 7, and amount of substance n, and to calculate V'
from them.

Numbers are discussed in Sections 1.2 to 1.4, and variables in Section 1.5. The
algebra of numbers (arithmetic) is discussed in Section 1.6.

(iii) A physical quantity is always the product of two quantities, a number and a unit;
for example 7=298.15K or R=8.31447 J K" mol™". In applications of mathematics
in the sciences, numbers by themselves have no meaning unless the units of the
physical quantities are specified. It is important to know what these units are, but the
mathematics does not depend on them. Units are discussed in Section 1.8.

1.2 Real numbers

The concept of number, and of counting, is learnt very early in life, and nearly every
measurement in the physical world involves numbers and counting in some way. The
simplest numbers are the natural numbers, the ‘whole numbers’ or signless integers
1,2,3, ... It is easily verified that the addition or multiplication of two natural
numbers always gives a natural number, whereas subtraction and division may not.
For example 5—3=2, but 5—6 isnotanatural number. A set of numbers for which
the operation of subtraction is always valid is the set of integers, consisting of all
positive and negative whole numbers, and zero:

-3 -2 -1 0 +1 +2 +3

The operations of addition and subtraction of both positive and negative integers are
made possible by the rules

m+(-n)=m-—n
(1.5)
m—(—n)=m+n

% The values of the fundamental physical constants are under continual review. For the latest recommended
values, see the NIST (National Institute of Standards and Technology) website at www.physics.nist.gov
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so that, for example, the subtraction of a negative number is equivalent to the addition
of the corresponding positive number. The operation of multiplication is made
possible by the rules

(—m) X (—n) =+(m X n) (L6)
(—m)x (#n)=—(m X n)

Similarly for division. Note that —m = (1) X m.

EXAMPLES 1.2 Addition and multiplication of negative numbers

2+(-3)=2-3=-1 2-(-3)=2+3=5
(-2)x(=3)=2x%x3=6 2)x(-3)=—2x3=-6
(-6)+(-3)=6+3=2 6+(-3)=—6+3=-2

> Exercises 1-7

In equations (1.5) and (1.6) the letters m and n are symbols used to represent any pair of
integers; they are integer variables, whose values belong to the (infinite) set of integers.

Division of one integer by another does not always give an integer; for example
6+3=2, but 6+4 is not an integer. A set of numbers for which the operation of
division is always valid is the set of rational numbers, consisting of all the numbers
m/n=m-+n where m and n are integers (m/n, read as ‘m over n’, is the more
commonly used notation for ‘m divided by »’). The definition excludes the case n=0
because division by zero is not defined (see Section 1.6), but integers are included
because an integer m can be written as m/1. The rules for the combination of rational
numbers (and of fractions in general) are

m_ p_mgtnp (1.7)
n q nq

nep_m (1.8)
noq ngq

m.p_m. 9_m (1.9)

where, for example, mq means m X q.

EXAMPLES 1.3 Addition of fractions

1 1
(1) Add — and -.
2 4
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The number one half is equal to two quarters and can be added to one quarter to
give three quarters:

AW

1
+ —=
4

NS

N | —
A

The value of a fraction like 1/2 is unchanged if the numerator and the denominator
are both multiplied by the same number:

N

1%

1
22X

w‘
NS

and the general method of adding fractions is (a) find a common denominator for
the fractions to be added, (b) express all the fractions in terms of this common
denominator, (c) add.

(2) Add 2 and i
3 5

A common denominator is 3 xX5=15. Then
2 4 2x5 3x4 10 12 10+12 22

35 3x5 3x5 15 15 15 15

(3) Add 1 and é
4 6

A common denominator is 4 X 6=24, but the lowest (smallest) common
denominator is 12:

53,1013
476 1212 12

> Exercises 8-13

EXAMPLE 1.4 Multiplication of fractions

2 4 2x4 8

X —=
35 3x5 15
This can be interpreted as taking two thirds of 4/5 (or four fifths of 2/3).

» Exercises 14-17
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EXAMPLE 1.5 Division of fractions

2,4_2.5_10
3°5 374 12

The number 10/12 can be simplified by ‘dividing top and bottom’ by the common
factor 2: 10/12=5/6 (see Section 1.3).

> Exercises 18-21

Every rational number is the solution of a linear equation
mx=n (1.10)

where m and n are integers; for example, 3x=2 has solution x=2/3. Notall numbers
are rational however. One solution of the quadratic equation

x2=2

is x=+/2, the positive square root of 2 (the other solution is —+/2), and this number
cannot be written as a rational number m/n; it is called an irrational number.
Other irrational numbers are obtained as solutions of the more general quadratic
equation

ax’+bx+c=0

where g, b, and ¢ are arbitrary integers, and of higher-order algebraic equations; for
example, a solution of the cubic equation

is x =32, the cube root of 2. Irrational numbers like /2 and 3/2 are called surds.
The rational and irrational numbers obtained as solutions of algebraic equations
of type

2 3 n_
aytax+a,x"+ax"+--+ax" =0 (1.11)

where a, a,, ..., a, are integers, are called algebraic numbers; these numbers can
be expressed exactly in terms of a finite number of rational numbers and surds.
There exist also other numbers that are not algebraic; they are not obtained as
solutions of any finite algebraic equation. These numbers are irrational numbers
called transcendental numbers; ‘they transcend the power of algebraic methods’
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(Euler).’ The best known and most important of these are the Euler number e and the
Archimedean number 7.* These are discussed in Section 1.4.

The rational and irrational numbers form the continuum of numbers; together
they are called the real numbers.

1.3 Factorization, factors, and factorials

Factorization is the decomposition of a number (or other quantity) into a product of
other numbers (quantities), or factors; for example

30=2%x3x%x5

shows the decomposition of the natural number 30 into a product of prime numbers;
that is, natural numbers that cannot be factorized further (the number 1 is not counted
as a prime number). The fundamental theorem of arithmetic is that every natural
number can be factorized as a product of prime numbers in only one way.’

EXAMPLES 1.6 Prime number factorization
(1) 4=2x2=2°
() 12=2x2x3=2*x3
(3) 315=3%x3x5x7=3?%x5%x7
(4) 5120=2X2X2X2X2X2X2x2x2x2x5=21"%5

> Exercises 22-25

Factorization and cancellation of common factors can be used for the simplification
of fractions. For example, in

12_fx2_2

42 Bx7 7

3 Leonhard Euler (1707-1783). Born in Switzerland, he worked most of his life in St Petersburg and in
Berlin. One of the world’s most prolific mathematicians, he wrote ‘voluminous papers and huge textbooks’.
He contributed to nearly all branches of mathematics and its application to physical problems, including the
calculus, differential equations, infinite series, complex functions, mechanics, and hydrodynamics, and his name
is associated with many theorems and formulas. One of his important, if unspectacular, contributions was to
mathematical notation. He introduced the symbol e, gave the trigonometric functions their modern definition,
and by his use of the symbols sin, cos, i, and © made them universally accepted.

4 The symbol © was first used by William Jones (1675-1749) in a textbook on mathematics, Synopsis
palmariorum matheseos (A new introduction to the mathematics) in 1706. Euler’s adoption of the symbol ensured
its acceptance.

> A version of the fundamental theorem of arithmetic is given by Propositions 31 and 32 in Book VII of Euclid’s
Stoichia (Elements). Euclid was one of the first teachers at the Museum and Library of Alexandria founded by
Ptolemy I in about 300 BC after he had gained control of Egypt when Alexander’s empire broke up in 323 BC.



Chapter 1 Numbers, variables, and units

cancellation of the common factor 6 is equivalent to dividing both numerator and
denominator by 6, and such an operation does not change the value of the fraction.

EXAMPLES 1.7 Simplification of fractions
4 2 Zx2

1
M ﬁ:23x322x2x2x3:g
15_3x5 _3
(2) 2_5_ 52 _5
3) 105 3xfx7 1 1

1470 2x3xEx72 2x7 14

» Exercises 26-29

In general, the purpose of factorization is to express a quantity in terms of simpler
quantities (see Section 2.3 for factorization of algebraic expressions).

Factorials

The factorial of n is the number whose factors are the first n natural numbers:

nl=1x2x3x--Xn
(1.12)
=nx(n-1)xm-2)x---x2x1

(read as ‘n factorial’). Consecutive factorials are related by the recurrence relation
n+D!=(m+1)xn!

for example, 31=3x2x1=6 and 4!=4x3x2Xx1=4x3!=24. In addition, the
factorial of zero is defined as 0! =1.

EXAMPLES 1.8 Factorials
(1) I'=1x0'=1x1=1
(2) 5!=5%x4!=5%x4x3!=5%x4%x3x2!=5%x4%x3%x2=120

5! 5x4x3!
(3) 5=T=5X4=20

7! TXBX5xA! 3
@) ﬁ_—sz’x,éf! =7x5=35

> Exercises 30-36




1.4 Decimal representation of numbers

1.4 Decimal representation of numbers
These are the nine figures of the Indians
9 8 7 6 5 4 3 2 1

With these nine figures, and with this sign 0 which in Arabic is
called zephirum, any number can be written, as will below be
demonstrated.

(Fibonacci)®

In the decimal system of numbers, the ten digit symbols 0 to 9 (Hindu-Arabic numerals)’
are used for zero and the first nine positive integers; the tenth positive integer is denoted
by 10. A larger integer, such as ‘three hundred and seventy-two’ is expressed in the form

300+70+2=3x10°+7x10+2

and is denoted by the symbol 372, in which the value of each digit is dependent on its
position in the symbol for the number. The decimal system has base 10, and is the
only system in common use.

Although rational numbers can always be expressed exactly as ratios of integers,
this is not so for irrational numbers. For computational purposes, a number that
is not an integer is conveniently expressed as a decimal fraction;® for example,
5/4=1.25. The general form of the decimal fraction

(integral part).(fractional part)

consists of an integer to the left of the decimal point, the integral part of the number,
and one or more digits to the right of the decimal point, the decimal or fractional part
of the number. The value of each digit is determined by its position; for example

234567 = 200430+ 4+ 404
10100 1000

=2%x10%+3x10"+4x10°+5x107'+6x102+7%x107°

® Leonardo of Pisa, also called Fibonacci (c. 1170-after 1240). The outstanding mathematician of the Latin
Middle Ages. In his travels in Egypt, Syria, Greece, and Sicily, Fibonacci studied Greek and Arabic (Muslim)
mathematical writings, and became familiar with the Arabic positional number system developed by the Hindu
mathematicians of the Indus valley of NW India. Fibonacci’s first book, the Liber abaci, or Book of the Abacus,
(1202, revised 1228) circulated widely in manuscript, but was published only in 1857 in Scritti di Leonardo Pisano.
The first chapter opens with the quotation given above in the text.

7 One of the principal sources by which the Hindu-Arabic decimal position system was introduced into (Latin)
Europe was Al-Khwarizmi’s Arithmetic. Muhammad ibn Musa Al-Khwarizmi (Mohammed the son of Moses
from Khorezm, modern Khiva in Uzbekistan) was active in the time of the Baghdad Caliph Al-Mamun (813-833),
and was probably a member of his ‘House of Wisdom’ (Academy) at a time when Baghdad was the largest city in
the world. Al-Khwarizmi’s Algebra was widely used in Arabic and in Latin translation as a source on linear and
quadratic equations. The word algorithm is derived from his name, and the word algebra comes from the title,
Liber algebrae et almucabala, of Robert of Chester’s Latin translation (c. 1140) of his work on equations.

® The use of decimal fractions was introduced into European mathematics by the Flemish mathematician and
engineer Simon Stevin (1548-1620) in his De Thiende (The art of tenths) in 1585. Although decimal fractions were
used by the Chinese several centuries earlier, and the Persian astronomer Al-Kashi used decimal and sexagesimal
fractions in his Key to Arithmetic early in the fifteenth century, the common use of decimal fractions in European
mathematics can be traced directly to Stevin, especially after John Napier modified the notation into the present
one with the decimal point (or decimal comma as is used in much of continental Europe). It greatly simplified the
operations of multiplication and division.

9
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where 107 =1/10" and 10°=1 (see Section 1.6).
> Exercises 37-42

A number with a finite number of digits after (to the right of ) the decimal point
can always be written in the rational form m/n; for example 1.234=1234/1000. The
converse is not always true however. The number 1/3 cannot be expressed exactly as
a finite decimal fraction:

l=0.333...
3

the dots indicating that the fraction is to be extended indefinitely. If quoted to four
decimal places, the number has lower and upper bounds 0.3333 and 0.3334:

0.3333< % <0.3334

where the symbol < means ‘is less than’; other symbols of the same kind are < for ‘is
less than or equal to’, > for ‘is greater than’, and 2 for ‘is greater than or equal to’.
Further examples of nonterminating decimal fractions are

%=0.142857 142857 ..., %=0.083333 333333...

In both cases a finite sequence of digits after the decimal point repeats itself
indefinitely, either immediately after the decimal point, as the sequence 142857 in
1/7, or after a finite number of leading digits, as 3 in 1/12. This is a characteristic
property of rational numbers.

EXAMPLE 1.9 Express 1/13 asa decimal fraction. By long division,
0.07692307...

13) 1.00
91
90
78
120
117
30
26
40
39
100

The rational number 1/13 =0.076923 076923... is therefore a nonterminating decimal
fraction with repeating sequence 076923 after the decimal point.

> Exercises 43-46




1.4 Decimal representation of numbers

An irrational number cannot be represented exactly in terms of a finite number of
digits, and the digits after the decimal point do not show a repeating sequence. The
number /2 has approximate value to 16 significant figures,

V2 =1.414213 562373 095...

and can, in principle, be computed to any desired accuracy by a numerical method
such as the Newton-Raphson method discussed in Chapter 20.°

The Archimedean number ©t

The number T is defined as the ratio of the circumference of a circle to its diameter.
It is a transcendental number,'” and has been computed to many significant figures;
it was quoted to 127 decimal places by Euler in 1748. Its value to 16 significant
figures is

n=3.14159 26535 89793 ...

The value of  has been of practical importance for thousands of years. For example,
an Egyptian manuscript dated about 1650 BC (the Rhind papyrus in the British
Museum) contains a prescription for the calculation of the volume of a cylindrical
granary from which the approximate value 256/81=3.160 can be deduced. A
method for generating accurate approximations was first used by Archimedes'' who
determined the bounds

223 22
— << —
71 7

and the upper bound has an error of only 2 parts in a thousand.

® A clay tablet (YBC 7289, Yale Babylonian Collection) dating from the Old Babylonian Period (c. 1800-1600 BC)
has inscribed on it a square with its two diagonals and numbers that give V2 to three sexagesimal places: V2=1,
24,51,10 =1 +24/60 + 51/60° + 10/60° = 1.41421296, correct to 6 significant decimal figures.

10 The proof of the irrationality of & was first given in 1761 by Johann Heinrich Lambert (1728-1777), German
physicist and mathematician. He is also known for his introduction of hyperbolic functions into trigonometry.
The number 1 was proved to be transcendental by Carl Louis Ferdinand von Lindemann (1852-1939) in 1882 by
a method similar to that used by Hermite for e.

! Archimedes (287-212 BC) was born in Syracuse in Sicily. He made contributions to mathematics, mechanics,
and astronomy, and was a great mechanical inventor. His main contributions to mathematics and the mathematical
sciences are his invention of methods for determining areas and volumes that anticipated the integral calculus and
his discoveries of the first law of hydrostatics and of the law of levers.

11
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The Euler number e
The number e is defined by the ‘infinite series’ (see Chapter 7)

1 1 1 1
e=l+—+—+—+—+--
o2 3 4

=2.71828 18284 59045...

The value of e can be computed from the series to any desired accuracy. The number
was shown to be a transcendental number by Hermite in 1873."

EXAMPLE 1.10 Show that the sum of the first 10 terms of the series gives an
approximate value of e that is correct to at least 6 significant figures.

1 1 1 1 1 1 1 1 1
e=l+l+—+—F+—+—+—+ + + + +ee
2 6 24 120 720 5040 40320 362880 3628800

=1+1+0.5+0.166667 +0.041667 +0.008333 +0.001389 + 0.000198
+0.000025 + 0.000003 +0.0000003

=~2.71828

The value is correct to the 6 figures quoted because every additional term in the series
is at least ten times smaller than the preceding one.

Significant figures and rounding

In practice, arithmetic involving only integers gives exact answers (unless the
numbers are too large to be written). More generally, a number in the decimal
system is approximated either with some given number of decimal places or with a
given number of significant figures, and the result of an arithmetic operation is also
approximate. In the fixed-point representation, all numbers are given with a fixed
number of decimal places; for example,

3.142, 62.358, 0.013, 1.000

have 3 decimal places. In the floating-point representation, used more widely in the
sciences, the numbers are given with a fixed number of ‘significant figures’, with zeros
on the left of a number not counted. For example,

3210=0.3210x 10%, 003.210=0.3210x 10", 0.003210=0.3210x 1072

all have 4 significant figures.

12 Charles Hermite (1822-1901). French mathematician, professor at the Sorbonne, is known for his work in
algebra and number theory. His work on the algebra of complex numbers (‘Hermitian forms’) became important
in the formulation of quantum theory. The Hermite differential equation and the Hermite polynomials are
important in the solution of the Schrédinger equation for the harmonic oscillator.



1.5 Variables

A number whose exact (decimal) representation involves more than a given number
of digits is reduced most simply by truncation; that is, by removing or replacing
by zeros all superfluous digits on the right. For example, to 4 decimal places or 5
significant figures, 3.14159 is truncated to 3.1415. Truncation is not recommended
because it can lead to serious computational errors. A more sensible (accurate)
approximation of © to five figures is 3.1416, obtained by rounding up. The most
widely accepted rules for rounding are:

(i) If the first digit dropped is greater than or equal to 5, the preceding digit is
increased by 1; the number is rounded up.

(ii) If the first digit dropped is less than 5, the preceding digit is left unchanged; the
number is rounded down. For example, for 4, 3, 2, and 1 decimal places,

7.36284 is 7.3628, 7.363, 736, 7.4
Errors arising from truncation and rounding are discussed in Section 20.2.

> Exercises 47-49

1.5 Variables

In the foregoing sections, symbols (letters) have been used to represent arbitrary
numbers. A quantity that can take as its value any value chosen from a given set
of values is called a variable. If {x, x,, x;, ..., x,} is a set of objects, not necessarily
numbers, then a variable x can be defined in terms of this set such that x can have as
its value any member of the set; the set forms the domain of the variable. In (real)
number theory, the objects of the set are real numbers, and a real variable can have as
its domain either the whole continuum of real numbers or a subset thereof. If the
domain of the variable x is an interval a to b,

as<x<b

then x is a continuous variable in the interval, and can have any value in the
continuous range of values a to b (including a and b). If the domain consists of a
discrete set of values, for example the n numbers X Xy Xy X then x is called
a discrete variable. If the domain consists of integers, x is an integer variable. If
the set consists of only one value then the variable is called a constant variable, or
simply a constant.

In the physical sciences, variables are used to represent both numbers and physical
quantities. In the ideal-gas example discussed in Section 1.1, the physical quantities
DV, n,and T'are continuous variables whose numerical values can in principle be any
positive real numbers. Discrete variables are normally involved whenever objects
are counted as opposed to measured. Typically, an integer variable is used for the
counting and the counted objects form a sample of some discrete set. In some cases
however a physical quantity can have values, some of which belong to a discrete set
and others to a continuous set. This is the case for the energy levels and the observed
spectral frequencies of an atom or molecule.

13
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EXAMPLE 1.11 The spectrum of the hydrogen atom

The energy levels of the hydrogen atom are of two types:

(i) Discrete (quantized) energy levels with (negative) energies given by the formula
(in atomic units, see Section 1.8)

1
E,=-—, n=1,23,..
2n
The corresponding states of the atom are the ‘bound states’, in which the motion of
the electron is confined to the vicinity of the nucleus. Transitions between the energy

levels give rise to discrete lines in the spectrum of the atom.

(if) Continuous energy levels, with all positive energies, £>0. The corresponding
states of the atom are those of a free (unbound) electron moving in the presence of the
electrostatic field of the nuclear charge. Transitions between these energy levels and
those of the bound states give rise to continuous ranges of spectral frequencies.

1.6 The algebra of real numbers

The importance of the concept of variable is that variables can be used to make
statements about the properties of whole sets of numbers (or other objects), and it
allows the formulation of a set of rules for the manipulation of numbers. The set of
rules is called the algebra.

Leta, b, and ¢ be variables whose values can be any real numbers. The basic rules for
the combination of real numbers, the algebra of real numbers or the arithmetic, are

1. a+b=b+a (commutative law of addition)

2. ab=ba (commutative law of multiplication)
3.at(b+c)=(a+b)+c (associative law of addition)

4. a(bc) = (ab)c (associative law of multiplication)

5. alb+c)=ab+ac (distributive law)

The operations of addition and multiplication and their inverses, subtraction and
division, are called arithmetic operations. The symbols +, —, X and + (or /) are called
arithmetic operators. The result of adding two numbers, a + b, is called the sum of a
and b; the result of multiplying two numbers, ab=axb=a" b, is called the product
of aand b.”

3 1n 1698 Leibniz wrote in a letter to Johann Bernoulli: ‘I do not like x as a symbol for multiplication, as it easily
confounded with x ... often I simply relate two quantities by an interposed dot’. It is becoming accepted practice
to place the ‘dot’ in the ‘high position’ to denote multiplication (2-5=2 x 5) and in the Tow position’, on the line,
for the decimal point (2.5 =5/2). An alternative convention, still widely used, is to place the dot on the line for
multiplication (2.5=2x 5) and high for the decimal point (25 =5/2).
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EXAMPLES 1.12 Examples of the rules of arithmetic

rule examples

1. a+b=b+a 2+3=3+2=5

2. ab=ba 2x3=3%x2=6

3. a+t(b+c)=(a+b)+c {2+(3+4):2+7:9, and
2+3)+4=5+4=9

4. a(bc)=(ab)c {2><(3><4)=2><12=24, and
(2x3)x4=6x4=24

5. a(b+c)=ab+ac {2><(3+4)=2><7=14, and
2x(+4)=(2x3)+(2x4)=6+8=14

2(3+4)=(=2x3)+(-2x4)=—6-8=—-14
2(3-4)=-2Xx3-2X(—-4)=—6+8=2

A corollary to rule S is
(a+b)c+d)=alc+d)+blc+d) (2+3)(4+5)=2(4+5)+3(4+5)=18+27=45

Three rules define the properties of zero and unity:

6. a+0=0+a=a (addition of zero)
7. ax0=0xa=0 (multiplication by zero)

8. axl=1xa=a (multiplication by unity)

We have already seen that subtraction of a number is the same as addition of its
negative, and that division by a number is the same as multiplication by its inverse.
However, division by zero is not defined; there is no number whose inverse is zero.
For example, the number 1/a, for positive values of a, becomes arbitrarily large as the
value of a approaches zero; we say that 1/a tends to infinity as a tends to zero:

1
——w as a—0
a

Although ‘infinity’ is represented by the symbol o, it is not a number. If it were a
number then, by the laws of algebra, the equations 1/0 =0 and 2/0 = would imply
1=2.

The modulus of a real number « is defined as the positive square root of a’

|a|=+Va* (read as ‘mod ). It is the ‘magnitude’ of the number, equal to +a if a is
positive, and equal to —a if a is negative:

+a ifa>0
lal= . (1.13)
—a ifa<0

For example, |3|=3 and |-3|=3.

15
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The index rule

Numbers are often written in the form a”™, where a is called the base and m is the
index or exponent; for example, 100 =10? with base 10 and exponent2,and 16 =2*
with base 2 and exponent 4. When m is a positive integer, a™ is the mth power of a;
for m=3,

a*=axaxa, (—a)3 =(—a)X(—a) X (-a)= (—1)3 xa’=-a>
Numbers are also defined with negative and non-integral exponent. In practice, the

number a™ is read ‘a to the power m’ or ‘a to the m’, even when m is not a positive
integer. The rule for the product of numbers in base-index form is

9. a"a"=a™" (index rule)

For example,

a’a*=(axaxa)x(axa)=axaxaxaxa=a’=a’**
Three auxiliary rules are

10. a"/a"=a™™" 11. (@™)'=(@""=a™" 12. (ab)" =a"b"

Rule 10 defines numbers with zero and negative exponents. Thus, setting m =,

and any number raised to power zero is unity; for example, 2°/2° =237 =2%=1
because 2°/2° = 1. Also, setting m =0 in rule 10,

d/a"=1/a"=a™"

so that the inverse of ¢" is a™". In particular, 1/a= a.

EXAMPLES 1.13 Theindexrule

rule examples
9. aman:al11+n (a) 23X22:23+2:25
(b) 3°%x37=32=3"
© 21/2  9l/4 _ 51/241/4 _ 53/4
10. am/an=am—n (d) 23/4/21/4=23/4—1/4=21/2
(e) 24/2—2 — 24—(—2) — 24+2 — 26
(f) 3*/34=3+4=3=



1.6 The algebra of real numbers
11. (a m)n — (a n)m — am><n (g) (22)3 — (22) % (22) X (22) — 22><3 — 26
(J) (2\/5)\/5 — 2\/§><\5 — 22 =4
12. (ab)"=a"b" (k) 2x3)y*=2?x3?
() (-8)P=(-1)""x8=(-1)x2=-2

> Exercises 50-65

Example 1.13(h) shows that 2125212 29 Tt follows that 2V2 = V2, the square root

of 2. In general, for positive integer m, a"/™ is the mth root of a:

al/m =r<l/z

Thus, 23 is a cube root of 2 because (21/3)3 —20/3 _ 21 _> More generally, for
rational exponent m/n, rule 11 gives

am/n — (am)l/n — (al/n)m

or, equivalently,
am/n — nlam :(Q/Z)m

so that a”/" is both the nth root of the mth power of a and the mth power of the nth
root. For example,

432 (43)1/2 _ (41/2)3 -3

Although the index rules have been demonstrated only for integral and rational
indices, they apply to all numbers written in the base-index form. When the exponent
misavariable, a” is called an exponential function (see Section 3.6 for real exponents
and Chapter 8 for complex exponents). If x=a" then m=log_x is the logarithm of
X to base a (see Section 3.7).

Rules of precedence for arithmetic operations

An arithmetic expression such as
2+3x4

is ambiguous because its value depends on the order in which the arithmetic
operations are applied. The expression can be interpreted in two ways:

(2+3)x4=5%x4=20

17
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with the parentheses indicating that the addition is to performed first, and
2+(3x4)=2+12=14

in which the multiplication is performed first. Ambiguities if this kind can always
be resolved by the proper use of parentheses or other brackets. In case of more
complicated expressions, containing nested brackets, the convention is to use
parentheses as the innermost brackets, then square brackets, then braces (curly
brackets). Evaluation then proceeds from the innermost bracketed expressions
outwards; for example

{[(2+3)x4]+5}x6={[5x4]+5}x6:{20+5}x6=25><6=150

As shown, increasing sizes of brackets can help to clarify the structure of the
expression.

If in doubt use brackets.
Arithmetic expressions are generally evaluated by following the rules of precedence
for arithmetic operations:

1. Brackets take precedence over arithmetic operators.

2. Exponentiation (taking powers) takes precedence over multiplication/division
and addition/subtraction.

. Multiplication and division take precedence over addition and subtraction.

4. Addition and subtraction are performed last.

w

EXAMPLES 1.14 Rules of precedence for arithmetic operations

2+3x4=2+(3x4)=2+12=14 (rule 3)
M but (2+3)x4=5%x4=20 (rule 1)

24+3%X4X5+6=2+3%x4x5)+6=2+60+6=068 (rule 3)

2
@ Vput (2+3)x4x(5+6)=5x4x30=600 (rule 1)

243°=2+9=11 (rule 2)
G Vput (2+3)*=5"=25 (rule 1)

@) put (9+16)"2=(25)"=5 (rule 1)

3x4*=3x(4")=3x16=48 (rule 2)

) but (3x4)Y’=(12)*=144 (rule 1)

2X6+3=(2%x6)+3=12+3=4

6
© and 2x6+3=2x%(6+3)=2x2=4

{ 9+16"2=9+4=11 (rule 2)
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What not to do: (a+b)" #a" + b", where # means ‘is not equal to’. Thus,
incase (3): (2+3)’#2°+3% incase (4): (9+16)/229'2 416!

> Exercises 66-77

1.7 Complex numbers

The solutions of algebraic equations are not always real numbers. For example, the
solutions of the equation

x> =-1 are xzi\/——l

and these are not any of the numbers described in Section 1.2. They are incorporated
into the system of numbers by defining the square root of —1 as a new number which
is usually represented by the symbol i (sometimes j) with the property

i*=-1

The two square roots of an arbitrary negative real number —x* are then ix and —ix. For
example,

J=16 = J(16)x (=1) = /16 X /=1 = +4i

Such numbers are called imaginary to distinguish them from real numbers. More
generally, the number

z=x+1iy

where x and y are real is called a complex number.

Complex numbers obey the same rules of algebra as real numbers; it is only
necessary to remember to replace i* by —1 whenever it occurs. They are discussed in
greater detail in Chapter 8.

EXAMPLE 1.15 Find the sum and product of the complex numbers z, =2+ 3i and
z,=4-2i
Addition: z,+2,=2+3)+(4-2))=2+4)+(3i-2i))=6+i
Multiplication:  z,z,=(2+ 3i)(4 — 2i) = 2(4 — 2i) + 3i(4 — 2i)
=8—4i+12i—6i"=8+8i+6=14+8i

> Exercises 78,79

1.8 Units

A physical quantity has two essential attributes, magnitude and dimensions. For
example, the quantity 2 metres’ has the dimensions of length and has magnitude
equal to twice the magnitude of the metre. The metre is a constant physical quantity
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that defines the dimensions of the quantity and provides a scale for the specification
of the magnitude of an arbitrary length; it is a unit of length. In general, a physical
quantity is the product of a number and a unit. All physical quantities can be
expressed in terms of the seven ‘base” quantities whose names and symbols are listed
in the first two columns of Table 1.1.

Table 1.1 Base physical quantities and Sl units

Physical quantity Symbol Dimension Name of STunit  Symbol for

ST unit
length I L metre m
mass m M kilogram kg
time t T second s
electric current I I ampere A
temperature T 0 kelvin K
amount of substance n N mole mol
luminous intensity I, J candela cd

The symbols in column 3 define the dimensions of the base physical quantities, and
the dimensions of all other quantities (derived quantities) can be expressed in terms
of them. For example, velocity (or more precisely, speed) is distance travelled in unit
time, //t=1t"", and has dimensions of length divided by time, LT™". The dimensions
of a physical quantity are independent of the system of units used to describe its value.
Every system of units must, however, conform with the dimensions.

A variety of systems of units are in use, many tailored to the needs of particular
disciplines in the sciences. The recommended system for the physical sciences, and
for chemistry in particular, is the International System of Units (SI)'* which is based
on the seven base units whose names and symbols are listed in columns 4 and 5 in
Table 1.1. Every physical quantity has an ST unit determined by its dimensionality. The
SI units of length and time are the metre, m, and the second, s; the corresponding
SI unit of velocity is metre per second, m/s=m s (see Example 1.16(i)). In addition
to the base units, a number of quantities that are particularly important in the
physical sciences have been given SI names and symbols. Some of these are listed in
Table 1.2.

We note that some physical quantities have no dimensions. This is the case for a
quantity that is the ratio of two others with the same dimensions; examples are
relative density, relative molar mass, and mole fraction. A less obvious example is
(plane) angle which is defined as the ratio of two lengths (see Section 3.2).

| (Systéme International d’Unités) is the international standard for the construction and use of units
(see the NIST website at www.physics.nist.gov). In addition, [UPAC (International Union of Pure and Applied
Chemistry) provides the standard on chemical nomenclature and terminology, and on the measurement and
evaluation of data (see www.iupac.org).
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Table 1.2 Sl derived units with special names and symbols

Physical quantity Name Symbol  Description SI unit
frequency hertz Hz events per unit time s
force newton N mass X acceleration kgm s
pressure pascal Pa force per unit area Nm™
energy, work, heat joule J force x distance Nm
power watt W work per unit time Js!
electric charge coulomb C current X time As
electric potential volt \% work per unit charge jct!
electric capacitance farad F charge per unit potential cv!
electric resistance ohm Q potential per unit current VAT
electric conductance siemens S current per unit potential Q!
magnetic flux weber Wb work per unit current JA™
magnetic flux density  tesla T magnetic flux per unit area Wb m™
inductance henry H magnetic flux per unit current Wb A™!
plane angle radian rad angle subtended by unit arc at

centre of unit circle 1
solid angle steradian  sr solid angle subtended by unit

surface at centre of unit sphere 1

» Exercises 80-90

EXAMPLES 1.16 Dimensions and units

(i) Velocity is rate of change of position with time, and has dimensions of length/time:
LT

In general, the unit of a derived quantity is obtained by replacing each base
quantity by its corresponding unit. In SI, the unit of velocity is meters per second,
ms ™. In a system in which, for example, the unit of length is the yard (yd) and the unit
of time is the minute (min), the unit of velocity is yards per minute, yd min™". This
‘non-SI” unit is expressed in terms of the SI unit by means of conversion factors
defined within SI. Thus 1yd=0.9144 m (exactly), 1 min=60s, and

1 yd min™' =(0.9144 m) x (60 s)"' = (0.9144/60) m s ' =0.01524 m s~

(ii) Acceleration is rate of change of velocity with time, and has dimensions of
velocity/time:

LT % [T™']=LT72 with SI unit m s>
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The standard acceleration of gravity is g=9.80665 m s > = 980.665 Gal, where
Gal=107ms™ (cm s_z) is called the galileo.

(iii) Force has dimensions of mass X acceleration:
[M] x [LT 2] =MLT 2, with SI unit the newton, N =kg m s

(iv) Pressure has dimensions of force per unit area:
[MLT_z]/[L2] =ML"'T2, with SI unit the pascal, Pa=N m?Z= kg m!s?

Widely used alternative non-SI units for pressure are:

‘standard pressure’>  bar=10° Pa
atmosphere: atm= 101325 Pa
torr: Torr=(101325/760) Pa= 133.322 Pa

(v) Work, energy and heat are quantities of the same kind, with the same dimensions
and unit. Thus, work has dimensions of force X distance:

[MLT 2] x [L] =ML?T 2, with SI unit the joule, J =N m=kg m? s
and kinetic energy %mvz has dimensions of mass x (Velocity)zz
[M]x [LT'?=ML’T 2

> Exercises 91-94

Dimensional analysis

The terms on both sides of an equation that contains physical quantities must have
the same dimensions. Dimensional analysis is the name given to the checking of
equations for dimensional consistency.

EXAMPLE 1.17 For the ideal-gas equation p¥/'=nRT, equation (1.1), the dimensions
of pV (using Tables 1.1 and 1.2) are those of work (or energy): ML 2] x [L3] = ML2T 2
The corresponding expression in terms of SI units is

Paxm’=Nm?xm’=Nm=J.
For nRT,

(mol)(J K™ mol ") (K)=J
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as required. It follows that when equation (1.1) is written in the form V'=nRT/p,asin
Example 1.1, the dimensions of V' are energy/pressure, with SI unit

J X'm

— =2 —m?3 for the volume.
Pa Nm72

» Exercise 95

Large and small units

Decimal multiples of SI units have names formed from the names of the units and
the prefixes listed in Table 1.3. For example, a picometre is pm=10"'> m, a decimetre
is dm=10"" m. These units of length are frequently used in chemistry; molecular
bond lengths in picometres, and concentrations in moles per decimetre cube,
mol dm™ = 10°> mol m™.

Table 1.3 Sl prefixes

Multiple Prefix Symbol Multiple Prefix Symbol
10 deca da 107 deci d
10° hecto h 107 centi c
10° kilo k 107 milli m
10° mega M 107 micro u
10° giga G 107 nano n
10" tera T 1072 pico P
10" peta P 107" femto f
10" exa E 1078 atto a
10%! zetta Z 107 zepto z
10% yotta Y 107 yocto y

> Exercises 96-103

The quantities that are of interest in chemistry often have very different magnitudes
from those of the SI units themselves, particularly when the properties of individual
atoms and molecules are considered. For example, the mole is defined as the amount
of substance that contains as many elementary entities (atoms or molecules) as there
are atoms in 12 g (0.012 kg) of '*C. This number is given by Avogadro’s constant,
N, =6.02214 10% mol™". The mass of an atom of '*C is therefore

m(?C)=12/(6.02214 x 10%) g =2 x 100 kg
or m(*2C) =12 u, where
u=1/(6.02214x10%) g = 1.66054 x 10" kg

is called the unified atomic mass unit (sometimes called a Dalton, with symbol Da).
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EXAMPLES 1.18 Molecular properties: mass, length and moment of inertia

(i) mass. Atomic and molecular masses are often given as relative masses: 4_for an
atom and M_ for a molecule, on a scale on which Ar(12C) =12. On this scale, Ar(lH) =
1.0078 and Ar(16O) =15.9948. The corresponding relative molar mass of water is

M('H,'"°0)=2 x4 ('H)+4,('°0)=18.0105,
the molar mass is

M('H,'°0)=18.0105 g mol ™' =0.01801 kg mol ",
and the mass of the individual molecule is

m('H,'°0) =M ('H,'°0) x u=2.9907x 10 * kg

(ii) length. The bond length of the oxygen molecule is R, =1.2075 x 107" m, and
molecular dimensions are usually quoted in appropriate units such as the picometre
pm=10"? m or the nanometre nm=10" m in spectroscopy, and the Angstrém
A=10""m or the Bohr radius a,=0.529177 x 10°m=0.529177 A in theoretical
chemistry. Thus, for O,, R,=1.2075 A =120.75 pm.

(iii) reduced mass and moment of inertia. The moment of inertia of a system of two
masses, m, and my, separated by distance R is /= UR?, where p is the reduced
mass, given by

_ __mpymg

+ =
m, +mg

1.0
my mB,

= |-

Relative atomic masses can be used to calculate the reduced mass of a diatomic
molecule. Thus for CO, Ar(IZC) =12 and Ar(16O) =15.9948, and these are the atomic
masses in units of the unified atomic mass unit u. Then

12x15.9948][uz

12 ~16
C 0)= =6.8562
He ) [ 27.9948 J ‘

A

=6.8562 % 1.66054 % 10" kg=1.1385x 10" kg

The bond length of CO is 112.81 pm=1.1281x 107" m, so that the moment of
inertia of the molecule is

I=uR?*=(1.1385x 10 kg) x (1.1281 x 107" m)?
=1.4489 x 107 kg m*

The reduced mass and moment of inertia are of importance in discussions of
vibrational and rotational properties of molecules.

> Exercises 104, 105
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EXAMPLES 1.19 Molecular properties: wavelength, frequency, and energy

The wavelength A and frequency v of electromagnetic radiation are related to the
speed of light by

c=Av (1.14)

(see Example 3.7), where ¢=2.99792x 10°ms™'=3x10°ms™. The energy of
a photon is related to the frequency of its associated wave via Planck’s constant
h=6.62608x 107 I s:

E=hv (1.15)

In a spectroscopic observation of the transition between two states of an atom or
molecule, the frequency of the radiation emitted or absorbed is given by hv=|AE|,
where AE=E,—E, istheenergy of transition between states with energies E, and E,.
Different spectroscopic techniques are used to study the properties of atoms and
molecules in different regions of the electromagnetic spectrum, and different units
are used to report the characteristics of the radiation in the different regions. The
values of frequency and wavelength are usually recorded in multiples of the SI units of
hertz (Hz=s") and metre (m), respectively, but a variety of units is used for energy.
For example, the wavelength of one of the pair of yellow D lines in the electronic
spectrum of the sodium atom is A =589.76 nm = 5.8976 x 10~ m. By equation (1.14),
this corresponds to frequency

8 -1
_c_ 2.99792x10° ms _50833x10" ¢!

1 5.8975x107 m

and by equation (1.15), the corresponding energy of transition is
AE=hv=(6.62608 x 107 I s) x (5.0833x 10" s71)=3.368 x 1077 J

Energies are often quoted in units of the electron volt, eV, or as molar energies in
units of kJ mol™". The value of eV is the product of the protonic charge e (see Table 1.4)
and the SI unit of electric potential V =J C™' (Table 1.2): eV =1.60218 x 10™"? J. The
corresponding molar energy is

eV XN, =(1.60218 x 107" J) x ( 6.02214 x 10” mol ")
=96.486 kJ mol ™' (1.16)

where N, is Avogadro’s constant. For the sodium example,
AE=3.368x107""1=2.102 ¢V =202.8 k] mol'
Very often, the characteristics of the radiation are given in terms of the wavenumber

v AE
—=— (1.17)
c  he

V=

N
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This has dimensions of inverse length and is normally reported in units of the
reciprocal centimetre, cm™". For the sodium example, A=5.8976 x 10~ cm and

V= . 16956 cm™
5.8976x107° c¢m

The second line of the sodium doublet lies at 16973 cmfl, and the fine structure
splitting due to spin-orbit coupling in the atom is 17 cm™".

In summary, the characteristics of the radiation observed in spectroscopy can
be reported in terms of frequency v in Hz (s, wavelength A in (multiples of ) m,
energy AE in units of eV, molar energy in units of k] mol™', and wavenumber v in
units of cm ™. These quantities are related by equations (1.14) to (1.17). Conversion
factors for energy are

1eV=1.60218 x 107" J=96.486 kJ mol™' =8065.5 cm™

> Exercises 106

Approximate calculations

Powers of 10 are often used as a description of order of magnitude; for example, if a
length A is two orders of magnitude larger than length B then it is about 10> = 100
times larger. In some calculations that involve a wide range of orders of magnitude
it can be helpful, as an aid to avoiding errors, to calculate the order of magnitude of
the answer before embarking on the full detailed calculation. The simplest way of
performing such an ‘order of magnitude calculation’ is to convert all physical quantities
to base SI units and to approximate the magnitude of each by an appropriate power of
ten, possibly multiplied by an integer. Such calculations are often surprisingly accurate.

EXAMPLE 1.20 Order of magnitude calculations

(i) For the calculation of volume in Example 1.1 (ignoring units),

- nRT _ 0.1x8.31447 x 298 = 2478% 1073
P 10°
Two estimates Of the answer are
—1 2 1 -1
(@) =0 X10XI07 4oy 10 x8x300 _, 4 073
10° 10°

(ii) For the calculation of the moment of inertia of CO in Example 1.18 (ignoring
units), ¢ =1.1385x102°= 107 and R=1.1281x10""°~107"", and an order of
magnitude estimate of the moment of inertia is /= UR? = (1072 x (107'%* =107
(accurate value 1.4489 x 107%9).

> Exercise 107
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Atomic units

The equations of motion in quantum mechanics are complicated by the presence of
the physical quantities 7, the rest mass of the electron, e, the charge on the proton, h,
Planck’s constant, and &, the permittivity of a vacuum. For example, the Schrédinger
equation for the motion of the electron about the stationary nucleus in the hydrogen
atom is

hz 2 @2

Snzm 47t801"
€

v=Ey (1.18)

The four experimentally determined quantities can be used as base units for the
construction of atomic units for all physical quantities whose dimensions involve
length, mass, time, and electric current (the first four entries in Table 1.1). Some of the
atomic units are listed in Table 1.4. The atomic units of length and energy have been
given names: the unit of length, a, is called the bohr, and is the most probable distance
of the electron from the nucleus in the ground state of the hydrogen atom (the radius
of the ground-state orbit in the ‘old quantum theory’ of Bohr). The unit of energy, E,,
is called the hartree, and is equal to twice the ionization energy of the hydrogen atom.
Atomic units are widely used in quantum chemistry. The convention is to express
each physical quantity in an expression in atomic units, and then to delete the unit
from the expression; for example, for a distance r, the dimensionless quantity r/a, is
replaced by r. If this is done to equation (1.18) the resulting dimensionless equation is

1 1
——Viy——y=Ey (1.19)
2 r

Table 1.4 Atomic units

Physical quantity Atomic unit Value in SI units
mass m, 9.10938 x 10" kg
charge e 1.60218 x 107 C
angular momentum h=h/2r 1.05457 x 107 ] s
length a,=4ne i’ /m e’ 529177 %10 m
energy E, =m¢*/16n’e)l’ 4.35974x 1078
time h/E, 241888 x 107"
electric current eE, /h 6.62362x107° A
electric potential E /e 2.72114x 10"V
electric dipole moment ea, 8.47835x 107 Cm
electric field strength E, /ea, 514221 x 10" vm™
electric polarizability 4n£0a(3) 1.64878 x 107" Fm?
magnetic dipole moment eh/m, 1.85480 x 102 J T
magnetic flux density h/ea(z) 2.35052 % 10° T

magnetizability

ezag/ m,

7.89104 X 1072 J T2

27
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In this form the equation is often referred to as the ‘Schrédinger equation in atomic
units’. The results of computations are then numbers that must be reinterpreted
as physical quantities. For example, the quantity E in equation (1.18) is an energy.
Solution of equation (1.19) gives the numbers E=—1/2nr? for all positive integers ,
and these numbers are then interpreted as the energies E=—1/ 2n’ E,.

EXAMPLE 1.21 The atomic unit of energy

By Coulomb’s law, the potential energy of interaction of charges g, and ¢, separated
by distance r is

y = 9%
dne,r

where g)=28.85419 x 102 Fm™ is the permittivity of a vacuum. For charges q,=Ze
and g,=Z,e separated by distance = Ra,),

2
R 4neya,
(i) To show that the unit is the hartree unit £, in Table 1.4, use a,= 41t80h2/ meezz
& _ e . 4Tt£0h2 _ & y mee2 _ mee4 _r
dreya, | 4me, mee2 4re, 4n80h2 16T528§ n’ h

(ii) To calculate the value of £, in SI units, use the values of e and a, given in
Table 1.4. Then

& 1.60218° 107 x107 ) f
4meya, | 4x3.14159x8.85419%5.29177 | (102 x10™"" | | Fm™' m

=(4.35975x 107°) x (107¥) x (C*F 1)

From the definitions of the coulomb C and farad F in Table 1.2, F=C?J! so that
C?F~'=]. Therefore

62

=435975x10 1= E,
drne,a,

> Exercise 108




1.9 Exercises

1.9 Exercises

Section 1.2
Calculate and express each result in its simplest form:
1. 3+(-4) 2. 3-(-4) 3. (3)-(-4) 4. (3)x(-4) 5. 3x(-4)
1 1 35 25
6. 8+(—4 7. (-8)+ (-4 8. —+-— 9. ——— 10. ———
4 CH+=9 4 8 4 7 9 6
11. i+£ 12. L 13. E+i 14. i><E 15. 2x—
14 21 18 27 12 16 2 4
16. g><é 17. —g —E 18. E 4 19. E é 20. £+f
36 3 4 4 5 3 3 15 5
21. l—l
39
Section 1.3
Factorize in prime numbers:
22. 6 23. 80 24. 256 25. 810
Simplify by factorization and cancellation:
26. 3 27. 2 28. 8 29. 768
18 49 294 5120
Find the value of:
30. 2! 32. 7! 33. 10!
Evaluate by cancellation:
! ! ! !
33. Ell 34. ¢ 35. S 36. 10
2! 3! 312! 713!
Section 1.4
Express as decimal fractions:
37107 38 2x10° 39, 2+3x10%+5x10°0  40. > 41 - 42, >
8 25 32
Find the repeating sequence of digits in the nonterminating decimal fraction representation of:
43. 1 44. 1 45. L 46. L
9 11 21 17

Use the rules of rounding to give each of the following to 8, 7, 6, 5, 4, 3, 2 and 1 significant figures:
47. 1/13=0.07692 3076923 48. \/2=1.414213562373 49. 1=3.141592 653589

Section 1.6

Simplify if possible:

50. a’a’ 51. a’a”’ 52. a’a” 53. &’/a® 54, a’/a”* 55. (a°)*
56. (a°) 57. (1/a®)*  58. 4aa?  59. @ 60. (’b%)

61. (@ +b)'  62.9'? 63. 8% 64. 32°5 5. 27

Evaluate:

66. 7—3%2 67. 7-(3%2) 68. (7-3)x2 69. 7+3x4-5

70. (7+3)x4=5 71 4+2x7-2 72 4+2+7x2  73. 8x2+4+2
74. 3 +47 75. 3+4x5 76. 25+ 1442 77. (52 +12%)1?

29
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Section 1.7

Find the sum and product of the pairs of complex numbers:
78. z,=3+5i,z,=4-7i 79. z,=1-6i,z,=-5—-4i

Section 1.8

For each of the following dimensions give its SI unit in terms of base units (column 5 of
Table 1.1) and, where possible, in terms of the derived units in Table 1.2; identify a physical
quantity for each:
8o0. L 81. ML” 82, NL” 83. MLT™' 84. MLT™ 85. ML*T™
86. ML'T 87. 1T 88 ML*I'T  89. ML’T>N™'  90. ML*T°N'6™"
91. Given that 1 mile (mi) is 1760 yd and 1 hour (h) is 60 min, express a speed of 60 miles per
hour in (i) m s, (ii) km h™".
92. (i) What is the unit of velocity in a system in which the unit of length is the inch (in=
2.54% 1072 m) and the unit of time is the hour (h)? (ii) Express this in terms of base SI units.
(iiii) A snail travels at speed 1.2 in min™". Express this in units ydh™', ms™,and km h™.
93. The non-SI unit of mass called the (international avoirdupois) pound has value
1 1b=0.45359237 kg. The ‘weight’ of the mass in the presence of gravity is called
the pound-force, Ibf. Assuming that the acceleration of gravity is g=9.80665 m s>,
(i) express 11bf in SI units, (ii) express, in SI units, the pressure that is denoted (in some
parts of the world) by psi=1 Ibf in2, (iii) calculate the work done (in SI units) in moving
a body of mass 200 Ib through distance 5 yd against the force of gravity.
94. The vapour pressure of water at 20°C is recorded as p(H,0, 20°C) =17.5 Torr. Express
this in terms of (i) the base SI unit of pressure, (ii) bar, (iii) atm.
95. The root mean square speed of the particles of an ideal gas at temperature T'is
c= (3RT/M)1/2, where R=8.31447 T K ' mol™ and M is the molar mass. Confirm that ¢
has dimensions of velocity.

Express in base SI units
96. dm™ 97. cmms” 98, gdm™ 99. mgpmus”> 100. dgmm™' ns™

101. GHzpym  102. kNdm  103. mmol dm™

104. Given relative atomic masses Ar(14N) =14.0031 and Ar(lH) =1.0078, calculate
(i) the relative molar mass of ammonia, Mr(14N1H3), (ii) the molecular mass and
(iii) the molar mass.

105. The bond length of HClis R =1.2745 X 107" m and the relative atomic masses are
A,(PCl)=34.9688 and A ('H)=1.0078. (i) Express the bond length in (a) pm, (b) A and
(¢) a, Calculate (ii) the reduced mass of the molecule and (iii) its moment of inertia.

106. The origin of the fundamental aborption band in the vibration-rotation spectrum of
'H¥CI lies at wavenumber v =2886 cm™". Calculate the corresponding (i) frequency,
(ii) wavelength, and (iii) energy in units of eV and kJ mol ™.

107. In the kinetic theory of gases, the mean speed of the particles of gas at temperature
Tis c=(8RT/aM )1/ 2, where M is the molar mass. (i) Perform an order-of-magnitude
calculation of ¢ for N, at 298.15 K (M =28.01 g mol ™). (ii) Calculate ¢ to 3 significant
figures.

108. In the Bohr model of the ground state of the hydrogen atom, the electron moves round
the nucleus in a circular orbit of radius a,= 4n£0h2/ meez, now called the Bohr (radius).
Given g,=8.85419 X 107 F m™", use the units and values of mg, eand hi given in
Table 1.4 to confirm (i) that a; is alength, and (ii) the value of @, in Table 1.4.



2 Algebraic functions

2.1 Concepts

When the equation of state (1.1) of the ideal gas is written in the form

_nRT
p

Vv

itis implied that the value of the volume V (the dependent variable) is determined by

the values of the pressure p, temperature 7,and amount of substance 7 (the independent

variables). In general, a dependent variable is said to be a function of the variable or

variables on which it depends. In this example, V is a function of the three variables

p> T, and n. In the present chapter we are concerned with functions of only one

variable; the case of more than one independent variable is discussed in Chapter 9.
Let the variable y be a function of the variable x. For example, in equation

y=2x2—3x+l (2.1)
the expression on the right of the equal sign defines the function f;
f)=2x"=3x+1 (2.2)
whose value for any given value of x is to be assigned to the variable y (read f(x) as
‘fofx’). The function f is the rule for calculating y from x.

A function has a numerical value when numerical values are assigned to the
variables.

EXAMPLE 2.1 The values of the function (2.2) when x=2, x=1, and x=0 are

f2)=2x2*-3x2+1=3
f(H)=2x1"-3x1+1=0
F(0)=2x0*-3x0+1=1

> Exercises 1-3

The concept of function is more general than this however, because the variable x can
be replaced by another variable, by a function, or by a more complicated quantity
such as a differential operator or a matrix.

! The word “function’ was first used in this context by the German mathematician Gottfried Wilhelm Leibniz
(1646-1716).
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EXAMPLE 2.2 Replace the variable x in (2.2) by the variable a.
fla)=2a*-3a+1

» Exercise 4

EXAMPLE 2.3 Replace the variable x in (2.2) by the function 4 + 2.

Fh+2)=2(h+2)*-3(h+2)+1
=2(h* +4h+4)-3(h+2)+1
=2h"+8h+8—-3h—6+1
=21*+5h+3

=g(h
where
g(x)= 2x° +5x+3
is a new function of x that is related to f(x) by g(x)=f(x +2).

» Exercises 5, 6

EXAMPLE 2.4 Replace the variable x in (2.2) by the differential operator di (see
Chapter 4). X

2 2
) AT o ) oien
dx dx dx A2 dx

is a new differential operator.

EXAMPLE 2.5 By the equation of state of the ideal gas, the volume is a function of
pressure, temperature, and amount of substance,

V=f(p, T,n)=nRT/p
and by the calculation performed in Example 1.1

£(10° Pa, 298 K, 0.1 mol) =2.478 x 107> m*

2.2 Graphical representation of functions

A real function may be visualized either by tabulation or graphically by plotting.
Consider the function

y=fx)=x’-2x-3 (2.3)



2.2 Graphical representation of functions

For each value of x there exists a value of y. A table can be drawn, such as Table 2.1,
giving values of y corresponding to a set of values of x. In addition, each pair of
numbers (x, y) in the table may be regarded as defining the position of a point in a
plane, and can be plotted in a graph as in Figure 2.1.

Table 2.1 Y
x \q\ 12 '
-3 12 101
-2 5
-1 0
0 -3
1 —4 L z
2 _3 4 5
3 0
4 5
5 b Figure 2.1

The function given by equation (2.3) is called a quadratic function because the
highest power of x is the square (in plane geometry, quadrature is the act of squaring;
that is, finding a square whose area is equal to that of a given figure). It is an example
of a general class of functions called polynomials; polynomials and other algebraic
functions are discussed in the following sections.

> Exercises 7, 8

The cartesian coordinate system?

The position of a point in a plane is specified uniquely by its coordinates in a given
coordinate system. The most generally useful system is the cartesian (rectangular)
coordinate system shown in Figure 2.2.

2 René Descartes (1596-1650), or Renatus Cartesius, French philosopher and mathematician. He attributed his

search for a universal mathematics to a mystical experience in 1619 in which ‘full of enthusiasm, I discovered the
foundation of a wonderful science’. He developed the relation between algebra and geometry in his Géométrie,
published as an appendix to the Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les
sciences (Discourse on the method of good reasoning and seeking truth in the sciences), 1637. Before Descartes,
the quantities x, x°, and x* were always associated with the geometric concepts of line, area, and volume. Descartes
discarded this restriction, ‘the root (x), the square, the cube, etc. are merely magnitudes in continuous proportion’.
His work marks the beginning of modern algebra. Descartes introduced the convention of using letters at the
beginning of the alphabet (a, b, ...) for constants and parameters, and letters at the end (x, y, z) for unknowns
and variables. The Géométrie contains a formulation of the fundamental theorem of algebra, and the first use of
the words ‘real’ and ‘imaginary’ in the context of complex numbers.

Coordinate geometry was also developed by Fermat at about the same time as Descartes, but his work was
not published until 1679, after his death. Pierre de Fermat (1601-1665), lawyer at the provincial parliament of
Toulouse, made important contributions to the theory of numbers and to the calculus.
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Yy - axis
e 1C87)
| [}
[}
L i xy- plane
'Y
— 1
1
| 1
[}
] x - axis
1 1 1 L
origin O T
Figure 2.2

A frame of reference is defined in the plane, consisting of a fixed point called the
origin of the coordinate system, and two perpendicular axes (directed lines), called
the coordinate axes, which intersect at the origin. In Figure 2.2 the origin is labelled
O, the coordinate axes are the x and y axes, and the plane is called the xy-plane.
The position of a point in the plane is specified by the ordered pair (x, y), where x is
the x-coordinate or abscissa and y is the y-coordinate or ordinate. A point with
coordinates (x,y) lies at perpendicular distance |x| from the y-axis and |y| from the
x-axis. It lies to the right of the (vertical) y-axis if x>0 and to the left if x <0; it lies
above the x-axis if y>0 and below if y <0. The origin has coordinates (0, 0).

In an actual example, suitable scales are marked on the coordinate axes, and each
pair of numbers in a table such as Table 2.1 is plotted as a point on the graph. If
the function is known to vary smoothly between the plotted points (as it is in this
example) then the points may be joined by a smooth curve. The curve is the graphical
representation of the function.

2.3 Factorization and simplification of expressions

The structure of an algebraic expression can often be simplified and clarified by the
process of factorization (see Section 1.3 for factorization of numbers). For example, in
the expression

3xy+ 6x*

each term of the sum can be written as the product of the common factor (3x) and
another term:

3xy+6x7 = (3x) X (1) + (3x) X (2x)
Therefore
3xy+ 6x% = (Bx) X (y+2x)=3x(y+2x)

and the algebraic expression has been written as the product of the two factors (3x)
and (y+2x).



2.3 Factorization and simplification of expressions

The inverse operation of factorization is usually called expansion or multiplying

out.

EXAMPLE 2.6 Factorize:

@

2xy2 - 4x2y + 6xy
The expression 2xy is a common factor. Therefore

2xy2 - 4x2y +6xy =(2xp) X (¥) — (2xp) X (2x) + 2xy) X (3) =2xp(y — 2x + 3)

(i) x*-5x—6

(iii)

The aim is to express the quadratic function as the product of two linear
functions; that is, to find numbers a and b such that

X —5x—6=(x+a)x+b)
Expansion of the product gives
(x+a)(x+b)=x(x+b)+a(x+b)=x2+bx+ax+ab
and, therefore,
x2—5x—6=x2+(a+b)x+ab
For this equation to be true for all values of x it is necessary that the coefficient
of each power of x be the same on both sides of the equal sign: a+b=-5 and
ab =—6. The two numbers whose sum is —5 and whose product is 6 are a=-6
and b= 1. Therefore
X =5x—6=(x—6)(x+1)
x* -9
Let x* —9=(x+a)(x+b)=x>+(a+ b)x +ab. In this case there is no term linear
inx: a+b=0, sothat b=—a and ab=—a’=-9. Therefore a=+/9 =43 and the
factorization is

¥’ =9=(x+3)(x-3)

This is an example of the general form x> —a’=(x+a)x—a).

(iv) x*—5x"+4

The quartic in x is a quadratic in disguise. Replacement of x* by y, followed by
factorization gives

VYV =Sy+a=(y-1)(y-4)

35
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Therefore
-5t +4=" - D’ —4)

Both the quadratic factors have the form x*—a’=(x+a)(x—a) discussed in
case (iii) above:

X—l=(x+1)x-1) and x*—-4=(x+2)(x-2)
Therefore,
s A=+ Dx - Dx+2)(x-2)

> Exercises 9-16

The expansion
(x+a)(x+b)=x>+(a+b)x+ab (2.4)

used in Examples 2.6, has geometric interpretation as the area of a rectangle of sides
(x+a) and (x+ D), asillustrated in Figure 232

Other important general forms are ’ ¢
2
(a+ b)2 =a’+2ab+ b square of side (a + b) Tt ar
(a—bY=a*-2ab+b* squareofside |a—b|  (2.5) bl ba ab
(a+b)a—b)=a’—b* difference of squares .
Figure 2.3

The first two equations of (2.5) can be combined by using the symbol +, meaning ‘plus
or minus™:

(at by’ =a’+2ab+b* (2.6)

in which either the upper symbol is used on both sides of the equation or the lower

symbol is used on both sides. Sometimes the symbol F is used in a similar way; for

example, a ¥ b =tc represents the pair of equations a —b=+c and a+b=—c.
Factorization can be used to simplify algebraic fractions. For example, in

xy+ 2x*
4x +6xy

* Euclid, “The Elements’, Book II, Propositions 4 and 7 are the geometric equivalents of the first two equations
(2.5) for the squares of (a+b) and (a—b).



2.4 Inverse functions

both numerator and denominator have the common factor x, and can be divided by
this factor (when x # 0) without changing the value of the fraction:

xy+2x2_ X(y+2x)  y+2x
4x+6xy 2x(24+3y) 2(2+3y)

EXAMPLE 2.7 Simplification of fractions

1y B _Ax@x) _2x
2y ZIx(y) vy

3+6y  B(1+2y)  1+2y
9+18x  3%(1+2x) 3(1+2x)

5 et _ (aFB)(a=b) (a—b)

@ +2ab+ b (akB)(a+b) (a+h)

> Exercises 17-22

2

2.4 Inverse functions

Given some function f and the equation y=f{(x), itis usually possible to define, at least
for some values of x and y, a function g such that x =g(y). This new function is the
inverse function of f and is denoted by the symbol /' (not to be confused with the
reciprocal 1/f):

if y=/(x) then x=/""(y) (2.7)

EXAMPLE 2.8 If y=f(x)=2x+3, find x=1""().
To find x in terms of y,
(i) subtract 3 from both sides of the equation: y=2x+3 —>y—-3 =2x
N e . y=3
(ii) divide both sides by 2: - —=x
Therefore x=(y—3)/2=/""().
In this example, y is a single-valued function of x; that is, for each value of x there

exists just one value of y. Similarly, x is a single-valued function of y.

» Exercises 23-25

ax+b .
rE express x in terms of y.

EXAMPLE 2.9 If y=

cxX+

37
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To solve for x,

(i) multiply both sides of the equation by (cx +d): (ex+d)y=ax+b
(ii) expand thelh.s.: cxy+dy=ax+b
(iii) subtract (ax+ b) from both sides: exy+dy—ax—b=0
(iv) collect the terms in x! and x*: (cy—a)x+(dy—b)=0
(v) subtract (dy—b) from both sides: (cy—a)x=—(dy—>b)
(vi) divide both sides by (cy —a): x= _(@y=h) = f_1 »)
(cy—a)

We note that step (vi) is not valid if (¢y —a)=0 because division by zero has no
meaning. Such complications can normally be ignored.

This example demonstrates the type of algebraic manipulation routinely used in
the solution of real problems.

> Exercises 26-29

EXAMPLE 2.10 If y=f(x) =x>+ 1, express x in terms of y.
We have

y=x2+1, x2=y—l, x=-_h/y—1=f_1(y)

v is a single-valued function of x, but x is a double-valued function of y (except for
y=1); that is, for each real value of y>1 there exist two real values of x (if y<1 then
x is complex).

Figure 2.4

Figure 2.4 shows how the graphs of the function and its inverse are related; graph (b)
is obtained from (a) by interchanging the x and y axes, or by rotation around the line
x =Y. Graph (b) also shows the double-valued nature of the inverse function.



2.4 Inverse functions
In physical applications it is usually obvious from the context which value is to be

chosen. It is also seen, when x and y are real numbers, that whereas y is defined for all
values of x, —oo <x<+0c0, x is only defined for y > 1.

» Exercises 30, 31

The finding of the inverse function is not always so straightforward.

EXAMPLE 2.11 y=/(x)=x"—2x

In this case the inverse function /™' exists for all values of x, but it cannot be written
in simple algebraic form, although it can be tabulated and plotted as in Figure 2.5.
As in Example 2.10, graph (b) has been obtained from graph (a) by rotation around
the line x=y.

Yy
X
2 B // l_y // Z_y
L, 1.5 - .’
. —
// //
4 4
/// //,
L A L T L > L Y
—1.5 L 1.5 —2 e 2
4 '
7 Ve
7 4
L7 ___.5_’/,
e .7 —1.5[
// 72 - //
(a) y = f(=) (b) z = f~"(y)
Figure 2.5

In Example 2.11 the functional dependence of y on x is given explicitly by the
right side of the equation; y is an explicit function of x. On the other hand, x cannot
be written as an explicit function of y, and the equation defines x as an implicit
function of y. In general, an equation of the form

S, »)=0

where f is a function of both x and y, gives either variable as a function of the
other. In many equations in the physical sciences it is either not possible to express
one variable as an explicit function of the others, or it may not be convenient to
do so.
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EXAMPLE 2.12 The van der Waals equation

The equation of state for a ‘slightly imperfect gas’ is

2
n°a
[p+7](V—nb)—nRT=0 (2.8)
In this case, both 7'and p are easily expressed as explicit functions of the other variables:
2 2
7= 1 +n_ W —nb), p=—RL nRT n’a
nR V—nb V2

For V, equation (2.8) can be rearranged into

2 3
V3—n[b+EJV2 ma, ndb_,
P P P

which is a cubic equation in V. It is possible to write down explicit solutions of a
cubic equation, but these are complicated and seldom used. In this case, it is most
convenient to regard equation (2.8) as defining /" as an implicit function of p, 7, and
n. For any set of values of the independent variables and of the constants, equation
(2.8) can be solved numerically by an iterative method such as the Newton-Raphson
method described in Chapter 20.

> Exercises 32-35

2.5 Polynomials

The general polynomial of degree n has the form

n

f(x)=a0+a1x+a2x2+ ta,x (2.9)

where the coefficients a,a,...,a, are constants, and n is a positive integer. If
n=0 the function is the constant . The polynomial is often written in short-hand

notation as
n .
f(x)= Z ax' (2.10)
i=0

where the symbol Y. represents summation. The notation tells us to add together the
terms aix’ in which the integer variable i takes in turn the values 0, 1,2, ..., n:

n
2 ax' = (aoxo) + (alxl) + (azxz) +-t(a,x")
i=0

=a +ax+ax’+-+ax"
0T 4 2 n

(remembering that =1 and x'=x).
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Only real coefficients are discussed here; the case of complex coefficients is shown
in Section 8.4 to involve no new principles.

EXAMPLE 2.13 Write out in full:

3
(1) Yix'=0xx" +1Ixx' +2xx7 +3xx° =x+2x7 +3x°
i=0
(2)22n1x—1 o P 2k
n+1 2 3 4 x 2 3 4

3) i(—X)i =(=x)? +(=x) + (-0 =x7 - 27 +x*

i=2

> Exercises 36-39

Degree n=1: linear function

S =a,+ax (2.11)

This is the simplest type of function, and is better known in the form

y=mx+c (2.12)

The graph of the function is a straight line. It has slope m, and intercepts the vertical
y-axis (when x=0) at the point y =c¢, as shown in Figure 2.6.

Yy
(%2, Y2)
Y === 5
Y2 — Y1
(%1, 1)
Y p-----
IR
| |
| |
fc/m/ ¢ I I
1 1 x
e 1 Ty
Figure 2.6

If we take any two points on the line, with coordinates (x,,y,) and (x,, y,), then

Yy, =mx +c

y,=mx,+c
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and

m=22_2 (2.13)

Xy =X

defines the constant slope. The line crosses the horizontal x-axis at one point:

y=0 when x=—X (2.14)
m

This value of x is called the root of the linear function. In general, the roots of a
polynomial function are those values of the variable for which the value of the function
is zero; that is, the roots are the solutions of the polynomial equation

f(x)=0 (2.15)

EXAMPLE 2.14 Find the equation of the straight line that passes through the points
(-1,-6) and (3, 2).

Let the line be y=mx + c¢. Then:
at point (x,,y,) = (-1,-6),  —6=-m+c

at point (x,, y,) =(3, 2), 2=3m+c

Solution of the pair of simultaneous equations (see Section 2.8) gives m =2 and
¢ =—4. Therefore

y=2x-4
The graph of the line is shown in Figure 2.7. The line has slope m =2, which means

that the value of y increases twice as fast as that of x. The line crosses the y-axis at
y=c=—4, and crosses the x-axis at x=2.

—4
(-1, 6)/—

Figure 2.7

> Exercises 40-43




2.5 Polynomials
Degree n =2: quadratic function
f(x)=a0+a1x+a2x2 (2.16)
The quadratic function is usually written as
y=ax2+bx+c (2.17)

A typical graph is shown in Figure 2.1 in Section 2.2. The shape of the curve is that of
a parabola. When the constant a is positive, the function has a single minimum value
(turning point), and is symmetrical about a vertical line that passes through the point
of minimum value. For the function in Figure 2.1,

fx)=x*—2x-3 (2.18)

this minimum point has coordinates (x, y)=(1, —4). The graph crosses the x-axis,
when f(x)=0, atthetwo points x=—1 and x =3. These are the roots of the quadratic
function, and they are the solutions of the quadratic equation

*-2x-3=0 (2.19)
In this example the roots are easily obtained by factorization:
x*=2x=3=(x+1)x-3)
and the function is zero when either of the linear factors is zero:

ith 1= =-1
2 —2x—3=0 when either x+1=0 = x
or x—3=0= x=3

(the symbol = means ‘implies’)
Whilst it is possible to factorize a variety of quadratic functions by trial and error,
as in Examples 2.6, the roots can always be found by formula:*

ax’+bx+c=0

when

—h4 B2
_ bt /b —4ac (2.20)

2a

X

A clay tablet (YBC 6967, Yale Babylonian Collection) of the Old Babylonian Period (c. 1800-1600 BC)
has inscribed on it in the Sumerian cuneiform script the following problem (in modern notation): given
that xy=60 and x—y=7, find x and y. The prescription given for the (positive) solution corresponds to

x=+/(7/2)* +60 +(7/2) and y=4/(7/2)* +60 —(7/2). The method and prescriptive approach is almost
identical to that used by Al-Khwarizmi two and a half millennia later. Modern algebra became possible with the
development of a general abstract notation in the 15th to 17th centuries. One important step was taken by Frangois
Viéte (1540-1603). French lawyer, politician, cryptoanalyst, and amateur mathematician, he made contributions
to trigonometry and algebra. He is best remembered as the man who, in his In artem analyticem isagoge
(Introduction to the analytical art) of 1591, introduced the systematic use of symbols (letters) into the theory of
equations, distinguishing between constants and variables.
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The two roots are

—b+\/b2 —4ac —b—w/b2 —4ac (2.21)
= X,=——————— .

" 2a ’ 2 2a
and the quadratic has factorized form
ax? +bx+c=a(x—x)(x—x,) (2.22)

EXAMPLE 2.15 The roots of the quadratic function f(x)=x*—2x—3.

Wehave a=1, b=-2, and ¢=-3 in formula (2.20). The roots are therefore

+
e P2ENATI2 \'24+12=14_rz=—10r3

and the factorized form of the function is x> —2x—3 = (x + 1)(x = 3).

EXAMPLE 2.16 Find the roots of the quadratic function f(x)= 2x% +6x+3.
Wehave a=2, b=6, and ¢=3 in formula (2.20), and the roots are
-6+ -24 1
(TR, )

> Exercises 44-46

The quantity
b* —4ac (2.23)

in (2.20) is called the discriminant of the quadratic function. Its value in Examples
2.15 and 2.16 is positive, and the function has two real roots, but in other examples it
can have zero or negative value. A graphical explanation of the three possible types of
discriminant is shown in Figure 2.8.

Yy Yy Yy
/m T T
sz X1 = X2

b2 — 4ac >0 b —4ac=0 b2 — dac <0

2 different real roots 2 equal real roots no real roots

X1

Figure 2.8
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EXAMPLE 2.17 Case /b* —4ac =0.

The quadratic
2% —8x+8=2(x—2)°
has zero discriminant and the double root (two equal roots) x =2.

> Exercises 47, 48

When the discriminant is negative, formula (2.20) requires the taking of the square
root of a negative number, and the result is not a real number. In this case the roots of
the quadratic are a pair of complex numbers involving the square rootof —1: i = J-1
(see Section 8.2)

EXAMPLE 2.18 Case +/b* — 4ac <0.
The quadratic

x2—4x+13

has a pair of complex roots x, and x, given by
X=————=2%3;

The roots are x; =2+ 3i and x, =2 —3i and the factorized form of the quadratic is
(x—x)x—x,).

» Exercises 49, 50

» Exercises 51, 52

For very large (‘large enough’) values of |x| the term in x* in the quadratic
f(x)=ax*+ bx + ¢ is very much larger in magnitude than the other two terms. Thus,
dividing the function by x?

S b

c
3 a+—+—2—>a asx — too
X X x

This means that for large enough positive and negative values of x, the function behaves
like the simpler function ax? and can sometimes be replaced by it. In general for the
polynomial of degree 1, equation (2.9),
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an—2

(x a a
J( ):a 4=l gy > +---+—?’—>an asx — too (2.24)

n
x" X X X

EXAMPLE 2.19 Behaviour of a quadratic for large values of the variable

For values of |x| larger than about 100 the function f(x)= x*+x—1 differs from x?
by less than 1%. The difference decreases like 1/x asx increases: 0.1% for |x| = 10°,
0.001%, for |x|=10°, and 107%% for |x| =10

Quadratic functions are important in the physical sciences because they are used to
model vibrational motions of many kinds. The simplest kind of vibrational motion
is simple harmonic motion and, for example, a ball rolling forwards and backwards in
a parabolic container (a ‘parabolic potential well’) performs simple harmonic motion.

Figure 2.9

Other examples are the swings of a pendulum, the vibrations of atoms in molecules
and solids, the oscillating electric and magnetic fields in electromagnetic radiation.

EXAMPLE 2.20 The classical simple harmonic oscillator

force F' = —kx
-
O x
. . x
equilibrium mass m
Figure 2.10

The simple (linear) harmonic oscillator consists of a body moving in a straight line
under the influence of a force

F=—kx

whose magnitude is proportional to the displacement x of the body from the fixed
point O, the point of equilibrium, and whose direction is towards this point. The
(positive) quantity k is called the force constant and the negative sign ensures that the
force acts in the direction opposite to that of the displacement. For a body of mass m,
the energy of the system is

E=lm1)2 +lloc2
2 2
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where v is the velocity of the body. The expression for the energy is a quadratic
function of the variables vand x; %mvz is the kinetic energy and % Jx? is the potential
energy. In the absence of external forces the total energy is constant (see Section 12.5
for a more complete discussion of the harmonic oscillator).

EXAMPLE 2.21 The simple harmonic oscillator in quantum mechanics

The stationary states of the simple harmonic oscillator in quantum mechanics are
given by the solutions of the time-independent Schrédinger equation

where w=w(x) is the wave function (see Example 13.11). The equation can be
written in the form

Hy=Ey

where the Hamiltonian operator for harmonic motion

= _iz d_2 1 Joc?
2m dx2 2
d A
is a quadratic function of x and of —, since | — | =—.
dx dx 2

The general polynomial

A polynomial of degree n can always be factorized as the product of n linear factors

— 2 n
f)=ay+ax+a,x "+ +ax

=a,(x—x)(x-x,) - (x—x) (2.25)
This is called the fundamental theorem of algebra, and was first proved by the great
mathematician Gauss.” The function is zero when any of the linear factors is zero, and
the numbers x, x,, ..., x, are the n roots of the polynomial; that is, they are the
solutions of the polynomial equation f{x) = 0. Some of the roots may be equal (multiple
roots) and some may be complex. A polynomial of odd degree (n=1,3,5,...)
always has at least one real root because its graph must cross the x-axis at least

> Carl Friedrich Gauss (1777-1855), child prodigy and professor at Géttingen, he made substantial contributions
to every important branch of pure and applied mathematics; the theory of numbers, geometry, algebra, statistics,
perturbation theory, electromagnetic theory. He invented or initiated new branches of mathematics, including the
theory of functions of a complex variable and the differential geometry, that formed the basis for much of 19th
century mathematics. He gave his first proof (there were four) of the fundamental theorem of algebra in his doctoral
thesis, Proof of the theorem that every rational integral function in one variable can be resolved into real factors of
first or second degree, 1799.
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once. In general it has an odd number of real roots. A polynomial of even degree
(n=2,4,6, ...) hasan even number of real roots, or no real roots if the curve does not
cross the x-axis.

EXAMPLE 2.22 Factorization of a cubic

A polynomial of degree 3 can have all three roots real or it can have one real root and
two complex roots; for example, in Figure 2.11,

(a) threerealroots: x°—6x>+11x—6=(x—1)(x—2)(x—23)
(b) three real roots, one double: x° —5x?+7x—3=(x— 1)*(x—3)

(c) one real root and two complex roots: X =37 +dx—2=(x— 1)(x2 —-2x+2)
The roots of the quadratic factor are 1+, where i=~/~1,
X =2+ 2=[x—(1+)][x—(1-1)]
and the fully factorized form of the cubic is

X =37 +4x—2=(x—Dx—1-i)(x—1+1i)

(a) (b) (c)
Figure 2.11

EXAMPLE 2.23 Given that x—1 is a factor, find the roots of the cubic
x* = 7x% + 16x — 10.

If x—1 isafactor then the cubic function can be written as

X = Tx%+16x—10=(x— 1)(ax’ + bx +¢)
=ax3+(b—a)x2+(c—b)x—c

For this equation to true for all values of x it is necessary that the coefficient of each
power of x be the same on both sides of the equal sign:

l=a, -7=b—-a, 16=c-b, —-10=—
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Then a=1, b=-6, ¢=10, and the quadratic factor is Y
+436—
x*—6x+10 with roots x=%=3ii

(see also Examples 2.25 and 2.26). The cubic is therefore of
type (c) in Example 2.22, with one real root, x, =2 and the
two complex roots x, =3 +i and x,=3 —i. The graph of the

function, Figure 2.12, shows however that, like types (a) and 2 8/3
(b), the function has local maximum and minimum values
(or turning points; see Section 4.10) at x=2 and x=28/3, Figure 2.12

respectively.

» Exercises 53-55

EXAMPLE 2.24 Factorization of a quartic

Three cases may be considered.
(i) 4 real roots; for example
e x+6= x-DE+DHx+2)(x-3)
(ii) 2 real roots and 2 complex roots; for example

Aol 2 -2 = (- D(x + 1)(x2—2x+2)
=x-DE+DEx—-1-)x-14+10)

(iii) 4 complex roots; for example

-2 43— 2+ 2= (P + (P - 2x+2)
=(x—Dx+H)x—-1-)(x—-1+i0)

» Exercise 56

Examples 2.22 to 2.24 demonstrate that, if complex numbers are disallowed, a polynomial
can always be factorized as the product of some linear factors, one for each real root,
and, at most, quadratic factors, all real.’ The theorem is used in Section 2.7 for the
construction of partial fractions.

® This is the statement of the fundamental theorem of algebra given in Gauss’ first proof of 1799.
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Algebraic functions

Polynomials are the simplest examples of algebraic functions. More generally, an
equation of the kind

P+ Oy + -+ Ux)y+ V(x)=0 (2.26)

where P(x), Q(x), ..., V(x) are polynomials of any (finite) degree in x, defines the
variable y as an algebraic function of x. For example, the equation

y3+(x+1)y2+(x2+3x+2)y+(x3+2x2—x—l)=0

is a cubic equation in y, and can be solved for each value of x.” Functions that
cannot be defined in this way in terms of a finite number of polynomials are called
transcendental functions. Examples are the trigonometric functions, the exponential
function, and the logarithmic function; these functions are discussed in Chapter 3.

2.6 Rational functions

Let P(x) and Q(x) be two polynomials

P(x)=a.+ax+a,x’+-+ax"
() 0 1 2 n (227)

O()=b,+bx+byx’+-+b x"

A rational function, or algebraic fraction, is an algebraic function that has the
general form

P(x) 4, +a1x+a2x2 +-tax”

y=f=o = (2.28)
O(xX) by +bx+bx*+-+b x"
Examples of rational functions are
1 x+2 3x” +2x -1 x—1
i) — (i) (i) ——— (V) 50— (2.29
X x+2 3 +2x—1 ( )

In each case the function is defined for all values of x for which the denominator is not
zero, since division by zero is not permitted. For example, the function (i) in (2.29) is
not defined at x =0, and (iii) is not defined at x=—2. In general, the rational function

7 The formula for the general solution of the cubic equation was discovered in Bologna in the early 16th
century by Scipio del Ferro and Nicolo Tartaglia. The method of solution (Cardano’s method) was described by
Girolamo Cardano (1501-1576) in his Ars magna of 1545. Cardano showed that some solutions are complex. The
book also contains a description of a method of solving quartic equations due to Ludovico Ferrari (1522-1565).
The Norwegian mathematician Niels Henrik Abel (1802-1829) proved in his On the algebraic resolution
of equations (1824) that there does not exist an algebraic solution of the general quintic equation, or of any
polynomial equation of degree greater than 4. ‘Abel’s short life was filled with poverty and tragedy’; he died of
consumption at the age of 27. He gave the first rigorous proof of the binomial theorem, made early contributions
to group theory, and did important and innovative work on the theory of elliptic and other higher transcendental
functions. The general equation of the fifth degree was solved in terms of elliptic functions by Hermite in 1858.
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(2.28) is defined for all values of x with the exception of the roots of the polynomial
O(x) in the denominator, for which Q(x) =0.

The graph of the function y=1/x in Figure 2.13 demonstrates some typical
properties of rational functions. As x approaches zero from the right (x>0) the value
of 1/x becomes arbitrarily large; we say that y=1/x tends to
infinity as x tends to zero. Similarly, y tends to minus infinity y
as x tends to zero from the negative side. The point x=0
is called a point of singularity, and all rational functions
have at least one such point, one for each root of Q(x). The
graph also shows that as x — oo from either side, the curve x
approaches the y-axis arbitrarily closely but does not cross
it. The y-axis is the line x=0 and is called an asymptote
to the curve; we say that the curve approaches the line
x =0 asymptotically. The line y =0 (the x-axis) is also an Figure 2.13
asymptote.

Division of one polynomial by another

The function (2.28) is called a proper rational function if the degree n of the
numerator P(x) is smaller than the degree m of the denominator Q(x), as in examples
(i) and (iv) of (2.29). Otherwise, as in examples (ii) and (iii), it is called improper.
In ordinary number theory, an improper fraction is one whose value is greater than
or equal to 1; for example 5/2 or 2/2. An improper fraction can always be reduced
to a combination of proper fractions by division. An improper rational function
is reduced to a combination of proper functions by algebraic division.

EXAMPLE 2.25 Divide x* — 7x>+ 16x— 11 by x— 1.

By adapting the method of ordinary long division, we write

x?—6x +10
x—1)x* =7x* +16x—11 x into x* goes x> times
X — X subtract
—6x> +16x—11 x into —6x” goes —Ox times
—6x” + 6x subtract
10x—-11 x into 10x goes 10 times
10x—10 subtract
-1 remainder
It follows that

3 2
x” =Tx" +16x 11=x2—6x+10— 1
x—1 x—
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EXAMPLE 2.26 Divide x* —7x*+ 16x— 10 by x— 1.

The cubic in this example is (number) 1 larger than that in Example 2.25, and there is
no remainder of the division. It follows that the cubic can be factorized:

X =Tx" +16x—10  (x—1)(x> —6x+10)
x—1 a x—1 B

x2—6x+10

(see Example 2.23). In this case the fact that the rational function is not defined
at x=1 either before or after cancellation of the factor (x—1) has no practical
consequences and can be ignored.

EXAMPLE 2.27 Divide x+2 by x+1.

In this case it is not necessary to resort to long division:

x+2_(x+1)+l_x+l+ 1 . 1
x+1  x+1  x+1 x+1  x+1

» Exercises 57-60
2.7 Partial fractions
Consider

1 1 1 1
P dr+2 (x+Dx+2) X+l x+2

(2.30)

The quadratic denominator has been expressed as the product of two linear factors,
and the fraction has been decomposed into two simpler partial fractions. We will see
in Chapters 6 and 11 that the decomposition into partial fractions is an important tool
in the solution of some differential equations in the theory of reaction rates, and in
integration in general. A proper rational function P(x)/Q(x), whose denominator can
be factorized, can always be decomposed into simpler partial fractions. The following
examples demonstrate three of the important simple cases. All others can be treated
in the same way.

EXAMPLE 2.28 Two linear factors in the denominator

x+2 _ 5 4 2
(x=3)x+4) 7(x=3) 7(x+4)
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To derive this result, write

x+2 A B _AGE+4)+B(x-3)
(x=3)(x+4) x-3 x+4  (x=3)(x+4)

It is required therefore that

x+2=A(x+4)+B(x—-3)
for all values of x. The values of 4 and B can be obtained from this equation of the
numerators by the ‘method of equating coefficients’ described in Example 2.23.
Alternatively, they are obtained directly by making suitable choices of the variable x.

Thus

when x=3: 5=74 and A=5/7
when x=-4: 2=7B and B=2/7

> Exercises 61-63

EXAMPLE 2.29 Three linear factors in the denominator

3P +4x-2 A . B, C
(x-D(x-2)(x+3) x—-1 x—-2 x+3

_A(x—=2)(x+3)+ B(x = 1)(x+3)+ C(x —1)(x—2)
a (x—1D(x=2)(x+3)

Then,

3x2+4x—2=A(x—2)(x+3)+B(x—1)(x+3)+C(x—1)(x—2)
so that

when x=1: 5=-44 and A=-5/4

when x=2: 18=5B and B=18/5

when x=-3: 13=20C and C=13/20
Therefore

W44x-2 1) 25 72 13
(x—-D(x-2)(x+3) 20| x-1 x—-2 x+3

> Exercise 64

53
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EXAMPLE 2.30 A repeated linear factor in the denominator

3x+1 A4 + B A(x+3)+B Ax+(34+B)
(x+3)* x+3 (x+3)’ (x+3)? (x+3)?

and it follows that 4=3 and B=-8.

> Exercise 65

In the general case, the decomposition of a proper rational function P(x)/Q(x) in
partial fractions depends on the nature of the roots of the denominator Q(x) (see
Section 2.5 on the roots of the general polynomial).

(i) All the roots are real.
In this case Q(x) can be factorized as the product of real linear factors; if O has degree
n then

O(x)=alx—x)(x—x,) - (x—x,) (2.31)

where x, x,, ..., x, are the roots. If all the roots are different then P(x)/Q(x) can be
decomposed into the sum of n simple fractions, as in Examples 2.28 and 2.29:

P __4 D iy (2.32)
2 x_xn

Q(x)_x—x1 X—Xx

If some of the roots are equal then there are additional terms, as in Example 2.30,
with powers of the linear factor in the denominator. For example, if x, =x,=x; in

O(x) then

P(x c c c c c
E;: 1 22+ 33+ 4 4.4 Cn
Okx) x-—x (x—x)" (x=x)° x—x, X—x
(2.33)
ax’ +bx+c ¢y c,
— 3 + +"'+
(X—X]) X=Xy X=X,

(ii) Some of the roots are complex.

If complex numbers are allowed then the discussion of (i) above is applicable. If
complex numbers are disallowed then the denominator Q(x) can be factorized as the
product of linear factors, one for each real root, and one or more real quadratic factors,
one for each pair of complex conjugate roots (Section 8.2). The decomposition of the
rational function in partial fractions then contains, in addition to the terms discussed
in (i) above, one fraction for each quadratic factor, of the form

ax+b
- (2.34)
X"+ px+q



2.8 Solution of simultaneous equations
or if the same quadratic factor occurs m times,

a1x+b1 a2x+b2 a x+b
+ n m (2.35)

m

x2+px+q (x2+px+q)2 (x2+px+q)

For example (see Example 2.22c¢),

1 B 1 _ 1, 1-x
=32 +4x—-2 (x-D(x*—2x+2) x—-1 x?2_2x+42

2.8 Solution of simultaneous equations
Consider the pair of linear equations

1) x+y=3

2) x-y=1

Equation (1) defines y as one function of x
y=3-x

whereas equation (2) defines y as a second function of x
y=x—-1

Figure 2.14 shows that the graphs of these linear functions cross at the point
(x, ¥)=(2, 1); the two equations have the simultaneous solution x=2, y=1.

N

)4 : oo

Figure 2.14

In general, an algebraic equation in two variables x and y defines either variable as an
algebraic function of the other. For example, the equation

PEWY" +q@y"™ + -+ u()y + v(@) =0 (2.36)
defines one function y =f{(x). A second algebraic equation,

Py +q @™+ )y + () =0 (2.37)
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defines a second function y = g(x). The two equations have simultaneous solutions
for those values of x for which f{x) and g(x) are equal. Graphically, the simultaneous
real solutions are those points, if any, at which the graphs of y=f{(x) and y=g(x)
cross. For example, the two linear equations

apx+b,y=c,

(2.38)
ax+tby=c,
can be solved to give the solution
= b — by ’ y= 4 — %% (2.39)
aghy —a,b, agh —a,b,

We note that this solution exists only if the denominator (ab, —a,b,) is not zero.
Graphically, the equations (2.38) then represent two straight lines, and the solution is
the point at which the lines cross.

EXAMPLE 2.31 Solve

() x+ y=3
(2) 2x+3y=4

To solve for y, multiply equation (1) by 2:

(1) 2x+2y=6
(2) 2x+3y=4

and subtract (1”) from (2) to give y=-2. Substitution for y in (1) then gives x=5.
The lines therefore cross at point (x, y)=(5,-2)

> Exercises 66, 67

EXAMPLE 2.32 Solve

(1) x+ y=3
(2) 2x+2y=4

To solve, subtract twice (1) from (2):

(1) x+y=3
2) 0=-2

The second equation is not possible. The equations are said to be inconsistent and
there is no solution. This is an example for which the denominator (ab, —a,b,) in
equation (2.39) is zero and, graphically, it corresponds to parallel lines.

» Exercise 68
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EXAMPLE 2.33 Solve

(1) x+ y=3
(2) 2x+2y=6

In this case, doubling equation (1) gives equation (2) and there is effectively only
one independent equation; both equations represent the same line. The equations are
said to be linearly dependent and it is only possible to obtain a partial solution; both
equations give x =3 —y for all values of y. We will return to the general problem of
solving systems of linear equations in Chapters 17 and 20.

» Exercise 69

EXAMPLE 2.34 Three linear equations

1) x+ y+ z=3
(2) 2x+3y+4z=12
B) x— y=-2z=-5

To solve, first eliminate x from equations (2) and (3) by subtracting 2 X (1) from (2)
and (1) from (3):

(1) x+ y+ z=3
2" y+2z= 6
3) -2y-3z=-8

Now eliminate y from (3”) by adding 2 x (2") to (3"):

1) x+y+ z=3
29 y+2z=6
(37 z=4

The equations can now be solved in reverse order: (3”) is z=4,then (2") is y+8=6
sothat y=-2,and (1)is x—2+4=3 sothat x=1.

The method used in this example is a general systematic method for solving any
number of simultaneous linear equations. It is discussed further in Chapter 20.

» Exercise 70

EXAMPLE 2.35 Aline and an ellipse
(N 3x+4y = 4
() 22 +3xy+2)°=16

Equation (1) can be solved for y in terms of x and the result substituted in equation (2)
of the ellipse (see Section 19.5 on quadratic forms). Thus, from (1), y=1-3x/4, and
(2) becomes

x*—16=(x+4)(x-4)=0
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This hasroots x; =—4 and x, =4, with corresponding value ofy, y, =4 and y,=-2.
In this case the two solutions are the points at which the straight line crosses the
ellipse; (x,,y,)=(—4,4) and (x,,y,)=(4,-2), as in Figure 2.15.

Figure 2.15

» Exercises 71-73
2.9 Exercises
Section 2.1
1. Find the values of y=2—3x for:

(i) x=0 (i) x=2 (iii) x=-3 (iv) x=2/3
2. Find the values of y=2x>+3x—1 for:

(i) x=0 (ii) x=1 (iii) x=-1 (iv) x=-2/3
3. Given f(x)=x>—3x*+4x -3, find:

@ f05) (ii) f(0) (iii) /(-2) (iv) f(=2/3)

4. If f(x)=2x> +4x +3, what is:

@ f(a) i) /(")
5. If f(x) =x*—3x—4, what is:

() fla+3) @) fla*+1) G fe+ 1) (@) (P =3x-4)
6. If f(x)=2x—1 and g(x) =3x+ 1, express f(g) asa function of x.

Section 2.2
Make a table of (x, y) values and sketch a fully labelled graph of the quadratic:
7.y=x2—4x 8.y:—x2—x+2
Section 2.3
Factorize:
9. 6x2y2—2xy3—4y2 10. x> +6x+5 11. x> +x-6
12. X’ —8x+15 13. x*—4 14. 4x° -9

15. 2x>+x—6 16. x*—10x*+9



2.9 Exercises

Simplify if possible:
X x+2 xt-4 X2 +3x+2 xr-9
17. S . 19. 200 —— 21. -
3x" +2x x+4 x=2 x+2 X450 +6
2x% = 3x+1
22. —
x"=3x+2
Section 2.4
Find x as a function of y:
1 1 x
23. y=x-2 24. y=5(3x+1) 25. y=§(2—x) 26. y=17
gy o 2XF3 _x-1 2 X1
T2 Tt SRR

For y =f(x), (i) find x as a function of y, (ii) sketch graphs of y=f(x) and x ="y
30. y2:x2+1 31. y:(xz—l)2
32. The virial equation of state of a gas can be approximated at low pressure as

B
V. =RT|1+—

where p is the pressure, V. is the molar volume, T'is the temperature, R is the gas
constant, and B is the second virial coefficient. Express B as an explicit function of the
other variables.

33. Kohlrausch’s law for the molar conductivity A ofa strong electrolyte at low
concentration c is

A, =AY —Ke

where A?n is the molar conductivity at infinite dilution and X is a constant. Express c as
an explicit function of A
34. The Langmuir adsorption isotherm

__Kp
1+ Kp

gives the fractional coverage 0 of a surface by adsorbed gas at pressure p, where K is a
constant. Express p in terms of 6.

35. In Example 2.12 on the van der Waals equation, verify the explicit expressions given for
T'and p, and the cubic equation in V.

Section 2.5
Expand (write out in full):
2 3 3 3 X
36. Y, (n+1Dx" 37. Y™ 38 Y k(k+DxTF 390 Y nlx"
n=0 i=0 k=1 n=0

Find the equation and sketch the graph of the straight line that passes through the points:
40. (=2,-5)and (1,4)  41. (-1,6)and (3, -2)
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42. Explain how K and A?n in Kohlrausch’s law (Exercise 33),
0
A=A’ —KJe
can be obtained graphically from the results of measurements of A_ over a range of

concentration c.
43. The Debye equation

e —1 N 2
O CRV'N PO
e +2 Mg, | kT

relates the relative permittivity (dielectric constant) €, of a pure substance to the

dipole moment y and polarizability ¢ of the constituent molecules, where p is the
density at temperature 7, and M, N,,, k, and g, are constants. Explain how pand o can
be obtained graphically from the results of measurements of £ and p over a range of
temperatures.

Find the roots and sketch the graphs of the quadratic functions:

44, x*—3x+2 45. -2x2-3x+2  46. 3x*—3x—1 47. —x*+6x-9
48. 4% +4x+1 49, xP+x+2 50. -3x>+3x—1

2x% +x+1
51. If y:x27x find x as a function of y.

2x“+x-1

52. The acidity constant K, of a weak acid at concentration c is

where ais the degree of ionization. Express ¢ in terms of K, and ¢ (remember that o, K,
and c are positive quantities).

Given thatx — 1 is a factor of the cubic, (i) find the roots, (ii) sketch the graph:

53, > +4x°+x-6 54, x> —6x°+9x—4 55. x> =3x*+3x—1

56. Given that x*>— 1 isa factor of the quartic x50+ 5x2 + 5% — 6, (i) find the roots,
(ii) sketch the graph.

Section 2.6
Use algebraic division to reduce the rational function to proper form:
_ 3_ 2 _ 3 2 _
57. 2x—1 58. 3x"=2x"—x+4 59, X +2x°—5x—6
x+3 x+2 x+1
4_23 2_
60. 2x 3); +4x° -5x+6
x°=2x-2
Section 2.7
Express in terms of partial fractions:
1 - 2_
6, — L . x+2 63. x=2 ] 2x°=5x+7
(x - D(x +2) *(x+3) RN (- D(x+2)
X +2x-1

T (=D3(x+2)



2.9 Exercises 61

Section 2.8

Solve the simultaneous equations:

66. x+y=3,x—y=1 67. 3x—2y=1,2x+3y=2
68. 3x—2y=1,6x—4y=3 69. 3x—2y=1,6x—4y=2
70. x—2y+3z=3,2x—y—2z=8,3x+3y—z=1 71 2x—y=1,x*—xp+y*=1

72. 2x—y=2,x"—xyp+y*=1 73. 2x—y=3,x"—xyp+y’=1



3 Transcendental functions

3.1 Concepts

The mathematical description of physical phenomena often involves functions other
than the algebraic functions discussed in Chapter 2. The most important of these
transcendental functions are the trigonometric functions, discussed in Sections 3.2 to
3.5, and the exponential function and its inverse function, the logarithmic function,
discussed in Sections 3.6 to 3.8. Other functions are defined in terms of these
‘elementary functions’, and a brief description of the hyperbolic functions is given in
Section 3.9.

d(,1)
At-
(z,y) V=
r
t
o py o™
--—A A
<---le--s >
(i) circular motion: (ii) wave motion:
x(t) = rcost, y(t) =rsint oz, t) = Asin2n(z/)\ — vt)
x(t) ekz
2(0)
t
0
(iii) exponential growth: (iv) logarithmic spiral:
(t) = z(0) " Inr =0cotd; r = eloote
Figure 3.1

Some applications are illustrated in Figure 3.1. Three of these involve
trigonometric functions. Trigonometry as a distinct branch of mathematics has its
origins as a tool for the construction of astronomical tables. It is concerned with the
use of trigonometric functions for the solution of geometric problems involving



3.2 Trigonometric functions

triangles,' and is important in structural and architectural design, astronomy, and
navigation. The trigonometric functions are important in the physical sciences for the
description of periodic motion, including circular motion, as in figure 3.1(i), and
wave motion, Figure 3.1(ii). They are also essential for the description of systems with
periodic structure, as in the use of Bragg’s law, equation (1.2) in Chapter 1, for the
interpretation of the diffraction of X-rays from the surfaces of crystal lattices.

The exponential function e* has the unique and definitive property that the slope of
its graph at any point (its derivative, see Chapter 4) is equal to the value of the func-
tion at that point. This makes it particularly useful for the modeling of all types of first-
order rate processes, in which the rate of change (growth or decay) of a property is
proportional to the value of the property. Figure 3.1(iii) show exponential growth (with
k positive) which provides a model of, for example, population explosion, bacterial
growth in a culture, and a nuclear chain reaction. When k is negative, exponential decay
provides a model of first-order chemical reactions, radioactive decomposition of nuclei
and, more trivially, the popularity of fashions. In quantum theory, the function e is
the 1s orbital of the hydrogen atom if 7 is the distance of the electron from the nucleus.

The logarithmic function Inx is the inverse function of €. It is often used as an
alternative to the exponential, and is involved in the definition and representation of
fundamental physical concepts in thermodynamics, such as entropy and chemical
potential. The Arrhenius and Nernst equations, (1.3) and (1.4), provide an example of
the dual relation of the inverse functions. Another example is given in Figure 3.1(iv)
by alternative equations for the logarithmic spiral observed in natural phenomena, as
in the growth of shells of molluscs, flight behaviour of some birds and, on a larger
scale, the shape of hurricanes and some galaxies.

3.2 Trigonometric functions

Geometric definitions

The principal trigonometric functions of the angle 6, the internal angle at A of the right-
angle triangle in Figure 3.2, are the sine (sin), the cosine (cos), and the tangent (tan):

i C
sinf = opposite _ B_C 3.1)
hypotenuse AC
adjacent  AB hypotenuse opposite
cosezﬁzA_C (3.2)
ypotenuse A .
tan = m = BC = sin ¢ (3.3) adjacent
adjacent AB cos@ Figure 3.2

! The earliest ‘trigonometric tables’ were constructed in about 150 BC by the astronomer Hipparchus of Nicaea
(modern Iznik in Turkey), to whom we owe the 360° circle, and by Claudius Ptolemy of Alexandria (c. 100-178
AD) whose Syntaxis mathematica (Mathematical Synthesis), known as the Almagest, was called by the Arabs
al-magisti (the greatest) and whose tables were used by astronomers for over a thousand years. The tables in
the Hindu Siddhantas (about 400 AD) are essentially tabulations of the sine function. Arab mathematicians
(about 950 AD) added new tabulations and theorems. European trigonometry was developed by Johann Miiller
(Regiomontanus) of Konigsberg (1436-1476), and by Georg Joachim Rheticus (1514-1576) of Wittenburg, a
student of Copernicus, whose Opus palatinum de triangulis (The palatine work on triangles), 1596, focused for
the first time on the properties of the right-angled triangle. Frangois Viete (1540-1603) built on this work with
extensive new tables for all six common functions, new formulas, and the use of trigonometric functions for the
solution of algebraic equations. The word ‘trigonometry’ came into use in about 1600.
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Several derived functions are also defined, the most important being the secant (sec),
cosecant (cosec), and cotangent (cot):

1 cosf

secH = ! , cosecO= ,1 , cotf= (3.4)
6 0

cos sin tan@ sinf

EXAMPLE 3.1 For the angles in Figure 3.3,

sin9=i cosO:E tanG:i
5 5 3
cose00=g Sece:§ Cotezé
4 3 4
sinq)—é cosq)—i tanq)—é
5 5 4
cosec ¢ = > seco = > cotg = 4 Figure 3.3
3 T4 "3

» Exercise 1

One of the best known properties of the right-angled triangle is the theorem of
Pythagoras.”

AB’+BC*=AC’ (3.5)
This can be written as a trigonometric equation by dividing both sides by AC*:

AB?> BC?
_+ —_ —

=1
AC?  AC?

or
sin® O+ cos® =1 (3.6)

(a quantity like (sin 6)% the square of sin 6, is usually written as sin” ).

? Pythagoras (c. 580-c. 500 BC). Born on the island of Samos, he travelled widely and was one of the principal
importers of Egyptian and Babylonian mathematics and astronomy into the Greek world. He settled in Croton, in
Southern Italy, where he founded a religious and philosophical society with a strong mathematical basis; motto
‘all is number’. He is reputed to have coined the word ‘mathematics’; that which is learned. Attributions to him
of mathematical discoveries are traditional; Pythagoras’ theorem was known in the old Babylonian period, and
the existence of irrational numbers was possibly a discovery of the later Pythagoreans in about 400 BC. The
Pythagorean school introduced the systematic study of the principles of mathematics; number theory and geometry.

The general form of the theorem of Pythagoras is: ‘In a right-angled triangle, the area of the figure on the
hypotenuse is equal to the sum of the areas of the similar figures on the other two sides’ (Euclid, ‘The elements’,
Book VI, Proposition 31 in the Heath translation).
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EXAMPLE 3.2 For the triangle in Figure 3.3, 3*+4%=5" and

2 2 292
sin® 0+ cos’ 0 = i + é :uzézl
5 5 2 25

> Exercises 2

Units of angle

The ordinary unit of angle is the degree. Figure 3.4 shows the right angle (90°), the
angle on a line (180°) and the angle round a point (360°).

hgoo /1\1 80°
]
1

360°

<

Figure 3.4

The unit of angle that is always used in mathematical and
scientific applications is the radian (SI symbol rad), defined in
terms of the properties of the circle. Figure 3.5 shows a circle 4@ s
of radius r, and an arc of length s subtending the angle O at the

centre. The length of the arc is proportional to the size of the
angle; for example, doubling the angle 8 doubles the length s.
It follows that the ratio of s to the circumference of the circle

Figure 3.5
(2nr) is equal to the ratio of Oto the complete angle around the
centre (360°):
s __® (3.7)
2nr 360°
so that
o=2x2" (3.8)
r2n
The unit of angle, the radian, is defined by
lrad = 360 =57°18 (3.9)
T

(rad is the SI unit of angle; sometimes a superscript ¢ is used, so that 1°=1 rad).
In practice, the symbol for the unit is omitted, and an angle given without unit is
assumed to be in radians; for example
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90023, 180°=m,  360°=2m, sing:sin_’aO"

(angles are often quoted as multiples of ). The length of an arc of a circle is s =760
when 6is in radians.

EXAMPLE 3.3 Radians and degrees

(1) The angle 40° in units of the radian is

40° = 40° ><—27t = 2n =~ 0.7 rad
360° 9

(2) Theangle 0.5 rad in degrees is

0.5=0.5><360 =90 = 28.6°
2r i

(3) The length of the arc that subtends an angle of 8=2 rad at the centre of a
circle of radius =3 is

s=r0=3x2=6

» Exercises 3-5

Trigonometric functions for all angles

The geometric definition of the trigonometric functions in terms of ratios of the sides
of a right-angled triangle restricts the functions to values of angles in the range 0° to
90°, or

o

The definitions can be extended to all values of the angle by consideration of the
coordinates of a point on a circle, as shown in Figure 3.6.

@

(z,y)

S
8

111 v

Figure 3.6
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The trigonometric functions are defined for all points on the circle as

sin9=Z cosB:f tan@zX (3.10)
r r X

In the first quadrant, I, with angles 0 < 8< /2, the values of x and y are both positive
and

sin 6>0 cos 6>0 tan 6> 0

In the second quadrant however, with /2 < O<r, x is negative and y is positive. The
signs of the trigonometric functions in all four quadrants are given in Table 3.1.

Table 3.1 Signs of the trigonometric functions

Quadrant I 1I 111 v

Angles 0<6<m/2 n/2<0<n n<6<3n/2 3n/2<6<2n
0<0<90° 90° < 0< 180° 180° < 6<270° 270° < 0< 360°

sin 6 + + - -

cos 0 + - - +

tan 0 + - + -

EXAMPLE 3.4 By Table 3.2, sinw/3= V3/2, cosm/3=1/2, and tann/3 = /3. What
are the values of the sine, cosine, and tangent of 2r/3, 4n/3, and 57/3?

The angle 2r/3 is in the second quadrant, 4n/3 in the third, 57/3 in the fourth.
Therefore, by Figure 3.7,

27/3 /3
+ ik
7 —X— 0
47/3 5m/3
Figure 3.7

sin 2m/3 =++/3/2 cos2m/3=—1/2  tan2n/3=—/3
sindn/3=—+/3/2  cos4n/3=-1/2  tan4n/3=+3

sinsn/3=-+/3/2  coss5n/3=+1/2  tan5n/3=—3

> Exercises 6
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Special values

The values for the angles on the boundaries of the four quadrants, and for a few other
angles, are listed in Table 3.2.

Table 3.2 Some special values

0 0° 90° 180° 270° 360° 30° 60° 45°
0/rad 0 /2 T 3n/2 21 /6 /3 /4
sin 6 0 1 0 -1 0 1/2 V3/2 1/2
cos 6 1 0 -1 0 1 V3/2 1/2 1/\2
tan 0 0 © 0 —0 0 1/\3 V3 1

EXAMPLE 3.5 Demonstrate that sint/2=1 and cos /2 =0.

By Figure 3.8,

sin 8=a/c, cos 0=b/c c “
As the angle 8 increases to 90°, the magnitude of side b approaches [
zero whilst that of side a aproach the value of ¢. Therefore b

. Figure 3.8
sin@—c/c=1 and cos0—0/c=0 as O-—n/2

> Exercises 7

EXAMPLE 3.6 Verify the values of the trigonometric functions for 8=nr/6 in
Table 3.2.

Draw an equilateral triangle with sides of length 2 and bisect the triangle as in
Figure 3.9. Then, by Pythagoras, =22 —12 =+/3,and sinn/6=1/2, cosn/6=+/3/2,
tan /6= 1//3

Figure 3.9
> Exercise 8
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Negative angles

Each point on the circle can be reached by either anti-clockwise rotation or by
clockwise rotation. An angle is defined to have positive value for an anti-clockwise
rotation and negative for a clockwise rotation.

Figure 3.10

The point P in Figure 3.10, corresponding to the negative angle —6, can be reached
by anti-clockwise rotation through angle (2r— 6), and the two angles have the same
trigonometric values:
sin(—6) = sin(2w — 6) =—sin O
cos(—0) =cos(2n — 0) =+cos 6 (3.11)
tan(—6) =tan(2n — 6) =—tan 6
Further angles

The range of allowed values of the angle can be extended further by allowing one or
more complete rotations around the centre. Each complete rotation adds or subtracts
2m, and the angles 6+ 2nn, for all values of the integer n=0, 1,2, 3 ..., have the same
trigonometric values:

sin(@% 2xnn) =sin 6, cos(0x2nn)=cos 6 (3.12)

In addition, the tangent repeats every half rotation,
tan(@xntn) =tan 6 (3.13)
We see that, whereas every angle corresponds to a point on the circle, each point cor-

responds to an infinite number of angles. The graphs of sine, cosine, and tangent are
shown in Figure 3.11.%

? The graph of the sine function was first drawn in 1635 by Gilles Personne de Roberval (1602-1675).
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Figure 3.11
» Exercises 9, 10
Periodic functions
A function f(x) with the property
Sxta)=1(x) (3.14)

is called a periodic function of x with period a; the value of the function is unchanged
when x is replaced by x+a or x—a. The sine and cosine functions are periodic
functions with period 27, the tangent is periodic with period nt. The sine and cosine
curves in Figure 3.11 are called harmonic waves, and the functions form the basis for
the description of all forms of waves and other oscillatory motions.



3.2 Trigonometric functions

EXAMPLE 3.7 A harmonic wave travelling in the positive x direction (a plane
wave) is described by the wave function

#(x,1)= Asin 211;{%— vtj

(or by the equivalent cosine function), and is shown in Figure 3.12 at time #=0.

¢(x,0)
Ab--

A =wavelength

Figure 3.12

The shortest distance between equivalent points on the curve (the period with respect
to changes in x) is the wavelength A. The speed of propagation of the wave is v=A71v,
where v is the frequency, or number of oscillations per unit time, and 7=1/v is the
(time) period, the time of a complete oscillation. The number A is the amplitude of
the wave.

> Exercises 11

EXAMPLE 3.8 In classical mechanics, Newton’s second law of motion states that
the force acting on a body is equal to the mass of the body times its acceleration:

f=ma

For the simple harmonic oscillator (see Example 2.20 and Section 12.5), the force is
f=—kx and the acceleration is the second derivative of distance x with respect to time
(see Chapter 4 on differentiation):

2
_h:mi;
dt
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This is one of the simplest second-order differential equations (Chapter 12) and a
solution is

x(f)=A cos ot

where A4, the amplitude, is the maximum displacement from equilibrium and
®=+lk/m is called the angular frequency. The displacement x(¢) is periodic with
respect to time, with period

where v = 2L L3 is the frequency of vibration. A plot of displacement against time
n\m

is very similar to that in Figure 3.12 (see Figure 12.3).

3.3 Inverse trigonometric functions

If y=sinx thenxisthe angle whose sine is y, and is given by the inverse sine function
]
sin” y:

if y=sinx then x=sin""y (3.15)
Because of the possible confusion between the notation for the inverse sine,
sin”! y, and the inverse of the sine, (sin )™, an alternative notation for the inverse
trigonometric functions is often used:

arcsin y = sin”! V, arccos y = cos ™! ¥, arctany = tan "' y (3.16)

The inverse functions are multi-valued functions; for example, as indicated in
Figure 3.13, many angles have the same sine:

sin x =sin (T —x) =sin (x + 2nm) (3.17)
Yy

+1r
e e S ---- y=sinx

i | i

I | 1

i | i
Ol z m—=x 2m +x ‘
1l

Figure 3.13



3.4 Trigonometric relations

To overcome this ambiguity, a principal value has been defined for each inverse
function:

x=sin"" y — g <x< g (quadrants I and IV)

x=cos 'y 0<x<n (quadrants I and IT) (3.18)
1 T T

x=tan  y —3 <x< 5 (quadrants I and IV)

They are the values computed, for example, on a pocket calculator or other computer.

EXAMPLE 3.9

T T 13w 3
cos—=cos| —= |=cos| — [=+-=—
6 6 6 2

Angle 7/6 lies in the first quadrant and is the principal value of the inverse function:

cos”! [QJ I

6

> Exercises 12,13

3.4 Trigonometric relations

The sine and cosine rules

The angles and sides of a triangle (Figure 3.14) are related by two rules:

sine rule:
smA:smB:smC (3.19)
a b c
cosine rule:
242, 2
a“=b"+c¢"—2bccos A (3.20)

Proofs

For the sine rule the proof is, using Figure 3.15,

T b—x

. h . h
simA=—, sinC=—
c a Figure 3.15
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so that A=csin A =a sin C. Then

sinA sinC

a C

Similarly for the third angle and side.
For the cosine rule, from Figure 3.15 and Pythagoras’ theorem,
A=l +(b-x=h+b*+x*=2bx, F=h*+x*

and the rule follows since x=c cos A.

EXAMPLE 3.10 Given the lengths a=2, ¢=3, and the angle B=m/3 of the triangle
in Figure 3.14, find the third side and the other angles.

Given two sides and the included angle, we use the cosine rule to find b:
B =a*+c*—2ac cosB=4+9—12 cos /3

and cos m/3 =1/2. Therefore b>’=4+9—-6=7 and b=+/7.
To find the other two angles we use the cosine rule for one; for example,

a’>=b>+c*>=2bc cos A
so that
2
J7

cos A=(b>+c*—a?)/2bc=2/\7  and A=cos_l( Jz40.89°

Then C=180°—-60°—40.89°=79.11°.

> Exercises 14-17

Compound-angle identities

The sines and cosines of the sum and difference of two angles are

sin(x +y)=sinx cos y+cosx siny

. . . (3.21)
sin(x — y) =sin x cos y —cos x sin y

cos(x+y)=cosxcosy—sinxsiny

L (3.22)
cos(x—y)=cosxcosy+sinxsiny
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Also, putting x=y,

sin 2x =2 sin x cos x (3.23)
cos 2x = cos’ x —sin’x
o ) (3.24)
=1-2sin"x=2cos"x—1
where the alternative expressions for cos 2x are obtained from sin®x + cos®x=1.

EXAMPLE 3.11 Express sin 50 and sin 6 in terms of the sines and cosines of 20
and 36.

From equations (3.21),

sin 50 =sin(360+ 26) = sin 36 cos 20+ cos 30sin 20
sin 8= sin(30 — 26) = sin 360 cos 26— cos 360 sin 20

> Exercises 18-21

EXAMPLE 3.12 Express sin 36 cos 26 in terms of sin 6 and sin 56.
From equations (3.21) it follows that

sinxcos y = %[sin(x + ) +sin(x — y)] (3.25)
and, therefore,

sin30cos260 = l [sin 56 + sin 0}
2

> Exercises 22

EXAMPLE 3.13 Express sin 360sin 20 and cos 36cos 26 in terms of cos 6 and cos 56.
From equations (3.22) it follows that

L 1
sinxsiny = E[cos(x —y)—cos(x+ y)}
(3.26)
1
COSXCosy = E[cos(x —y)+cos(x+ y)]

and, therefore,

sin 30sin 26 = l|:cos 0— 00559:|
2

cos30cos260 = l [cos 0+ cos 59]
2

» Exercises 23




76

Chapter 3 Transcendental functions

EXAMPLE 3.14 Express sin(gi 6] and cos(gi 9) in terms of sin 6 and cos 6.

From equations (3.21),
sin Ei 0= sinzcosa + coszsine
2 2 2
Figure 3.11 shows that sing =1 and cosg =0 (see also Example 3.5). Therefore
sin [E + GJ =cos0
2
Similarly, using equations (3.22),
cos Ei 0= cos£c059$sinzsin9 =Fsinf
2 2 2

> Exercises 24

The expressions for the sum and difference of angles are important for the calculation
of integrals (see Chapter 6) and for the description of the combination (interference)
of waves.

EXAMPLE 3.15 The harmonic wave travelling in the x-direction described in
Example 3.7 and shown in Figure 3.12 has wave function

. x
o, = As1n2n[z— th
The same wave travelling in the opposite direction is (replacing ¢ by —f)
¢ = Asin 21{1 + vtj
A

As the waves overlap they interfere to give a new wave whose wave function is a linear
combination of the form

v=a¢ +b¢p = aAsin2n[%—vt)+bAsin2n[%+ vt)



3.5 Polar coordinates

Making use of the expressions (3.21) for the sines of the sum and difference of angles
V= a{A sinz%cos%wt - Acosz%sin%wt}
+ b{A sin 27tTxcos 2nve+ A cosznszin 21‘5Vti|
=(a+b)A4 sinznTxcos 2nvt—(a—b)A cosz%sin%wt

An important special case is obtained for a=b=1:

v=24 sinzn—xcos 2nvt

This is called a standing wave. Its shape is given by the x-dependent factor

.2
2 Asin = , as shown in Figure 3.16.

A
(4 <€ ---------- > .
stationary node
2A -7 S
’ AY T
/ \ ]
/ Ay
1 A} I
1 \ |
1 \
’ \ |
3 \ | I‘
[Pl ki \ i ,
Y 1
\ ’ \ 1 /
\ ’ \ | /
\ ’ M ’
\ ’ N
N / U
94 b-ds '
Figure 3.16

There is constructive interference; the amplitude has doubled but there has been no
change in wavelength. The motion in time is give by the periodic function cos 2nvt.
The wave oscillates with frequency v, but the positions of the nodes (zeros) of the
wave do not move; that is, the wave is stationary in space.

» Exercises 25,26

3.5 Polar coordinates

The position of a point in a plane can be specified by its coordinates with respect to a
given frame of reference (see Section 2.2), as shown in Figure 3.17.
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10 T

Figure 3.17

The figure shows that the position of the point P can be specified not only by its
cartesian coordinates (x, y), but also by the pair of numbers (7, 6), the distance » of
the point from the origin and the angle 6 which gives the orientation of the line OP
with respect to the positive x-direction (with the usual convention about sign). The
numbers 7 and @ are called the polar coordinates of the point in the plane. Whereas
the cartesian coordinates can take any real positive and negative values, r is necessarily
positive, with values »=0 to o, and the angle 6, has values 6=0 to 2x.
The two sets of coordinates are related by cos @=x/r and sin 6=y/r, so that

x=rcosf y=rsinf (3.27)

and the conversion from polar to cartesian coordinates is straightforward.

EXAMPLE 3.16 Find the cartesian coordinates of a point whose polar coordinates
are r=2 and 6=n/6.

Making use of the values displayed in Table 3.2,
T
x=rcosf= 2c05g= V3

y:rsin0=2sin%=1

> Exercises 27,28

The polar coordinates can be obtained from the pair of equations

Y

rr=x2+y? tan@ ==
x

However, because tan 6 is a periodic function, period =, the angle 0 is not uniquely
determined by the inverse tangent tan”'( y/x), and some care needs to be taken in

* In his Methodus fluxionum (Method of fluxions), written in about 1671, Newton suggested eight new types of
coordinate system. The polar coordinates were his ‘seventh manner; for spirals’.



3.5 Polar coordinates

converting from cartesian coordinates to polar coordinates. The correct value of 0is
determined by the quadrant in which the point (x, ) lies. When x> 0, the point lies
in the first or fourth quadrant (see Figure 3.6), and the angle is the principal value,
6=tan"'( y/x). When x <0, the point lies in the second or third quadrant, and the
angle is 0= [principal value + rt]. Therefore,

r=+ x2+y2, 9:tan1(

0=tan"! [

EXAMPLE 3.17 Find the polar coordinates (r, 6) of the point whose cartesian
coordinates are (x,y)=(3, 4).

=<

j when x >0
(3.28)

% <

)Ht when x <0

We have

r2=x2+y2=25, r=>5

tanO=y/x=4/3, 0=tan"'(4/3) = 53°

The point (3, 4) lies in the first quadrant, and the angle is the principal value of the
inverse tangent.

> Exercises 29

EXAMPLE 3.18 Find the polar coordinates (r, 6) of the point whose cartesian
coordinates are (x,y)=(-1,2).

We have

r2=x2+y2=5, r=+\/§
tanf=2 =2, 6=tan"'(-2)+ 1
x
Use of the inverse tangent facility of a pocket calculator gives the principal value,

tan~'(=2) = —63°. But the point (1, 2) lies in the second quadrant, where 90° < 6
< 180°, and the correct angle is

tan”' (-2)+m~—63°+180°=117°
with the same tangent value.

» Exercises 30

» Exercise 31
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3.6 The exponential function

An exponential function has the form
fx)=a (3.29)

in which the number a is the base of the function and the variable x is the exponent.
The best known example is the function 10" which, when x is an integer, is used for
the representation of numbers in the decimal system. The exponential function that
occurs in statistics and in the physical sciences, the exponential function, is

exp(x)=e”* (3.30)
in which the base e is the Euler number (see Section 1.4).
> Exercise 32

The function is defined by the infinite series (see Chapter 7)°

© xn X 2 3 4
X _ AT BT T SIS AT
=) o=l AETRETRT (3.31)

The value of the exponential function can be computed from the series to any desired
accuracy, although the number of terms required increases rapidly as |x| increases
(see Example 1.10 for x=1).

EXAMPLE 3.19 Calculate exp(—2x?) to 8 significant figures for x=0.1.

The value of the exponential can be obtained directly by substituting (-0.02) for x in
(3.31). Alternatively,

. (-2x7) N (-2x7)? . (-2x°)’ . (-2x%)* . (-2x°)°

2y
exp(=2x) =1+ 2! 3 4 51

4.

=1—2x2+2x4—£x6+2x8——x10+---
3 3 15

Substituting for x = 0.1, and holding 2 significant figures more than the required 8 for
intermediate values,

exp(=0.02) = 1 —0.02 +0.000 2 — 0.000 001 333 3 +0.000 000 006 7
—03x107104...

> In his influential textbook Introductio in analysin infinitorum of 1748, Euler defined the exponential and
logarithmic functions in terms of infinite series, and showed them to be inverse functions. In this book Euler laid
the foundation for the branch of mathematics called analysis, the study of infinite processes, as in infinite series
and in the calculus.



3.6 The exponential function

The terms are decreasing rapidly in magnitude, and the first five are sufficient
(compare Example 1.10):

exp(—0.02) = 0.980 198 67

» Exercises 33, 34

(€]

Figure 3.18

The graphs of ™ and its reciprocal ¢ are shown in Figure 3.18. The graphs of all the
exponential functions a™ are very similar, with properties (for all a > 0)

=1, a*—>was x—>mo, a*—=0 as x——wo (3.32)

It will be seen in Chapter 4 that the unique property of e” is that the slope of its graph
at any point is equal to the value of the function at that point:

de*
=e* 3.33
poial (3.33)

The exponential function occurs in nearly all branches of applied mathematics,
including statistics, kinetics, electromagnetic theory, quantum mechanics, and statis-
tical mechanics.

» Exercises 35

EXAMPLE 3.20 Exponential growth and decay

Exponential growth arises when the rate of growth of a system at any time is
proportional to the size of the system at that time. If x(¢) is the size at time ¢ then
(see Chapter 4) the rate of change of x is

dx
— =+fx(t
7 (?)
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with the + sign for growth and the —sign for decay. The proportionality factor £ is
called the rate constant. The solution of the differential equation is

x(t)= xoeik’
where x, is the size at time #=0. As an example, consider a system whose size x is

doubled after every time interval 7. Starting with size x =X, the size after time 7 is 2x,
after time 27 it is 4x,, after time 37 itis 8x,, and so on. After time ¢,

_At/t
x=2""x,
Equating this with the solution of the differential equation shows that the rate

constant k is inversely proportional to the time interval 7: k= (In2)/7, where In2 is
the natural logarithm of the number 2 (see Section 3.7).

EXAMPLE 3.21 Atomic orbitals
The 1s orbital for an electron in the ground state of the hydrogen atom is
y=e

where r is the distance of the electron from the nucleus. All the orbitals for the
hydrogen atom have the form

y=f(x,y,2)e"

where (x, y, z) are the cartesian coordinates of the electron relative to the nucleus at
the origin, and «a is a constant. The function f'(x, y, z) is a polynomial in x, y, and z,
and determines the shape of the orbital; for example, f'=z gives a p_orbital.

EXAMPLE 3.22 The normal distribution

The normal or Gaussian distribution in statistics is described by the probability
density function

2
1 1 x—u
X)=—"F——=6€EXp| ——
p(x) oo P 2( . ]

where p is the mean and o is the standard deviation of the distribution (see Section
21.8). The probability function forms the basis for the statistical analysis of a wide
range of phenomena; for example, error analysis of the results of experiments in the
physical sciences, sample analysis in population studies, sample analysis for quality
control in the manufacturing industry.

» Exercise 36



3.7 The logarithmic function

3.7 The logarithmic function

The logarithmic function® is the inverse function of the exponential:

if y=a" then x=log y (3.34)

and log, y is called the logarithm to base a of y. The most important logarithmic
functions are the ordinary logarithm, to base 10,

y=10%, x=log,y=1lgy (3.35)

and the natural logarithm (sometimes called the Napierian logarithm), to base e,

y=e', x=log,y=Iny (3.36)

The ordinary logarithm log,  is sometimes given the symbol lg. The natural logarithm
log, is nearly always given the symbol In.
It follows from equations (3.34) to (3.36) that

y=log, a’=log,, 10" =Ine” (3.37)

EXAMPLE 3.23
log,2°=3,  log,10°=3,  Igl07?=-2,
log, =3, Ine'?=-1/2, log, aozloga 1=0

» Exercises 37

We note that the logarithm of 1 to any base is zero.
The graph of Inx and of its inverse function e* are shown in Figure 3.19.”

Figure 3.19

% John Napier (1550-1617), Scottish baron and amateur mathematician, published his invention of what
he called logarithms in the Mirifici logarithmorum canonis descriptio (A description of the wonderful canon
of logarithms) in 1614. Napier’s logarithms were based on a logarithm of 10" =0. The first table of common
logarithms, with log 1 =0 and log 10=1, was published, after a famous consultation with Napier, by Henry
Briggs (1561-1630), professor of geometry at Oxford, in the Arithmetica logarithmica in 1624. Logarithms greatly
simplified computations involving multiplication and division.

7 The graph of a log function was first drawn in 1646 by Evangelista Torricelli (1608-1647).
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The graphs of all the logarithmic functions are similar, with properties

log1=0, logx — +o0 as x — oo, logx —>-wasx—0 (3.38)
We note that (real) log x is not defined for negative values of x.

The combination properties of logarithms are the properties of the indices
(exponents) of the corresponding exponentials; for the natural logarithm:

Inx+Iny=Inxy (3.39)
X

Inx—Iny=In— (3.40)
y

Inx"=nlnx (3.41)

EXAMPLE 3.24 Addition of logarithms. To prove equation (3.39),

let x=¢’ and y=e’, sothat xy=e*"?

Then, by definition (3.36)
Inx=a, Iny=b, Inxy=a+b

Therefore Inx+Iny=Inxy.

EXAMPLE 3.25 Combinations of logarithms.

In2+In4=In(2x4)=In8 In30=In(2x3%x5)=In2+In3+In5
ln6—1n3=lng=ln2 In2°=3In2=In2+In2+In2

1 1 1
lnzzln2 =—In2 lnzzlnl—ln2:0—1n2:—ln2
Ln27=n@27)% = 1n3 —2In5=1In57 = In—=
3 25

> Exercises 38

EXAMPLE 3.26 Simplify the expression In(1 — ) +In(1+x) " =In(1-x).

From the rule Inx"=nlnx, it follows that In (1 +x)"' =—=In (1 +x). Then



3.7 The logarithmic function

In(1-x*)+In(1+x) ' —=In(1-x)=In(1-x*) - In(1+ x)— In(1- x)

o (1-x?) =ln[1—x2J
(I+x)(1-x) 1-x2

=Inl=0

> Exercises 39

EXAMPLE 3.27 What not to do.

A surprisingly common error is to put
In(x+y)=Inx+Iny
This is not in general true. For example,
In(1+2)=1In3 but Inl+In2=In2 (In1=0)

The only case for which In(x+y)=Inx+Iny is when x+y=xy; that is, when
x=y/(y=1.

Before the invention of the microchip and of the pocket calculator in the early 1970’s,
the ordinary logarithm was used mainly as an aid to long multiplication and division;
for example, the multiplication of numbers can be replaced by the addition of their
logarithms. There are now only a few uses of log, , in the physical sciences; for example
in the definitions of pH as a measure of hydrogen-ion concentration, and of pK where
Kis an equilibrium constant.

EXAMPLE 3.28 pH as a measure of hydrogen-ion concentration

The pH of an aqueous solution is defined as
pH =—log, [H']

where [H'] is the ‘hydrogen-ion concentration’ in units of mol dm™ (moles per litre).
Then

[H]=10""mol dm™

For example, a pH of 7 (neutral) corresponds to [H] =107 mol dm™.
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The pH is an example of the use of the logarithm as a scale of measure. Other
examples of logarithmic scales are the Richter scale for the ‘strength of earthquake’,
the bel scale of loudness, and the scale of star magnitudes.

> Exercises 40-42

Conversion factors

The logarithm occurs in a number of expressions for physical properties and
processes, and the ordinary logarithm is still sometimes found, instead of the natural
logarithm, in the scientific literature and in textbooks. In general, the conversion
factor from one base, g, to another, b, is given by

log, x=log, a xlog_ x (3.42)
Thus, if x=a”, then
log x=y
log, x=log, a” =ylog, a=(log, x) % (log, a)
The conversion factors between ordinary and natural logarithms are therefore
lgx=log,,x=log,,eXxlog, x~0.43429448 x log, x

Inx=log,x=log, 10 xlog,,x=2.30258093 X log, , x

3.8 Values of exponential and logarithmic functions

Table 3.3 shows values of Inx,xInx, e*,and ™ for a wide range of values of x.

Table 3.3
x Inx xInx e* e
—o0 0 1 1
slowly
107° -13.8 —0.00001 1.000001 0.9999990
107 -6.9 —0.007 1.001 0.9990
1 0 0 2.7 0.37
10 23 23 2% 10* 5x107°
102 46 460 3x10% 4x 1074
10° 6.9 6908 : :
slowly fast fast

0 0 0 0 0




3.9 Hyperbolic functions
The following conclusions can be drawn from the table.
(a) Inxvaries slowly compared to x. In fact it varies more slowly than any power of x:

asx — 0, Inx — —o0 but X*lnx—0 (3.43)

asx — oo, Inx — but x“lnx—0 (3.44)

for any positive value of a, however small.
(b) e” varies rapidly compared with x. In fact it varies more rapidly than any power of x:

as x — oo, e’ — o and x %" — o (3.45)

asx — oo, e’ >0 and xe™ =0 (3.46)

for any positive value of a, however large.

EXAMPLE 3.29 Plotsof xe* and x 'e".

Figure 3.20 shows that whereas ¢ decreases monotonically with increasing
value of x, the function xe™ first increases and passes through a maximum before the
exponential decay takes over. This is a characteristic behaviour of atomic orbitals. A
1s orbital has the form e, where r is the distance from the nucleus, but all other
orbitals behave with distance like 7'e™, where /is a positive integer.

Figure 3.20 Figure 3.21

> Exercises 43

3.9 Hyperbolic functions

Hyperbolic functions have their origin in geometry in the description of the properties
of the hyperbola. The properties of the functions are readily derived from the properties
of the other transcendental functions described in this chapter, and only a brief
discussion is presented here.
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The hyperbolic cosine and sine are defined in terms of the exponential function as
1 x —Xx : 1 X —Xx
coshxzz[e’ +e ), s1nhx=5[e —e ) (3.47)

(read as ‘cosh’ and ‘shine’). Their graphs are shown in Figure 3.22.

coshx sinh x

Figure 3.22

Both the notation and the properties of the hyperbolic functions parallel those of
the trigonometric (circular) functions; for example,
cosh? x —sinh? x = 1
sinh(x £ ) = sinh x cosh y = cosh x sinh y (3.48)
cosh(x £ y) = cosh x cosh y = sinh x sinh y
The functions are called ‘hyperbolic’ because, if x=a cosh¢ and y=a sinh ¢ are the
coordinates of a point, where ¢ is a parameter, then by the first equation (3.48),

2 2 2
X =y‘=a

and this is the equation of a hyperbola.

The inverse hyperbolic functions

The inverse hyperbolic functions are defined in the same way as the inverse
trigonometric functions; for example, if x=cosh y then y=cosh™ x. These functions
can be expressed in terms of the logarithmic function:

cosh_llen{xi\/xz—l} (x=1)
sinh ™ x = ln{x+\/x2 +1} (3.49)

tanh™" x = L1n| 1FX (x1<1)
2

1-x



3.10 Exercises

The relation for cosh™ x shows that there exist two values of the function for each
value of x (> 1). These two values differ only in sign, and the positive value is defined
as the principal value.

EXAMPLE 3.30 To show that cosh™ x = ln[x ++/x2 - 1}.

If x=coshy then, because cosh®y—sinh? y=1, it follows that sinh y = ++x* -1 and

ln{xi e 1} = ln[coshy+ sinhy:l =Ine”

from the definitions (3.47). The result follows since Ine’ =y = cosh™'x.

3.10 Exercises

Section 3.2

1.

10.
11.

In Figure 3.23, the right-angled triangle ABC has sides =12 and B
b= 5. Find c and the sin, cos, tan, cosec, sec and cot of the internal
angles A and B. c a
. For the triangle in Exercise 1, find (i) sin® A + cos® A, (ii) sin® B + cos’ B.
. Express the following angles in radians: AT,

() 5° (i) 87° (i) 120°  (iv) 260°  (v) 540°
(vi) 720° Figure 3.23

. Express the following angles in degrees:

(i) =/10 (ii) m/4 (iii) m/6 (iv) =/3 (v) 3n/8 (vi) 7n/8

. Foracircle of radius »=4, find

(i) the angle subtended at the centre of the circle by arc of length 6,

(ii) the length of arc that subtends angle /10 at the centre of the circle,
(iii) the length of arc that subtends angle nt/2 at the centre of the circle,
(iv) the circumference of the circle.

. Use Table 3.2 to find the sine, cosine and tangent of (i) 37/4, (ii) 57/4, (iii) 7r/4.
. By considering the limit 6 — 0 of an internal angle of a right-angled triangle, show that

(i) sin0=0 (ii) cos0=1

. Use the properties of the right-angled isosceles triangle to verify the values of the

trigonometric functions for 0=n/4 in Table 3.2.

. Sketch diagrams to show that

(i) sin(r—0)=sin0 (ii) cos(m— 6)=—cos 0O (iii) sin(w+ 6) =—sin @
(iv) cos(m+ 6)=—cos O (v) sin(r/2 - 0)=cos O (vi) cos(m/2—6)=sinO
Find the period and sketch the graph (-t <x <2mw) of (i) sin 2x, (ii) cos 3x.
Sketch the graph of the harmonic wave ¢(x, #) =sin 2n(x —¢) as a function of

x (-1 <x<2) for values of time t, (i) 1=0, (ii) = 1/4, (iii) r=1/2.
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Section 3.3

12.

13.

Find the principal values of

@ sin'(3) G sin'()  GiD) cos(}) (@) cos(-)

The Bragg equation for the reflection of radiation of wavelength A from the planes of a
crystal is nA=2d sin @ where d is the separation of the planes, 61is the angle of incidence

of the radiation, and # is an integer. Calculate the angles 6 at which X-rays of wavelength
1.5x 107" m are reflected by planes separated by 3.0 x 10™'"m

Section 3.4

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

Given the side a=1 and angles A=n/4 and B=r/3
of a triangle ABC, Figure 3.24, find the third angle and
the other two sides.

Given the sides a=2, b=2.5 and ¢=3 ofa triangle
ABGC, find the angles.

Given the sides @ =3, b=4, and included angle Figure 3.24

C=mn/4 of triangle ABC, find the third side and the

other two angles.

Given the sides a = \/5 ,b=3,and included angle C= nt/4 of the triangle ABC, find the
third side and the other two angles.

Express in terms of in terms of the sines and cosines of 20 and 56

(i) sin76, (ii) sin 36, (iii) cos 76, (iv) cos 36.

Express (i) sin 36 in terms of sin 6, (ii) cos 30 in terms of cos 6.

Express cos 4x in terms of

(i) sin2x and cos 2x, (ii) sin2x only, (iii) cos 2x only, (iv) sinx only,
(v) cosxonly.

Given sin 10°=0.1736, sin 30° = 1/2, sin 50° =0.7660, find cos 20° (without using a
calculator).

Express in terms of the sines of 8x and 2x: (i) sin 5x cos 3x, (ii) cos 5x sin 3x.

Express in terms of the cosines of 8x and 2x: (i) sin 5x sin 3x, (ii) cos 5x cos 3x.
Express (i) sin(n+ 6) and (ii) cos(n* 6) in terms of sin 6 and cos 6.

The function y(x, #) = sin mx cos 2n¢ represents a standing wave. Find the values of time ¢
for which y has (i) maximum amplitude, (ii) zero amplitude. (iii) Sketch the wave
function between x=0 and x=3 at (a) =0, (b) r=1/8.

The function

2nx 2nx
X)=asin——+bcos—
¢(x) 2 )

represents the superposition of two harmonic waves with the same wavelength A. Show
that ¢ is (i) also harmonic with the same wavelength, and (ii) can be written as

#(x) = Asin (Zi{x + aJ

where A=+/a® + b and tan a=b/a.

Section 3.5

27.

Find the cartesian coordinates of the points whose polar coordinates are
(i) =3, 6=n/3, (i) »=3, 6=5n/3.
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28. Find the cartesian coordinates of the points whose polar coordinates are
(i) r=3,0=2n/3, (i) r=3, 6=4n/3.

29. Find the polar coordinates of the points whose cartesian coordinates are
M (,2), (ii) (3,-2).

30. Find the polar coordinates of the points whose cartesian coordinates are
@ (-3,2), (ii) (-3,-2).

31. A solution of the equation of motion for the harmonic oscillator is given in Example 3.8
as x(f) = A cos wt. Show that x(¢) can be interpreted as the x-coordinate of a point
moving with constant angular speed @in a circle in the xy-plane, with centre at the origin
and radius 4.

Section 3.6

32. Simplify
(i) &% (i) e (iii) e (iv) €/ W) &/

33. (i) Write down the expansion of ¢ in powers of x to terms in x°.

(ii) Use the expansion to calculate an approximate value of ¢™'. Determine how many
significant figures of this value are correct, and quote your answer to this number of figures.

34. (i) Write down the expansion of e “in powers of x to terms in x'°.

Use the expansion to calculate an approximate value of e*  that is correct to 12
significant figures for the following values of x, in each case giving the smallest number of
terms required: (ii) 1078, (iii) 1072, (iv) 107>, (v) 107, (vi) 107°.

35. Sketch the graphs of ™ and ¢ ** for values —1.5<x<1.5.

36. For a system composed of N identical molecules, the Boltzmann distribution

N _ e lkT

voe
gives the average fraction of molecules in the molecular state i with energy &..
(i) Show that the ratio n,/ n; of the populations of states i and j depends only on the
difference in energy of the two states. (ii) What is the ratio for two states with the same
energy (degenerate states)?

Section 3.7

37. Simplify:
(i) log,,100 (ii) log, 16 (iii) lne™ (iv) In & (v) In g (@ vbrro)
(vi) Ine™

38. Express the following as the log of a single number:
(i) In2+1In3 (ii) In2—1In3 (iii) 5In2 (iv) In3+In4-1n6

39. Simplify:

() InxX*—=Inx (i) m@3=3H+Inx? (i) InG* -3 +2Inx " =In (x> -3)
(iv) Inée* (v)lnex2+3—lne3
40. The barometric formula
P=n, o~ Meh/RT
gives the pressure of a gas of molar mass M at altitude /, when p,, is the pressure at sea
level. Express 4 in terms of the other variables.
41. The chemical potential of a gas at pressure p and temperature 7'is

-y I
u=u"+RTIn 5

p
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where f'=yp is the fugacity and y is the fugacity coefficient. Express p as an explicit
function of the other variables.
42. Ina first-order decomposition reaction, A — products, the amount of substance A at
time 7 is
x(£) = x(0)e™
where x(0) is the initial amount of A, and £ is the rate constant. The time taken for the
amount of A to fall to half of its initial value is called the half-life, 7,

f the reaction.
1/ ©
Find the half-life for rate constants: (i) k=3 s, (ii) k=107 s™".

Section 3.8

43. Asin Example 3.30, sketch (i) 2, e, X, (i) x 72, &, x 2



4 Differentiation

4.1 Concepts

In the physical sciences we are interested in the value of a physical quantity and how
itis related to other physical quantities. In addition, we are interested in how the value
of the physical quantity changes on going from one state of the system to another,
and in the rate of change with respect to time or with respect to some other physical
quantity.

Consider the equation of state of the ideal gas

pV=nRT

Because any one of the four variables p, V, T, and n can be expressed as a function
of the other three, the state of the system is determined by three of the four quantities.
If the temperature T is changed by an amount AT (read as ‘delta t’), keeping the
pressure p and the amount of substance 7 fixed, the volume changes from

V:nRT to V+AV:nR(T+AT)
p p
and the change in volume is
AV = ﬂAT
p

Figure 4.1 shows that the graph of / against T (at constant p and #) is a straight line
with gradient, or slope,

AV nR

—— =— = constant

AT p
The gradient is the change in / per unit change in 7, or the rate of change of /" with
respect to T.

.
V4+AV F-mmmrr e mmm e oo - 5 |
|
AV
|
V _________________ 1
AT
| |
| |
1 1 T
O T T+ AT

Figure 4.1 Figure 4.2
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If the pressure p of the gas is changed by an amount Ap at constant 7 and #, the
change in the volume is

AV = nRT —nRTz—nRT Ap
p+tAp p p(p+Ap)

Figure 4.2 shows that the graph of " against p (at constant T"and n) is not a straight line.
The gradient at any point on the curve is defined as the gradient of the tangent to the
curve at that point. The gradient changes from point to point, and is not given by AV/Ap.

The branch of mathematics concerned with the determination of gradients and,
therefore, with rates of change is the differential calculus.

4.2 The process of differentiation

Let the value of a variable x change continuously from p to ¢. The difference (g —p)
is called the change or increment in x. In the differential calculus this change is
denoted by*

We note that Ax>0 if g>p, and Ax<0 if g <p.

Y

Yq

Yp

Figure 4.3

Let y=f(x) be a function of x that changes continuously and smoothly from point
P to point Q (Figure 4.3). The values of y at P and Q are y,=f(p) and Yo =1(q). The
change Ay in y corresponding to change Ax in x is therefore

Vo= Yp=8y=1(q9)-f(p)
The quantity

o7 _Ay (4.2)
q-p Ax

is the gradient of the line PQ, and can be interpreted as the average rate of change of y
with respect to x between P and Q.

* Sometimes, if the change in x is supposed to be ‘small’, 8x is used instead of Ax.



4.2 The process of differentiation

More generally, if the variable changes by Ax, from p=x to g=x+Ax, the
corresponding change in the function is

Ay=f(x+Ax)~f(x) (43)
and the corresponding average rate of change is

Ay _ f(x+Ax) - f(x)

4.4
Ax Ax (44)
EXAMPLE 4.1 The general quadratic function, y = ax? + bx + c:

At point P yP:f(x)zax2+bx+c

At point Q Yo =f(x+Ax)=a(x+ A)c)2 +b(x+Ax)+c
The change in the function on going from P to Q is therefore

Ay:yQ - :l:a(x+Ax)2 +b(x+Ax)+c}—[ax2 +bx+c}

= (2ax + b)Ax + a(Ax)?

and the gradient of the line PQ is

4y =Q2ax+b)+alAx (4.5)

Ax

> Exercise 1

Figure 4.4 shows how the quantity Ay/Ax changes as the point Q is moved along the
curve towards P (as Ax is decreased in magnitude).

Figure 4.4
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As Q moves through Q" towards P, the gradient of the line PQ approaches the
gradient of the tangent at P. We express this as
Ay

gradient at P = lim | — (4.6)
Q—P| Ax

(read as ‘the limit as Q goes to P’). At the same time, the magnitude of Ax goes to zero,
Ax — 0 as Q — P, and the limit can be expressed as'
Ay

gradient at x = lim | — (4.7)
Ax—0{ Ax

EXAMPLE 4.2 For the quadratic function y = ax® + bx + ¢ in Example 4.1,

A . A
—y=(2ax+b)+an sothat lim | =2 |=2ax+b
Ax Ax—0| Ax

The limit is a function of x, and it gives the gradient or slope of the curve at each value
of x (each point on the curve).

> Exercises 2, 3

The process of taking the limit in (4.7) is called differentiation. In the differential

calculus, the limit is denoted by the symbol %:
X

D gim | A2 | g {LEFADZ()
dx Ax—>0|Ax ] Ax—0 Ax

(4.8)

(read as ‘dy by dx’).>Itis called the differential coefficient of the function or, simply,

the derivative of the function. We note that the symbol ? does not mean the quantity
X

‘dy’ divided by the quantity ‘dx’; the symbol represents the limit, and the taking of the
limit as given by the right side of (4.8).

! This method of finding the tangent at a point on a curve is essentially that given by Fermat in his Method of
finding maxima and minima in about 1630. This work marks the beginning of the differential calculus. A method
similar to Fermat’s but involving quantities equivalent to Ax and Ay was described by Barrow in Lectiones
geometriae, published in 1670. In these lectures Isaac Barrow (1630-1677), theologian and professor of geometry
at Cambridge, gave a ‘state of the art’ account of infinitesimal methods. The formulation of the method of tangents
was included ‘on the advice of a friend’, Newton, who succeeded him in his chair when Barrow became chaplain
to Charles IT in 1669.

2 The notation is derived from Leibniz’s formulation of the calculus. Gottfried Wilhelm Leibniz (1646-1716),
philosopher, diplomat and mathematician, discovered his form of the calculus in the years 1672-1676 whilst on
diplomatic service in Paris, where he came under the influence of the physicist and mathematician Christiaan
Huygens, inventor of the pendulum clock. His first account of the differential calculus was the Nova methodus
pro maximis et minimis, itemque tangentibus (A new method for maxima and minima, and also for tangents),
published in 1684.



4.3 Continuity

An alternative symbol for the derivative of the function f(x) is f”(x):

df (x)

. (4.9

()=

Another symbol is Df, by which is implied that the derivative of f is obtained by
acting (operating) on f with the differential operator D,

@
dx

dx

i (4.10)

The concept of differential and other operators is widely used in the physical sciences,
and will be discussed in later chapters.

4.3 Continuity

In the discussion of taking the limit in Section 4.2 it was assumed that the function
y=f(x) is a continuous function of x, and that the limit defined by equation (4.8)
exists and is unique. Generally speaking, a function is continuous if its graph is an
uninterrupted curve. A given function y=f(x) may be tested for continuity at a point,
x, say, by letting the independent variable x move continuously from the right side
and from the left side towards the specified point x, as shown in Figure 4.5.

,—Ar x; oz + Az
Figure 4.5

If f(x, +Ax) and f(x, — Ax) approach the same value f(x,) as Ax — 0 then the
function is said to be continuous at x , and we write

Jim £ (x) = f(x,) (4.11)

If this holds for every value of x, in a certain interval a <x, <b, then the function is
continuous in the interval. Three types of discontinuity are illustrated in Figure 4.6.

|
|
Py
]
|
|
|

g

a

| |
| |
| |
| |
| |
| |
| |
Py Py
I I
| |
| |
| |
| |
| |
| |
| |

Figure 4.6
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Point a. The function has a finite discontinuity at x = a. For example, the function

x+1 if x>0
S(x)=

x—1 if x<0

is discontinuous at x=0 where its value is —1. However, if we approach the point
x=0 from the right, f(x) approaches the value +1.

Point b. The function has an infinite discontinuity at x = b. If we approach this point
from the left, the value of the function tends to —co; if we approach from the right the
function tends to +co. Infinity is not a number, and the function is not defined at
x=b. An exampleis 1/(x— 1), discontinuous at x=1.

Point c. The function tends to infinity if we approach the point x=c¢ from either side;
for example, 1 /x2 at x=0.

In these three cases, the nature of the discontinuities is obvious from the graphs; they
are said to be essential discontinuities. In some cases however, the discontinuity
is not obvious from the graph. For example, the function f(x)=x/x has constant
value equal to 1 for all values of x #0, but it is not defined at x=0 because 0/0 is
indeterminate and has no meaning. Such a discontinuity is said to be removable. If we
redefine the function such that f=x/x when x#0 and f(x)=1 when x=0, then
the function becomes continuous for every value of x; the discontinuity has been
removed with no change to the function except at an isolated point.

> Exercises 4-6
4.4 Limits
Consider the rational function

_x2—4
x—2

y

which is continuous for all values of x except x = 2. Table 4.1 shows that, whereas both
the numerator and the denominator go to zero at x =2, their ratio approaches the
value y=4 as x — 2 from both sides:

2
Jim | © =% |24
x=2 x=2
Table 4.1 Values of y=(x*—4)/(x—2)
X 2.1 2.01 2.001 2.0001 1.9999 1.999 1.99 1.9

y 4.1 4.01 4.001 4.0001 . 3.9999 3.999 3.99 39




4.4 Limits

This is an example of a removable discontinuity; we have

P4 (=0 (x+2)
= =x+2
x=2 5;//{)
and the discontinuity can be removed by redefining the function to have value y=4

when x=2. This example is important because taking the limit in differentiation
always involves letting the denominator go to zero.

if x#2

> Exercises 7-10

The finding of limits is necessary whenever a quantity becomes indeterminate. In
addition to the case 0/0, the indeterminate forms most commonly met in the physical
sciences are 0/00 and oo — oo,

EXAMPLE 4.3

2
lim 2;‘ LRl
X—o| x4+ 3x

Both numerator and denominator tend to infinity as x — oo, but the ratio remains
finite. Thus, dividing both numerator and denominator by x?, which is allowed if
X — oo, we obtain

22 +5  2+5/x°

> = =2 as x—owo
x° +3x 1+3/x

2
% f—
1

> Exercises 11-13

EXAMPLE 4.4

1Y 1Y
lim [2x+—J —(3)6——] =10
x—0 X X

Both squared terms tend to infinity as x — 0, but the difference remains finite. By
expanding the squared terms and simplifying, we get

2 2
e+t | st ] cladcar Lo 64 L
x x 2 2
=-5x’+10>10 as x—0

» Exercises 14, 15
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EXAMPLE 4.5

lim [ln(2x+3)— In(x— 2)]: In2

X—>0

From the properties of the logarithm,

2x+3
—2] — In2 as x—>wo

In(2x+3)-In(x-2)= ln(

» Exercises 16, 17

4.5 Differentiation from first principles

A function is said to be differentiable at a point if the limit in equation (4.8),

D _ im (Ay j: lim {—f (r+Ax) - f (x)} (4.8)

dx  Ax—0|Ax | Ax—0 Ax

exists and is unique. A necessary condition for this to be true is that the function be
continuous at the point, but not all continuous functions are everywhere differentiable.
For example, the function

x if x>0 f(z)

—X if x<0

f(X)=IXI={

x
is continuous at all values of x but Figure 4.7 shows that its

slope changes abruptly at x =0, from value -1 when x <0 to
value +1 for x > 0. The function has a cusp at x=0 and the derivative is not defined
by equation (4.8).

In general, a function is differentiable if it is continuous and ‘smooth’, with no
essential discontinuities or cusps. For any such function, the taking of the limit in
equation (4.8) is called differentiation from first principles, and was demonstrated
in Examples 4.1 and 4.2 for the general quadratic. All functions can be differentiated
in this way. Let y=£(x) be a function of x, and let the function change from y
to y+Ay=f(x+Ax) when the variable changes from x to x+Ax. The steps for
differentiating from first principles are:

Figure 4.7

(1) subtract y from y+ Ay to obtain Ay as a function of x and Ax, and simplify as
much as possible,

(2) divide both sides of the equation by Ax,

d
(3) find the limit of i—y as Ax — 0; this gives the required derivative d_y
X X

» Exercises 18,19



4.5 Differentiation from first principles

d
EXAMPLE 4.6 Find d_y from first principles for y = l
X X

1 1
() y=f@=—  y+dy=[(x+dn)=—"

1 1 —-A
Ay=Jrhn - fx)= x+Ax x x(x +Zx)

ay_ -t . Ay | 1
2) Ax  x(x+Ax) () dx Aan(Ax]__x_z

» Exercise 20

EXAMPLE 4.7 Differentiate v/x .
1) yzx/;, y+Ay=~+x+Ax

Ay:m \/— (Vx+A - \/7)X(\/x+Ax+\/7)
Jx+Ax +x

(x+Ax)—x Ax
T litdrtvx JxtAx+vx

(making use of the relation (a —b)(a+b)= a’—b.

vy 1 Yo (AL
& Ax  Jx+Ax ++x %) dx Ax—)O( j 2Jx

» Exercise 21

EXAMPLE 4.8 Differentiate e".
(1) yzex’ y+Ay=ex+Ax=exXeAx

From the definition of the exponential function as an infinite series, equation

(3.31),
=1+Ax +( ) (Ax) +--
2! 3!
Therefore,
3
Y+Ay = e x(1+Ax NCS CE I
2 6
=e" +e'(Ax +( ) (Ax) =)
2 6
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and
2 3
Ay:ex(Ax_i_ﬂ_{_ﬂ_}_...)
2 6
Ay . . Ax (Ax)? dy
2) —=e¢"(l+—+——+-- 3) ==
()Ax e ( > ) E)) ol

» Exercise 22

4.6 Differentiation by rule

Whilst all functions can be differentiated from first principles, differentiation is
performed in practice by following a set of rules.’ These rules can be proved from
first principles, as in Examples 4.6 to 4.8. The derivatives of the more important
elementary functions are listed in Table 4.2.

Table 4.2 Differentiation of elementary functions

Type Function Derivative
¢ = constant c 0
power of x x? ax®!
trigonometric sinx cosx

cos x —sinx

tan x sec’x
exponential e’ e’
hyperbolic coshx sinh x

sinh x cosh x
logarithmic Inx 1/x

The first example in Table 4.2 states that the rate of change of a constant is zero. In
general, if a function is independent of a variable x then its derivative with respect to
x is zero. Examples of the derivative of a ‘power’ of x, x?, have been given in Examples
4.6 for a=—1 and 4.7 for a=1/2. Other examples, using a variety of notations, are
given in Examples 4.9.

* Many of the rules of differentiation appeared in Leibniz’s 1684 paper on the differential calculus, with the
d-notation and the name calculus differentialis for the finding of tangents.

Isaac Newton (1642-1727) developed his ideas on the calculus in the year 1665-1666 (Trinity College,
Cambridge, was closed because of the plague); he later maintained that during this time he discovered the
binomial theorem, the calculus, the law of gravitation and the nature of colours. He wrote the first of three
accounts of the calculus in 1669 in De analysi per aequationes numero terminorum infinitas, but published only
in 1711. The first account to be published appeared in 1687 in Philosophiae naturalis principia mathematica,
probably the most influential scientific treatise of all time. In the first edition of the Principia, Newton
acknowledged that Leibniz also had a similar method. By the third edition of 1726, the reference to Leibniz had
been deleted when questions of priority had led to a bitter quarrel between supporters of the two men.



4.6 Differentiation by rule

EXAMPLES 4.9 Differentiating powers

ﬂ=5x4

: 5
1 =
W) y=x dx

—3/2

Gi) fy=x"?  f (x)——

(i) f(x)=x"" % f(x)=03x"7

» Exercises 23-26

EXAMPLE 4.10 For the ideal gas example discussed in Section 4.1,

V:ﬂ, d_V:nRTi[l]:nRT[_i]:—nRT

P dp dp\ p P’ P’

since nRT is constant at constant 7 and n. We note that whereas V is inversely
proportional to p, it is directly proportional to 1/p; thatis, V is a linear function of
1/p,and the graph of V against 1/p is a straight line with slope

dv

—=nRT.
ai/p) "

The rules for differentiating combinations of elementary functions are summarized
in Table 4.3; in these rules, x is the independent variable, y, # and v are functions of x,
and a is a constant.

Table 4.3 Differentiation of combinations of functions

Type Rule
1. multiple of a function i(a u)= a@
dx dx
2. sum of functions i(u +v)= du + dv
dx dx dx
3. product rule i(u'u) = u@+v@
dx dx d
. d|u du dv 2
4. quotient rule —|—=|=|v—=—u—|/v
dx\ v dx dx
. df du
5. ch 1 — =—
chain rule f( )= du o

6. inverse rule dx = Q or ﬁ X d—y =1
dy dx
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Linear combination of functions

A linear combination of the functions u, v, and w of x has the form
y=au(x)+ bv(x)+ cw(x) (4.12)

where g, b, and ¢ are constants. Such a function can be differentiated term by term; by
Rules 1 and 2 in Table 4.3,

Q—aﬂ_}_b@_i_ d_w

= c (4.13)
dx dx dx dx

EXAMPLE 4.11 Differentiate y=2x" +3¢"— 2 Inx.

By Equation (4.13),

ﬂ=2ix3+3iex—lilnx:2><3x2+3><e”—l><l
dx dx dx 2 dx 2 x

=6x" +3e" — €
2x

> Exercises 27,28

The product rule

The function
y=(2x+3x)(5+7x)

can be differentiated by treating it as the product y=uv where u=(2x+3x%) and
v=(5+7x). Then, by Rule 3 in Table 4.3,

dy dv du
—=u—+v—
dx dx dx

=(2x+ 3x2)i(5 +7)+(5+ 7x3)i(2x +3x%)
dx dx
= (2x+3x)21x%) + (5 + 7x)(2 + 6x)

This may now be simplified. In this example it is equally simple to multiply out the
original product and differentiate term by term, but in many cases the brute force
approach is more difficult than use of the product rule.



4.6 Differentiation by rule

EXAMPLE 4.12 Productrule

The function
y=(2x+3x%) sinx

is easily differentiated only by means of the product rule. Let y=uv where
u=(2x+3x?) and v=sinx. Then

dy dv du
—=u—+v—
dx dx dx

=(2x+ 3x2)i sin x + sin xi(2x +3x%)
dx dx
=2x+ 3x2) cosx+(2+6x)sinx

> Exercises 29-32

The quotient rule
By Rule 4 in Table 4.3,

2x + 3x?

EXAMPLE 4.13 Differentiate y =
5+7x°

Let y=u/v where u=(2x+3x?) and v=(5+7x°). Then

P ((5+7x3)d(2x+3x2) —(2x+3x%) d(5+7x3)j/(5+7x3)2
dx dx dx

_ 5+ 7xH)(2 + 6x) — (2x + 3x%)(21x?)
(5+7x%)?

» Exercises 33-36

The chain rule (function of a function)

The polynomial

y=f(x)=Q2x*-1y’
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can be differentiated by first expanding the cube and then differentiating term by
term:

y=2x -1’ =8x"—12x* + 6x? - 1

D _ 482° — 48x° +12x = 12x(2x° = 1)2
X

A simpler way is to use the chain rule. Let «=2x”*~1 and rewrite y as a function
of u:

y=gw)=v’
Then by Rule 5 in Table 4.3,
ﬂzﬂxﬂzauz)x(m
dx du dx

and, substituting for u,
b 12x(2x% — 1)
dx

In this example, y has been considered in two ways:

(i) asa function of x: f(x)=(2x*—1)%;

(i) asa function of u: g(u)=u’ where u is the function u =2x*— 1. The substitution
u=2x"—1 highlights the structure of the function, that of a cube, and makes the
chain rule the natural method of differentiation.

EXAMPLE 4.14 Differentiate y=(2x>— 1)*/2

Put y= u*?, where u=2x"—1.Then

v du |5 52 (4 = 10x(26 - 1)
dx du dx |2

» Exercises 37-40

Table 4.4 shows the generalization of Table 4.2 for elementary functions of a function,
f(u) where u=u(x).



4.6 Differentiation by rule

Table 4.4 The chain rule

Type Function Derivative
_1du
power of u u? au ==
dx
. . . du
trigonometric sin u cosu —
dx
. du
cos u —sinu —
dx
2 u
tan u sec” u —
dx
. du
exponential e e —
dx
1 du
logarithmic Inu -——
u dx

EXAMPLES 4.15 The chain rule

@

(i)

(iii)

(iv)

™)

y=sin2x =sinu, where u=2x

DB A cos )X (2) = 2 cos 2x
dx du dx

y=cos(2x2— 1) =cos u, where u=2x*-1

y=e*""" = ¢ where u=2x>—1
dy dy du 2x% -1
& x (4 4
dx du S ()X = e

yzln(2x2— 1)=1nu, where u =2x* -1

dy _dy du |1
= Sho | = I (4x) =
dx du dx u

2x% -1

y=In(sinx)=Inu, where u=sinx

Q=Qx@= l (cosx):cf)sx=cotx
dx du dx u

» Exercises 41-55
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Example 4.15(i) demonstrates the important special case of u(x)=ax, for which
du

— =a. Then
dx
d_dy du_ dy
dx du dx du
For example,
4 cos3x = =3 sin3x, iez" =2¢**
dx dx
Inverse functions

If y = f(x), the inverse function of f is defined by x=/""(y). By Rule 6 in Table 4.3,
the derivatives of function and inverse function are related by

Do dx_| 4 41y |=
dxxdy—{dxf(x)}{dyf (y)} !

The inverse rule

ﬁ:# (4.14)
dy ﬂ
dx

is used when it is more difficult to differentiate the function than its inverse.

EXAMPLE 4.16 Use of the inverse rule
If y is defined implicitly by

x=y5—2y

(see Example 2.11), then Q can be found as the inverse of é:
dx dy

ﬂ:5y4—2, ﬂ: 1

dy dx 5y4—2

> Exercises 56-59

Particularly important examples of the differentiation of inverse functions are
given in Table 4.5, where the inverse trigonometric functions have their principal
values.



4.6 Differentiation by rule

Table 4.5

EXAMPLE 4.17 Inverse trig functions

a

If y=sin™' [f] then x=asiny and

dx dy 1
—=acos y, —=—
dy dx acosy

If y has its principal value then it lies between —% and I and cos y is positive.
Then

acosyza\/l—sinzyz\/az—azsinzyz\/a2 - x
and
dy _ 1

2_ 2
dx  \|a* - x

» Exercises 60-62

The derivatives of the inverse hyperbolic functions (Section 3.9) are given in
Table 4.6.

Table 4.6
Do X oL
dx a /x2+a2

X
o cosh l]=
2 2
x a ¥

i tanh™! x]: a

dx a az — xz
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EXAMPLE 4.18 Inverse hyperbolic functions

If y =sinh™ [iJ then x=a sinhy and
a
ax =acosh y, a = !
dy dx acoshy

Because coshy >0 (see Figure 3.22), acosh y = a\/l +sinh? y = \/az +x?, and

y___1
dx a® +x*

> Exercises 63, 64

4.7 Implicit functions

Every functional relationship between two variables x and y can be expressed in the
implicit form (see Section 2.4)

S(x,»)=0 (4.15)

In all the examples of the applications of the rules of differentiation discussed in
Section 4.6 it has been possible to express at least one of the variables as an explicit
function of the other. In some cases however neither variable can be so expressed and
the rules must be applied to the implicit function itself. Let equation (4.15) define
v as a function of x. Then the change in y that accompanies a change in x is such
that equation (4.15) is always true. It follows that the rate of change of the implicit
function f(x, y) is zero for all allowed changes:

L fm=0 (4.16)
X

EXAMPLE 4.19 Find dy/dx for f(x,y)=y" -2y —x=0.
We have

df d 5 d d 4 dy dy
—_— = -2—()-—(x)=5y"—-2—-1
dx dx 9 dx ) dx (x)=5y dx dx

—5y' -2 1=0
dx



4.8 Logarithmic differentiation

1
Solving for ﬂ gives @:
dx

dx 5yt -2

This is the result obtained in Example 4.6 by differentiation of the inverse function.

> Exercises 65-68

4.8 Logarithmic differentiation

For some functions it is easier to differentiate the natural logarithm than the function
itself. For example, if

b

y=uv"w - (4.17)
where u, v, w, ... are functions of x, and a, b, ¢, ... are constants, then
Iny=alnu+blnv+clhnw+--- (4.18)
and
ilny:ailnu+bilnv+cilnw+m
dx dx dx dx
Then, because m: ld_y’
dx y dx
1Q=ﬁ@+é@ cdw (4.19)
ydx udx vdx wdx

This method of differentiating is called logarithmic differentiation. When, y =uv the
method reproduces the product rule; when y=u/v, it reproduces the quotient rule.

EXAMPLES 4.20 Logarithmic differentiation

1/2
(i) y=(t—i] , 1ny=§[1n(1+x)—1n(1—x)}

d tay 1 1 1 |
Tny=-®__ + -
dx ydx 2\{1+x 1-x) 1-x2
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and, multiplying by y,

&1 [1+x)7 1
dx 1y 1-x _(1+x)1/2(1—x)3/2

(il) y=a*, ny=xIna.

Then
iln y= 1 =Ina and, therefore, b =a*lna
dx y dx /X

(iii) y=x", Iny=xInx.

Applying the product rule,

d d d
—hy=x—Ihx+lnx—x=1+Inx
dx dx dx

and, therefore,

dy

ldy_ —=x"(1+Inx)
x

=1+Inx and
y dx

» Exercises 69-72

EXAMPLE 4.21 Logarithmic plots

For a system undergoing exponential decay (first-order kinetics), the size of the
system is given by (see Example 3.20)

x(H) = xoe_k[

and, taking the logarithm of both sides,

Ing
Inx=1Inx,—kt Inz ¢
A plot of In x against #, Figure 4.8, gives a straight line with k
slope d(In x)/dt=—k, and intercept In x, with the axis 7=0.
This example is important because it demonstrates the  —5T———— ¢
standard way of calculating the rate constant & from a linear
plot of experimental values of x and . Figure 4.8

» Exercise 73




4.9 Successive differentiation

4.9 Successive differentiation

The derivative of a function can itself be differentiated if it satisfies the continuity and
smoothness conditions discussed in Sections 4.3 to 4.5. For example, the cubic

y=x3+x2+x+1

has (first) derivative

Q=3x2+2x+1
dx

and this may be differentiated to give the second derivative, or second differential
coefficient,

2
N N
de\dx | gx*?

Successive differentiation gives the third and fourth derivatives

and all higher derivatives are zero. Alternative notations (see Section 4.2) are f”(x),
F7(x), f”(x), ... for derivatives of f(x),or Df, D’f, D’f, ..., where D is the differential

d
operator —.
X

> Exercise 74
A polynomial of degree n can have only up to the first # derivatives nonzero, but other

simple functions can be differentiated indefinitely. In particular, the exponential
function ¢” has all its derivatives equal to ™.

EXAMPLE 4.22 Derivatives of sin ax.

f(x)=sinax
f'(x)=acos ax

f"(x)= —a’sinax= —azf(x)

In general, for the nth derivative,

(—1)(”71)/2 a” cos ax if nis odd

(—1)”/ 24" sinax if niseven

S =
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For example,

3: ) =1"(x)=—a’ cos ax

4 9% =(-1)a* sinax=a*sin ax

S
I

S
Il

» Exercises 75-77

The first derivative f”(x) of a function f{(x) is the rate of change of the function, or
the slope of its graph at point x. The second derivative f”(x) is the rate of change of
slope, and is related to the curvature at x.

4.10 Stationary points
Consider the cubic (Figure 4.9)

y=x(x— 3)2

The function goesto too as x — Foo, but the graph
shows that the function has a local maximum at
point A, at x =1, where its value is greater than at
all neighbouring points. The function also has a
(local) minimum at point B, at x =3, where its
value is smaller than at all neighbouring points.
Points of maximum and minimum value are called
turning points. Figure 4.9

The determination of the maximum and mini-
mum values of a function is of importance in the
physical sciences because, for example, (i) equations of motion are often formulated
as ‘variation principles’, whereby solutions are obtained as maxima or minima of
some variational function (see Example 4.25), (ii) the fitting of a theoretical curve to
a set of experimental points can be expressed in terms of a ‘minimum deviation’
principle, as in the method of least squares discussed in Chapter 21.

Consider the curve in the neighbourhood of the maximum at point A in Figure 4.9.
To the left of A the gradient is positive and the value of the function is increasing. To
the right of A the gradient is negative and y is decreasing. At the point A itself the
function has zero gradient (the tangent to the curve is horizontal), and the rate of
change of y with respect to x is zero. The point is called a stationary point, and the
value of the function at the point is called a stationary value. Similar considerations
apply for the minimum at B, and the general condition for a stationary point is that
the first derivative of the function be zero:

@ _,

at a stationary point (4.20)
dx

To distinguish between maximum and minimum values, it is necessary to consider
the second derivative. On moving through the maximum at A from left to right, the



4.10 Stationary points

gradient decreases from positive values, through zero at A, to negative values. It
follows that the rate of change of the gradient is negative at A, and this is a sufficient
condition for the function to have maximum value at this point:

2

for a maximum: ﬂ =0 and M <0 (4.21)
dx dxz

Similar considerations applied to the minimum at B show that

2

for a minimum: ﬂ =0 and d_y >0 (4.22)
dx dx2

For the cubic shown in Figure 4.9,

y=x(x—3)*=x>—6x+9x

?23)(2—12x+9=3(x—l)(x—3)=0 when x=1 or x=3
X

e <0 whenx =1, a maximum
ar_ 6x—12 >0 when x =3, a minimum

2
dx =0  whenx=2, apointof inflection

The point C,at x=2 in Figure 4.9, is an example of a point of inflection, at which the
d 2

gradient is a maximum or minimum, with —f = 0. The slope of the curve decreases
dx

(becomes more negative) between A and C and increases between C and B, with

minimum value at C. This is an example of a simple point of inflection with

2
@ #0 and d_y =0
dx dxz

» Exercises 78 -82

2
When % =0 and Zl—i} =0 ata point then the nature of the point is determined by
X x

the first nonzero higher derivative. Two examples are

2 3
o Poo dro, 4y, (4.23)
dx dx? dx?

This is a point of inflection which is also a stationary point (but not a turning point),
and is the case discussed in Example 4.23.

2 3 4
Y _o, dr_o 4V, (4.24)

L dy
(ii)) —=0,
dx dx? dx’ dx*

115



116

Chapter 4 Differentiation

This is a maximum or minimum, depending on the sign of the fourth derivative. For
example, the function y=(x—1)* satisfies (4.24), with a minimum at x=1.

EXAMPLE 4.23 Find the stationary points of the quartic y=3x*—4x> + 1.
For the stationary values,

D10 12y = 12x*(x - 1) \\

dx 1

=0 when x=0 or x=1.

To determine the kinds of stationary points,

Figure 4.10

2
d—f =36x7 — 24x

{:0 when x =0
dx

>0 when x =1, a minimum
To determine the kind of stationary point at x=0,

3
d—{ =72x—24 #0 when x=0, apoint of inflection

dx
The function therefore has a single turning point, a minimum, at x=1, when

y=0, and a point of inflection at x=0, when y=1. In fact, the function can be
factorized,

y=(x- 1)2(3x2 +2x+1)
and has a double root x=1, and two complex roots.

» Exercise 83

EXAMPLE 4.24 In Hickel molecular orbital theory, the possible values of the
orbital energies of the m electrons of ethene (C,H,) are given by the stationary values
of the quantity

e=a+2c(1-c%"

where orand fare constant ‘Hiickel parameters’, and c is a variable. For the stationary
values of &,

?:2(1—&)1/23—28(1— A2 p=0
C



4.10 Stationary points
Division by 28 and multiplication by (1 - )12 gives

(1-c*)-c*=0, or c=t

\S)

Then e=at .

EXAMPLE 4.25 Snell’s law of refraction in geometric optics.*

Q

Y1

phase boundary

Figure 4.11

A ray of light travels between points P and Q across a phase boundary at O. In the
upper region, the speed of light is v, = ¢/n,, where c is the speed of light in vacuum
and 7, is the refractive index of the phase. In the lower region the speed of light is
v, =¢/n,. Snell’s law of refraction is

sin, v, n,
sin6, B v, B m

The law can be derived from a ‘principle of least time’, that the path followed is that of
least time.” The total time travelled from P to Q through point O is (distance/speed in
each phase),

v, 7.
2
v Y

The problem is to find point O such that ¢ is a minimum. Choosing x, as the
independent variable, we have

1/2
2 2 2 2 2
”1:(’“1 + )1/2: I"ZZ()CZ +), )1/2:|:(X_x1)2+y2 i|

* Willebrord van Roijen Snell (1591-1626), Dutch mathematician and physicist, formulated the law of
refraction in 1621.

> This use of the principle of least time, proposed by Fermat, was one of the examples used by Leibniz in his
1684 paper to demonstrate his method of finding maxima and minima.
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in which y,, y,,and X=x, +x, are constant. Then

di_1dq 1dy 1% 1x,_sing sind,

dxl vldx1 v, dx, v, r, v, F

paxXp UK U v

(Y

1 2

=0 for a minimum

Hence Snell’s law.

» Exercises 84-86

4.11 Linear and angular motion

The description of the motion of bodies in space is an important application of the
differential calculus. We consider here only the simplest kinds of motion; motion in a
straight line and motion in a circle. More general kinds of motion are discussed in
Chapter 16.

Linear motion

Figure 4.12

Consider a body moving in a straight line, along the x-direction say. Let O be a fixed
point and let P be the position of the body at time t. The distance OP =x is then a
function of time; x =£(7).

If the body moves from point x to point x+Ax in time interval At, then the
average rate of change of x in the interval is

Ax o
AL = average velocity in interval A¢

The limit of thisas Ar— 0 is the instantaneous rate of change of x with respect to ¢. It
is the linear velocity, or simply the velocity, at time ¢,

velocity = v = @ (4.25)
Y dt '

When v is positive, x is increasing and the body is moving to the right. When v is
negative, x is decreasing and the body is moving to the left. Velocity is in fact a vector
quantity, having both magnitude and direction; vectors are discussed in Chapter 16.
The magnitude of the velocity is the speed. The derivative of the velocity is the
acceleration,
2
acceleration = a_ Q (4.26)
di 4’



4.12 The differential
Derivatives with respect to time are sometimes written in a ‘dot notation’:°

2
S @zﬁé:d—f (4.27)
dt

» Exercise 87

Angular motion

Consider a body moving in a circle of radius 7. Let O be a t+ Al
fixed point on the circle and let the position of the body

at time ¢ be given by the angle 8 (Figure 4.13). The rate of @
change of 6 with respect to time is called the angular )
velocity:

angular velocity =0 = lim A0 = CL =0 (4.28)
At—0 At dt

Figure 4.13
In addition, because arc length s is related to subtended

angle @by s =r6, we have §=r or
V=1 (4.29)

for the relation between linear and angular velocities for motion in a circle (see
Chapter 16 for a more general discussion of velocity in terms of vectors). The angular
acceleration is @ = 0.

> Exercise 88

4.12 The differential
The first derivative of a function y =f(x) is defined by equation (4.8),

d_ AV | i {SO A0 - ()
f0= [Ax] Axlfo{ Ax }

and, as has been emphasized before, the symbol dy/dx does not mean the quantity dy
divided by dx, but represents the value of the limit; in this sense f”(x), or)/, is a better
symbol for the derivative. It is nevertheless tempting to write

dy=f"'(x)dx

and, when properly interpreted, this is a useful way of describing changes.

¢ In his 1671 paper on the calculus, Methodus fluxionum et serierum infinitorum, Newton considered variables
like x and y as flowing quantities, or fluents, and wrote x and y for their rates of change, or fluxions. Dotted fluxions
were still being used by English mathematicians when the Cambridge undergraduates George Peacock (1791-1858),
John Herschel (1792-1871), and Charles Babbage (1792-1871) founded the Analytical Society in 1813. One of the
aims of the Society was to promote ‘the principles of pure d-ism as opposed to the dot-age of the university’.
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Consider the cubic
y=f@=x, Lo =3
dx

Let Ay be the change in y accompanying the change Ax in x:

Ay=f(x+Ax)—f(x)=(x+Ax)’ —x°
=3x? Ax + 3x(Ax)* + (Ax)*

The derivative dy/dx is obtained by dividing this expression by Ax andletting Ax — 0.
Another way of looking at the limit is to consider Ax as a ‘very small’ change. If Ax is
made small enough then the term in (Ax)* becomes much smaller than the term in
(Ax)? which in turn becomes much smaller than the term in Ax,

(Ax)* << (Ax)* << Ax

For example, Ax = 107, (Ax)*=107% and (Ax)’=10"". An approximate expression
for the change in y is then

Ay=3x* Ax=f"(x) Ax

and this is often a useful way of approximating small changes. The quantity f”(x)Ax
would be the change in y if Ax were small enough. It is useful to consider an arbitrary
small change dx, an ‘infinitesimal change’, such that terms in (dx)* and higher can be
set to zero. The corresponding change in y

dy=f"(x)dx (4.30)

is called the differential of y.”

The use of the differential will become clear in later chapters. It is important in the
physical sciences because fundamental theorems are sometimes expressed in differ-
ential form; in particular, the laws of thermodynamics are nearly always expressed in
terms of differentials.

» Exercises 89-91

EXAMPLE 4.26 The differential area of a circle

The area of a circle as a function of the radius is

A(r) =’

7 Leibniz’s formulation of the calculus was in terms of differentials. His 1684 paper contains the formulas
dx" =nx""dx, for the infinitesimal change or differential of x", and dxy=xdy +ydx for the product rule (see
Example 4.27).



4,12 The differential

If the radius is increased by amount Ar, the corresponding
change in the area is

Ar
AA=n(r+ Ar)2 —nrt=2nr Ar+ Tl:(Ar)2

and this is the area of a circular ring of radius » and width

Ar. When Ar is small enough,
Figure 4.14

AA=2nrAr = d—A Ar
dr

The corresponding ‘differential area’ is
dA=2nrdr=circumference X width

> Exercise 92

EXAMPLE 4.27 Differential form of the product rule

If y =uw, then the change in y accompanying changes in # and vis
Ay=(u+Au)(v+Av) —uv=uAv+vAu+ (Au)(Av)

and the differential form is
dy=duv)=udv+vdu

Ify, u, and vare functions of x, this expression is equivalent to the normal form of the
product rule: ‘division by dx’ gives

dy dv du
—=u—+v—
dx dx dx

An important application of the differential is as a formal procedure for changing the
independent variable. Consider y =f(x) and its differential

dy=f"(x)dx (4.31)
Let x be a function of some other variable, ¢, such that x = g(f) with differential

dx=g'(t)dt (4.32)
Substitution of this in (4.31) then gives

dy=f"(x)dx =f"(x)g'(1)dt
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or

dy dx
dy=|—x—|dt 4.33
g [dx dt] (439

This is the differential of y with respect to the variable ¢. Division by df then gives the
Chain Rule:

b _&y &

(4.34)
dt dx dt

Although there have been conceptual difficulties with this type of manipulation of
differentials (infinitesimals or ‘infinitely small changes’), operations with differentials
can always be shown to duplicate methods involving finite changes (A’s instead of d’s)
and limits.®

413 Exercises

Section 4.2
1. For y=x>, find (i) the change Ay in y that corresponds to change Ax in x, (ii) Ay/Ax.

2. For y=x>,find lim [Ay]
Ax—0{Ax

3. For the Langmuir isotherm 6= % find (i) the change A@in O that corresponds to
+Kp

change Apinp, (ii) lim A6
Ap—0{Ap

Section 4.3

Find the discontinuities of the following functions and state which are essential and which
removable. Sketch graphs to demonstrate your answers.

2
4 L 5 X e
x+1 x X2 =3y
Section 4.4
Find the limits:
2
7. lim | 2 8. lim |- 9. lim | XL
x—0| x x—0| 5?2 x—0 { x+3

% In fact, developments in mathematical logic between 1920 and 1960 have led to the development of a ‘non-
standard analysis’ which involves an extension to the number system to include infinitesimals (Abraham
Robinson, Non-standard analysis, Princeton, 1996).



4.13 Exercises

. x—1 . x+1 . x—1
10. lim 11. lim | — 12. lim
x—1 | x2 -1 x—o| x+3 x—o| x2_1
2 2 2x _
13, lim | 2! 14, tim || 42— |4 2oL 15. lim | &1
x—w| x+1 x—0 32 X x—0| x

16. lim (Inx—In2x)  17. lim |:ln(x—4)—ln(3x+2)]
x—0 X—>00

Section 4.5

Differentiate from first principles:
18. 2x2 +3x+4 19. X 20.2/x° 21 %% 22, ¢

Section 4.6

Differentiate by rule:
23 24. X% 25 %3 26, 1)x°
27. 1-2x+3x*—4x’ +5sinx—6 cosx+7¢' -8 Inx

B d
28. The virial equation of state of a gas at low pressureis pV =nRT [1 - r:/) Find ﬁ
at constant 7’and » (assume B is also constant).
Products and quotients
Differentiate
29. (1-4x%)cosx 30. (2+3x)e* 31. ¢*cosx 32. xInx

33, (1+2x+3x9)/G+x>) 34 (1-4xH)/sinx  35. cosx/sinx  36. (Inx)/x

Chain rule
Differentiate
1 3
37. (1+x)° 38. 2+ x? 39. . 0. ————
3—x (2x"=3x-1)
41. sindx 42, &> 43, ¥ 44. In(2x* = 3x+1)
45. cos(2x?—3x+1) 46. &7 47. In(cos x) 48, ¢ ¥
2+
49. ln[3 x] 50. In(sin2x+sin’x)  51. 3x%(2 +x)1/2 52. sinx cos 2x
-x
2
53. tan 4x cos? 2x 54. x%e2 13 55. 3;21/2
(2+x7)

Inverse functions

d
56. If x=2y>—3y+1, find .
dx

av
Find o at constant 7 and » for the following equations of state (assume that B, ¢ and b
p

are constants).
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B 2
57. pV=nRT(1+nVJ 58. p(V—nb)—nRT=0  59. [p+’:/f](V—nb)=nRT

Differentiate
il 1= L _
60. sin”' 2x 61. tan~' x? 62. cos I[HXJ 63. sinh™!2x 64. tanh™' x*
X

Section 4.7

d
Find &,

dx
65. x2+y2:4 66. y3+3x+x2—1:0 67. x=ylnxy

2
68. y2+f—x2y2+3x+2=0
y

Section 4.8

Differentiate:

3-x ) (A+x3)(x-1)"?
69. 70.
44 x QCx+DGx*+2x-D"?

71. sin'?x cos3(x2 + l)tanl/3 2x

72. Show that the equations

dlnp — AI{vap and dlz pAHvap
dT  RT? dT RT?

are equivalent expressions of the Clausius-Clapeyron equation.
73. The decomposition of dinitrogen pentoxide in tetrachloromethane at 7=45°C has
stoichiometry:

1
N,0, — 2NO, +5;0,

and obeys first-order kinetics. From the volumes of oxygen liberated after various times ¢,

the following concentrations of N,O, were obtained:

x=[N,0,]/mol dm™ 2.33 1.91 1.36 1.11 0.72 0.55
t/s 0.0 319 867 1196 1877 2315

Plot a graph of In x against /s and determine the rate constant.

Section 4.9
74. Find all the nonzero derivatives of the function y=3x> +4x* — 3x* + x> = 2x + 1.

dy d’y dy d*
75. Find l, 7;/, 7)3/, 73: for the function y=Inx.

dx dx* dx> dx
76. Find a general formula for the nth derivative of e,
77. Find a general formula for the nth derivative of cos 2x.

Section 4.10

Find the maximum and minimum values and the points of inflection of the following
functions. In each case, sketch the graph and show the positions of these points.
78.y=x2—3x+2 79.y=x3—7x2+15x—9 80.y=4x3+6x2+3

81. y=xe " (see Figure 3.20)



82.

83.

84.

85.

86.

4.13 Exercises

Confirm that the cubic y=x> — 7x> + 16x — 10, discussed in Example 2.23, has local
maximum and minimum values at x=2 and x=8/3.

Find the maximum and minimum values and the points of inflection of y =2x> — 5x* + 3.
Sketch a graph to show the positions of these points.

The Lennard-Jones potential for the interaction of two molecules separated by distance
Ris

where 4 and B are constants. The equilibrium separation R, is that value of R at which
U(R) is a minimum and the binding energy is D, =—U(R,). Express (i) 4 and B in terms
of R,and D,, (ii) U(R) in terms of R, R and D,

The probability that a molecule of mass m in a gas at temperature T has speed vis given
by the Maxwell-Boltzmann distribution

3/2
f(v)=47t[ m J vzefmvz/m

2nkT

where £ is Boltzmann’s constant. Find the most probable speed (for which f(v) is a
maximum).

k k
The concentration of species B in the rate process A —— B —2>— C, consisting of
two consecutive irreversible first-order reactions, is given by (when k, # k,)

kit

[B]=[A], (e — e

1
kz - k1
(i) Find the time ¢, in terms of the rate constants k, and k,, at which B has its maximum
concentration, and (ii) show that the maximum concentration is

k] kz/(szkl)
[Blx =[A] T

2

Section 4.11

87.

88.

A particle moving along a straight line travels the distance s =2¢* — 3¢ in time «. (i) Find the
velocity v and acceleration a at time #. (ii) Sketch graphs of s and v as functions of 7 in the
interval =0 — 2, (iii) find the stationary values, and describe the motion of the particle.
A particle moving on the circumference of a circle of radius =2 travels distance
s=£—2£—4t in time «. (i) Express the distance travelled in terms of the angle 6
subtended at the centre of the circle, (ii) find the angular velocity @ and acceleration &
around the centre of the circle, (iii) Sketch graphs of 6, w and @ as functions of 7 in the
interval #=0 — 4, (iv) find the stationary values, and describe the motion of the particle.

Section 4.12
Find the differential dy:

89.
92.

y=2x 90.y=3x2+2x+1 91. y=sinx
The volume of a sphere of radius is V'=4mr>/3. Derive the differential d¥ from first
principles. Give a geometric interpretation of the result.
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5 Integration

5.1 Concepts

Consider a body moving along a curve from point A at time ¢=¢, to point B at time
t=1g. Let the distance from A along the curve at some intermediate time ¢ be s(7), as
illustrated in Figure 5.1.

time ¢

Figure 5.1

If v(?) is the velocity along the curve at time ¢ then, by the discussion of Section 4.11,
v(f)=ds/dt is the gradient of the graph of the function s(¢). Therefore, if s(?) is a
known function, v(¥) is obtained by differentiation. Conversely, if v(¢) is a known
function then s(¢) is that function whose derivative is v(¢); that is, to find s(¢) we
need to reverse the differentiation ds/dt= v(¥).

The distance travelled between two points is equal to the average velocity multiplied
by the time taken. For the motion shown in Figure 5.1, the distance AB along the curve
is therefore

d=Tx(ty—1,) (5.1)

where v is the average (or mean) value of v(¢) between A and B. For example, if
the body undergoes constant acceleration from v=v, at A to v=wvy at B, as
illustrated in Figure 5.2, the average velocity is ¥ = (v ,+05)/2 and the total
distance travelled is

1
dZE(UA+ vg) X (fg—1,)

! This graph of velocity as a function of time for a body moving with uniform acceleration appeared in
Quaestiones super geometriam Euclides by Nicole Oresme (c. 1323-1382), Dean of Rouen Cathedral and Bishop of
Lisieux. This was possibly the first graph of a variable physical quantity. Oresme also considered the extension of
his Tatitude of forms’ to the representation of the ‘quality’ of a surface by a body in three dimensions and ‘the quality
of a body will no doubt be represented by something having four dimensions in a different kind of quantity’.



5.2 The indefinite integral

Figure 5.2

It is readily verified that this distance is equal to the area, shaded in the figure, bounded
by theline v(#) and the t-axis between ¢, and ;. We shall see that this last result is valid
for any velocity function v(#). We shall also see that the solution of a physical problem
is often equivalent to finding the area enclosed by an appropriate curve.

This example demonstrates the two central problems of seventeenth-century
European mathematics; the ‘problem of tangents’ and the ‘problem of quadrature’.
The first of these, to find the tangent lines to an arbitrary curve, led to the invention of
the differential calculus, the subject of Chapter 4. The second, to find the area enclosed
by a given curve, led to the invention of the integral calculus.” The demonstration by
Leibniz and by Newton that differentiation and integration are essentially inverse
operations is one of the landmarks of the history of mathematics.

The concept of integration as the inverse operation to differentiation leads to the
definition of the indefinite integral. The concept of the integral as an area leads to the
definition of the definite integral.

5.2 The indefinite integral

Let y = F(x) be a function of x whose derivative is F’(x) = % The indefinite integral
X
of the derivative is defined by

? Integration has its origins in the Greek ‘method of exhaustion’ for finding areas and volumes. Archimedes
in his Quadrature of the parabola attributed the method to Eudoxus of Cnidus (c. 408-355 BC). In the Method,
discovered in Constantinople in 1906 after being ‘lost’ for over a thousand years, Archimedes describes how a
plane area can be regarded as a sum of line segments. In 1586, Stevin described how the centroid of a triangle can
be obtained by considering the area as made up of a large number of parallelograms. Johann Kepler (1571-1630),
best known for his Astronomia nova of 1609, computed areas and volumes by considering them to be composed
of infinitely many infinitesimal elements. His work on volumes appeared in 1615 in Nova stereometria doliorum
vinariorum (New solid geometry of wine barrels). Galileo Galilei (1564-1642) made use of the infinitely small in
his work on dynamics. Bonaventura Cavalieri (1598-1647), a follower of Galileo, described in his influential
Geometria indivisibilibus continuorum, 1635, how an area can be thought of as made up of lines or ‘indivisibles’
and a volume of areas, and developed a geometric method for finding the integral of x" for positive integers n. At
about the same time, Fermat solved the same problem for positive and negative integers (except n=—1) and for
fractions by dividing his areas into suitable rectangular strips. The case of n=—1 was treated by Gregoire de Saint
Vincent (1584-1667). Roberval integrated the sine function in 1635, and Torricelli the log function in 1646. Other
contributors include Pascal, whose Traité des sinus du quart de cercle of 1658 Leibniz said inspired his discovery of
the fundamental theorem, John Wallis (1616-1703), whose work on infinite processes influenced Newton and to
whom we owe the symbol oo, the Scot James Gregory (1638-1675) whose work on infinite series and the calculus
anticipated that of Newton, and Barrow, whose lectures Newton attended and a copy of whose Lectiones was
bought by Leibniz when on a visit to London in 1673. The final step in the synthesis of the differential and integral
calculus was taken by Newton (Footnote 3, Chapter 4) and by Leibniz, who published the first account of his
integral calculus, Analysi indivisibilium atque infinitorum (Analysis of indivisibles and infinities) in 1686.
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JF'(x) dx=F(x)+C (5.2)

dy
where C is an arbitrary constant. For example, if y=x" then d_ =2x, and the
indefinite integral of the function 2x is .

JZx de=x*+C because di(x2 +C)=2x
X

The symbol J is called the integral sign; it is an elongated ‘S’ (for summation) and has
its origins in Leibniz’s formulation of the integral calculus; its significance will
become clearer in Section 5.4 when we discuss the integral as the limit of a sum. The
function to be integrated, F’(x) in (5.2), is called the integrand, x is the variable of
integration and dx is called the element of x. C is an arbitrary constant called the
integration constant. It is included as part of the value of the indefinite integral
because, given y=F(x) with derivative F’(x), the function (y+ C) also has derivative
F’(x)

& dC_&

53
dx dx dx (5:3)

d
Z(y+C)=
dx(y )

Table 5.1 is a short list of ‘standard integrals’ involving some of the more important
elementary functions (compare Table 4.2). Each entry in the list can be checked by
differentiation of the right side of the equation; for example,

i[ln(ax+b)+c]=L so that dv =L in(ax +b)+ C
dx ax+b a

ax+b

General methods of integration and further standard integrals are discussed in
Chapter 6. A more comprehensive list of standard integrals is given in the Appendix.

Table 5.1 Elementary integrals

a+l
1. [xadx =X ¢ a+-1
J a+1
2. (e fe +C
J
3. [smaxdx :—fcosax+C
J
4. (cosaxdx—fsmax+c
J
5. ( —ln +b)+C
ax+b (ax+2)




5.2 The indefinite integral

EXAMPLES 5.1 Indefinite integrals

(@) ]

r (=1/2)+1 1/2
i) [Eo | s a= =X =P rc=lr+C
] (-1/2)+1 12

X
(iii) | dx:JIdx=x+C

(iv) J e dt:%ez’ +C

~

(v) | cos26 d@zlsin 20+ C
] 2

r

(vi) J ﬁdx=ln(x+3)+c

1
We note thatifwe put C=1n4 in (vi) thenj 3 dx=In(x+3)+InA4=1nA(x+3)
X

» Exercises 1-10

In every case, the effect of the operation J...dx is to reverse the effect of
differentiation; the integral of the derivative of a function retrieves the function.
Also, differentiating both sides of equation (5.2) gives

d , _d o
EJ F/(x) dx = E[F(x) +C|=F) (5.4)

so that the derivative of the integral of a function retrieves that function.

Differential and integral operators

An alternative way of describing the operations of differentiation and integration,
that does not involve Leibniz’s symbolism, makes use of the differential operator
D =d/dx introduced in Section 4.2, with property

DF(x)=F'(x)

The effect of D on F{(x) is to transform it into its derivative F’(x), and a corresponding
inverse operator D', an integral operator, can be defined whose effect is to reverse
that of D. Thus

D' F'(x)=F(x)+ C
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is the operator form of equation (5.2). The operators D and D™ have the property
D'D=DD"'=1

true of any pair of inverse operators. Then
D D[ F(x)+C|=D D[ F(x)+C|= Fx)+C
is equivalent to
d d
JE[F(xHr C|dr= EJ[F(x)+ Clde=Fy+c

Value of the integration constant

In an actual problem the value of the integration constant C in (5.2) is determined by
some auxiliary condition. Consider, for example, a curve whose gradient at every
point is given by the function 2x. The equation of such a curve is

y:J2x de=x*+C (5.5)

This equation represents a family of curves, one curve for each value of C (Figure 5.3).

C=-1,0,1

ANV4

Figure 5.3

If it is required that the curve pass through a particular point, the point (1, 2) say, the
auxiliary condition on (5.5) is that y=2 when x = 1;thatis, y=2=1+ C. Therefore,
C=1,and y=x"+1 isthe equation of the particular curve whose gradient is given by
dy/dx =2x and that passes through the point (1, 2).

Itis shown in later chapters how, in a physical problem, the value of the integration
constant is determined by the nature and state of the system.



5.2 The indefinite integral

EXAMPLE 5.2 Find y= J2x dx subject to conditions (i) (x,y)=(2,0), (ii) y=10
when x=3.

Wehave y= J2x dx=x*+C.Then

() 0=2>+C, C=—4, y=x*-4 (i) 10=3*+C, C=1, y=x*+1

» Exercises 11, 12

Two rules

1. For a multiple of a function:

J au(x) dx = aJ u(x) dx (5.6)

2. For a sum of functions:

J[u(x) + U(x)] dx= Ju(x) dx+ Jv(x) dx (5.7)

It follows from these rules that the integral of a linear combination of functions,
fx)=au)+bv(x)+cw(x)+--- (5.8)

can be written as the sum of integrals

Jf(x) dx = aJu(x) dx + va(x)dx + ch(x) dx+--- (5.9

EXAMPLE 5.3 Integral of a linear combination of functions

J(3x3 +2sin3x — e‘)‘) dx = 3Jx3 dx+2 Jsm 3x dx — Je‘xdx

x4

1 2
=3X"—+2x%| ——=cos3x —(—e_x)+C=§x4——cos3x+e_x+C
4 3 4 3

» Exercises 13-15
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5.3 The definite integral

The integral calculus was invented to solve the problem of finding the area enclosed
by a given curve. In this section we introduce, without proof, the definite integral as
a measure of area, and show how it is related to the indefinite integral. For many
problems in the physical sciences, this brief introduction is sufficient. Other problems
however require a more intimate understanding of the integral calculus, and we will
return to this in Section 5.4.

Let y=f(x) be a function of x, continuous in the interval a <x <b. The shaded
area in Figure 5.4 is known as the area under the curve; this is the area enclosed by the
graph of y =f£(x), the x-axis, and the verticals at x=a and x =b. In general, this area
is equal to the width, (b — a), multiplied by the average height, ¥, of the curve above
the axis (the average value of the function between a and b),

A=(b-a)y (5.10)

Figure 5.4

In the special case of a linear function, as in Figure 5.5, the average height is
_ 1
7=l @+ 1)

and the area under the curve (straight line) is that of a rectangle of width (b —a) and
height y.

0 a (a+1b)/2 b

Figure 5.5
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In the general case, when y=f{(x) is not necessarily a linear function, the integral
calculus (see Section 5.4) tells us that the area is given by the definite integral

b
A =J f(x)dx=F(b)— F(a) (5.11)

where F(x) is the function whose derivativeis f(x)= F’(x) = il_F The numbers F(a)
X

and F(b) are the values of F(x) at the limits of integration a and b; a is called the

lower limit, b the upper limit, and the interval a to b is called the range of integration.
b

The difference F(b)—F(a) in equation (5.11) is often denoted by [F (x)] , so that
a

b b
J F(x) di= [F(x)]u — F(b)- F(a) (5.12)

It follows that in order to calculate the value of the definite integral it is normally
necessary first to evaluate the corresponding indefinite integral. For example, let
y=f(x)=2x+3. The indefinite integral is

Jf(x)dsz(2x+3)dx=x2 +3x+C=F(x)

The definite integral of f(x) intherange x=a to x=>» (‘theintegral fromato b’) is then

a

b b
J (2x+3)dx=[x2 +3x+C} =(b* +3b+C)—(a*+3a+C)
a
= (b*+3b) — (a*+3a)

We note that the constant of integration C cancels for a definite integral, and can
always be omitted.

EXAMPLES 5.4 Definite integrals

r4 4
@) (2x+3)dX=[x2 +3x] = (4% +3x4) - (1P +3x1)=28-4=24
1

J 1
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rb b b
| dxzjldxz[x]a:b—a

a a

,.Tr/2

v) j ; sin @ d9=[—cos@}z/zz[—cosg]—(—cos 0)=(0)—(—1)=1
~+1 +1
(vi) J _le_Zt dt = {—%e‘zz}1=[—%e_2J—[—%e2J=%(e2 - e_zj
. (da 3 3
(vii) J27x:[lnxL:1n3—ln2:1n5

> Exercises 16-25

Average value of a function

Because the definite integral is identified as the area under the curve it follows from
equation (5.10) that the average value of the function y=f(x) intheinterval a<x<b is

b
4 | S@ds
b—a Jb o

y= (5.13)

EXAMPLE 5.5 Find the average value of sin 6 in the interval 0 < 6<m/2.

By Example 5.4(v),
1:/2
sin9=L sin0d9=%
/2 ), T

> Exercises 26-28

Three properties of the definite integral
Let f(x)=F"(x) so that, by equation (5.11),

b
J J(x) dx=F(b)- F(a)

1. The value of the integral does not depend on the symbol used for the variable of
integration:

b b b
J F(x)dx = J () dt = J fu)du=-- (5.14)

In each case, the value of the integral is F(b) — F(a).



5.3 The definite integral

2. If ¢ is a third limit of integration, not necessarily between @ and b:

b c b
J f(x)dsz f(x)dx+f f(x)dx (5.15)
This is true because the value of the integral can be written as
F(b)~ F(a)=| F(e)~ F(a) |+ F(b)~ F(0)]

If c lies between a and b then the area represented by the integral on the left side of
equation (5.15) is equal to the sum of the areas represented by the integrals on the
right side.

3. When the limits are interchanged, the value of the integral changes sign:
a b
J f(x)dx= —J f(x)dx (5.16)
b a

This follows because F(a) — F(b)=— [F(b) - F(a)].

EXAMPLE 5.6 Properties
3 5 1 1
() A= | xde+ | xdx==(3*-2%)+=(5*-3%)
2 3 2 2

1 5
=—(52—22)=J x dx.
2 2

» Exercises 29, 30

Negative areas

Consider the integral

2n
J sinx dx = [—cos x] (2)7: =(—cos2n)—(—cos 0)=(-D)—-(-1)=0
0
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sin ©

+1

Figure 5.6

Figure 5.6 shows that the integrand, sinx, has positive values when 0 <x<m, and
negative values when n <x <2m. The total ‘area under the curve’ is the sum of the two
areas labelled 4, and 4, in the figure, and the integral can be written as

2n
J sinxdx=4,+4,
0
where

T 2n
A1=J sin x dx =42 and A2=J sin x dx =-2

0 n

This example shows that areas corresponding to negative values of the integrand
make negative contributions to the total. In this case the positive and negative
contributions cancel, and the average value of sin x in the interval is zero.

» Exercise 31

Integration of discontinuous functions

The function

2x if x<2
2x+1 ifx=22

Y

|

I
is discontinuous at x=2, but Figure 5.7 shows ! ! i
that the function can be integrated across the 0 1 2 3
discontinuity if the range of integration is split at

the point of discontinuity. Thus,

3 2 3
J f(x)dx=f f(x)dx+J f(x)dx
1 1 2

2 3
=J 2xdx+J 2x+1)dx=3+6=9
1 2

f(X)={

N &~ O

Figure 5.7

This can always be done when the integrand has only a finite number of finite
discontinuities within the range of integration. A similar technique is used when the
function is continuous but has a discontinuous derivative.
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EXAMPLE 5.7 The function 1
f(x) _ e_‘x‘ _ e_x lf X2 O
e if x<0
[
is continuous at x=0, but not smooth, the slope of its —a 0 b
graph changing discontinuously from +1 to —1 on passing Figure 5.8

through x=0 from left to right (Figure 5.8). The function
can be integrated if the range of integration is split at the
point of gradient discontinuity:

b 0 b 0 b
I e Max= J e’ dx+J e Y dx= [ex} +[_eﬂf]
—a —a 0 —a 0
:(1_6711)_’_(1_6—[7):2_67” —efb

> Exercises 32-34

Improper integrals

A definite integral is called improper when the integrand has an infinite discontinuity
at a point within the range of integration. If the discontinuity is at the point x=c,
where a < ¢ <b, then the integral is defined as the limit, for £>0,

b c—¢€ b
J f(x)dx= limo {J f(x) dx+J' f(x) dx} (5.17)

As shown in Figure 5.9, the point ¢ is excluded because the integrand is not defined
there. When the limit in (5.17) is finite and unique then the value of the integral is the
‘area under the curve’.

i
|
|
|
|
|
|
|
|
|
|
1
C

c+e b

Figure 5.9

If the discontinuity lies at one end of the range of integration, at x=a say, the integral
is defined as

b b
J f(x)dx= lirth f(x)dx (5.18)
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EXAMPLES 5.8 Improper integrals

(1) The function 1 / Jx isnot defined at x = 0 and the definite integral between limits
x=0andx=1 is defined as

Then

and, letting e - 0,
L,
o Vx

1
i —=1 —=1 1 ]:1‘ -1
(i) el gbmo nx | = lim (=Ine)

The limit does not exist because In & — —w0 as £ — 0.

(ii1) In the general case of the integral of an inverse power, a # 1

1
Yax 1)1 1 1
— = lim = lim
o x? e20|{1-a)x*! . U-a)e=0 g“—l

When a<1 the limit has value 1/(1 —a), but when a>1 the limit is infinite
and the integral is not defined.

> Exercise 35

Infinite integrals

It often happens in applications in the physical sciences that one or both of the
limits of integration are infinite. Integrals with infinite ranges of integration are
called infinite integrals. If the upper limit is infinite then the definite integral is
defined by

o b
J f(@)dx= lim J £(x) dx (5.19)
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For example,

e dr= lim e dr= lim [—e_r}
0 b—o 0 b— 0

= lim [—e_b + 1}:1

b—o

using the property of the exponential that ¢”— 0 as b— oo, In practice, infinite
integrals are treated in exactly the same way as ordinary integrals, but some care must
be taken when assigning the infinite value to the variable.

EXAMPLE 5.9 Find the value of the infinite integral / = J L
4 (x=D(x-2)

The integrand can be written in terms of partial fractions (see Section 2.7) as

1 _1
(x=D(x=2) x-2 x-1

Then

rmtim [ - )= tim [ln(x—2)—ln(x—l)]b
Y yere x—-2 x-1 T hooo 4

4
2\]” h-2 2 3
= lim | In| 2= = lim In| 2= |- InZ=1n2
b— 0 x—1 4 b— 0 b—1 3 2

because (h—2)/(b—1)—1as b—owand In1=0

> Exercises 36-39

When the limit in the definition (5.19) is finite and unique, the integral is said to be
convergent. An integral is divergent when the limit is indeterminate. For example,

® b
_ lim [lnxJ — lim Inb
X b— o 1 bow

is divergent because Inb — 0 as b — oo
A more subtle example is

* b
J cosx dx = lim [sinx]oz lim sinbd
0

—> 0 —> 0
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In this case the value of sin b oscillates between +1 and —1 as b increases, and no
unique value can be assigned to the integral as defined here. On the other hand, it is
shown in Example 6.13 that, for a >0,

o0
_ a
J e ®cosxdx=
0 1+a

2

This result is valid for all positive values of the parameter a, however small, and it
follows that

0

00
) _ : a
lim J e ™ cosx dx= lim 3
a—0 0 a=0{ 144

We note that the limit must be taken after integration; taking the limit before
integration leads to a different, and divergent, integral.

Even and odd functions
When a function has the property

f(=)=f(x) (5.20)

it is called an even function of x; it has even parity (or parity +1) and is symmetric
with respect to the axis x=0 (the y-axis). Examples of even functions are x*, ¢
(figure 5.8) and cos x (shown in Figure 5.10a); in each case the value of the function
is unchanged when x is replaced by —x. On the other hand, a function with the

property
S(=x)=—(x) (5.21)

is said to be an odd function; it has odd parity (or parity —1) and is antisymmetric
with respect to the axis x = 0. Examples of odd functions are x’, sinx (shown in
Figure 5.10b), and x cos x; in each case the value of the function changes sign when x
is replaced by —x. The product of two even functions or of two odd functions is even;
the product of an even function and an odd function is odd. Thus x cos x is an odd
function, withx odd and cosx even.

+1

S SEEED
B

(a) y = cosz; even function (b) y =sinx; odd function

Figure 5.10
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In general, an arbitrary function is neither even nor odd; f(—x) # £ (x). It is always

possible however to express a function as the sum of an even component and an odd
component; we can write

=5 [0+ 10 ]+ 3 [ - fen]
=)+ ()

(5.22)

where f(x) is the even component of f(x) and f (x) is the odd component. For
example, an arbitrary polynomial

n

_ 2
S =ay+ax+ax" +--+ax

can be written as
f(x)= [ao + azx2 + a4x4 + ] + |:a1x + an3 + a5x5 + }

and, because every even power of x is an even function whilst every odd power of x is
an odd function, the first set of terms forms the even component of the polynomial
and the second set forms the odd component.

The integral properties of functions of well-defined symmetry are of great
importance in the physical sciences. The area represented by the integral

A= J f(x)dx (5.23)

is the sum of the areas to the left and right of the x=0 axis:

0 +a
A:J f(x)dx+J S(x)dx=A_+ A (5.24)
—-a 0

If f(x) is an even function of x, the two areas 4_ and 4_ are equal in magnitude
and sign, and the total area is twice each of them:

J f(x)dx=2 J f(x)dx, if f(x)even (5.25)

0

—a

On the other hand, if f(x) is an odd function of x, then 4_and A4_ are equal in
magnitude but have opposite signs: 4_=—A_, and the value of the integral is zero:

J f(x)dx=0 if f(x)odd (5.26)

In the general case, when f(x) has no particular symmetry, the integral is equal to the
integral of the even component:

J f(x)dsz f+(x)dx+J f_(x)dx=2f S (x) dx (5.27)
—a —a -a 0
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EXAMPLE 5.10

(i) Find the even and odd components of f(x) =", (ii) evaluate the definite integrals
of f(x) and of its even and odd components over the range x=—1 to x=+1.

() even: f,(0=1[ 100+ S0 =1 [ re ]
odd: £ (=3[ f)- f-0)] =] -]

These are the hyperbolic functions coshx and sinhx (Equation (3.47) and Figure 3.22).

r+1 +1 +1
i) | fx)dre= J e dx = |:e} —et+e!
J -1

1 -1

r+1 +1 1 1
f+(x)dx:J [ex+efx}dx:5[ex—e_x} =e+e’!
—1 -

—~1 1

r+1 +1 1 1
f (x)dx= J [ex —efx}dx = E[ex +e_x} =0

J - -1 1

Only the symmetric component makes a nonzero contribution to the integral of f(x).

» Exercises 40-47

The concept of the parity or symmetry of functions is widely used in the physical
sciences; the relevant branch of mathematics is called group theory. In molecular
chemistry, the point groups are used to describe, for example, the symmetry properties
of molecular wave functions and of the normal modes of vibration of molecules, and
are used to explain and predict the allowed transitions between energy levels that are
observed in molecular spectra. In solid-state chemistry, the space groups describe the
symmetry properties of lattices and the structure of X-ray diffraction spectra.

5.4 The integral calculus

Let y=f(x) be a function of x, continuous in the interval a <x <, as in Figure 5.4.
We postulated in Section 5.3 that the ‘area under the curve’, the shaded region in
Figure 5.4, is given by the value of the definite integral of f(x) from a to b. We now
look at how this result is derived.

To obtain an estimate of the area, we divide the interval a to b into n subintervals by
choosing n — 1 arbitrary points on the x-axis, with

a=x,<x; <x,<--<x,_ <x,=b (5.28)

n—1

and divide the area into n strips by vertical lines at these points as shown in Figure 5.11.
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y = f(x)

Tp_1 b

Figure 5.11

An estimate of the area is then obtained by replacing each strip by a rectangle.
The width of the rth strip is Ax =x —x_, and we can choose the height v, of the
rectangle to be any value of the function in the strip. The area of the rth rectangle
is A4 =y Ax ,and the total area is

n

A= 2 AA =Yy Ax, (5.29)
r=1

r=I1

Two ways of choosing the heights of the rectangles are shown in Figure 5.11. In Figure
(a) the height of each rectangle has been chosen to be the largest value of y=f(x) in
the subinterval; we call this quantity y (max) for the rth strip. In Figure (b) the height
has been chosen to be the smallest value; we call this quantity y (min) for the rth strip.
It is clear that the first choice gives a value that overestimates the area under the curve,
whereas the second choice gives a value that underestimates the area:

z y,(min)Ax, < A< z y, (max)Ax, (5.30)

r=1 r=1

If we decrease the widths of all the strips by increasing the number of subdivisions,
the values of y (min) and y (max) in each strip approach each other (if the function
is continuous, as has been assumed) and the two sums in (5.30) converge to the same
limit as the number of strips is increased indefinitely; as n — co each sum converges
to the limit 4, the area under the curve. Therefore, irrespective of the particular
choice of heights of the rectangles and of how the divisions of the interval are made,
we have

n

A= lim Y y Ax, (5.31)

n—
r=1

or, because we can choose y =f(x ),

A=1lim Y f(x)Ax,  (allAx, —0) (5.32)
n—oo =
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Following Leibniz, this limit is written as
b n
J f(x)dx=lim Y f(x)Ax, (5.33)
a n=% )

and is called the definite integral of the function f(x) from x=a to x=2».

This taking of the limit of the sum of small quantities is the characteristic feature
of the integral calculus, just as taking the limit of the ratio of two small quantities is
characteristic of the differential calculus. The essential discovery, made independently
by Leibniz and by Newton, was that if F(x) is a function whose derivative is f(x)=F"(x)
then

b b
J f(x) dxzf F’(x)dx=F(b)— F(a) (5.34)

This synthesis of the integral and differential calculus is called the fundamental
theorem of the calculus. The definite integral as defined in this section is known as
the Riemann integral.’

In calculating the area enclosed by a curve it is neither essential nor always
convenient that the area be divided into linear strips in the way described above. We
illustrate this point in Example 5.11 with two different ways of calculating the area of
a circle.

EXAMPLE 5.11 The area of a circle

The equation of the circle of radius a and centre at the origin of coordinates is

X +yt=d’.

Method 1. Let 4 be the area of that quarter of the circle that lies in the first quadrant,
in which both x and y are positive (Figure 5.12). Then

y:.laz—xz for0<x<a. Y

Divide the area into n vertical strips as described in a
the derivation of equation (5.33) above. An approxi-
mate value of the area of the strip between x and

x+Ax is Ad= yAx=+/a* — x* Ax and, by equation
(5.33), the total area is

A:Ja \/az—xz dx
0

0 r x+AT a

Figure 5.12

? Georg Friedrich Bernhard Riemann (1826-1866), professor of mathematics at Gottingen, made contributions
to the theory of numbers, functions of a complex variable, and differential equations. In his 1854 lecture Uber die
hypothesen welche der geometrie zu grunde liegen (On the hypotheses that lie at the foundations of geometry)
Riemann developed a system of non-Euclidean geometry and initiated the study of curved metric spaces that
ultimately formed the basis for the mathematics of the general theory of relativity.
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The integral is evaluated in Example 6.10; 4 = na” / 4, and the area of the circle is four
times this.

Method 2. Divide the area of the circle into concentric
circular strips as in Figure 5.13. Given that the circumference
of a circle of radius r is 2nr (see Example 5.12), the area
of the strip between » and r+ Ar lies between 2nrAr and
2n(r + Ar)Ar:

2nrAr < AA < 2n(r+ Ar)Ar (5.35)

and, when Ar is small enough, A4 = 2nrAr. The total area
is then Figure 5.13

A:J 2nr dr = na’®
0

> Exercise 48

We note that the indefinite integral can be viewed as a special case of the definite
integral, equation (5.34), in which the upper limit of integration, b, has been replaced
by the variable x, whilst the lower limit of integration, a, is arbitrary. The quantity
F(a) is therefore an arbitrary constant, and can be replaced by the symbol C:

Jf(x) dx=J f(x)dx=F(x)- F(a)=F(x)+C (5.36)

The use of differentials

A convenient alternative approach to the definite integral as an area makes use of the
concept of the differential introduced in Section 4.12. This approach is widely used in
the application of the calculus to the formulation of physical problems.

Consider the expression (5.35) in Example 5.11. Division by Ar gives

AA
2nr <— < 2n(r +Ar)
Ar

and, in the limit Ar = 0,

The quantity d4/dr is the rate of change of the area A(r) of the circle with respect
to the radius ». The corresponding differential d4 =2nrdr is, in the language of
differentials, the area of a circular strip of radius » and ‘infinitesimal’ width dr; it is
an element of area or differential area. The ‘sum’ of these elements is the integral

A a
AZJ dAzJ 2nrdr
0 0
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The integral as a length

Ay

|

|

|

|

|

|

|

I |

| |

I I

a T T+ Ax b
Figure 5.14

Let y=f(x) be continuous in the range a <x<b, and let s be the length of its graph
from point A, at x=a, to point B, at x=5 (Figure 5.14). To calculate this length, we
divide the arc AB into segments of length As. Then, by Pythagoras’ theorem, an
approximate value of the length of the segment between x and x+ Ax is

) ) 1/2
1/2
As = [(Ax)2 + (Ay)z} =1+ (A—yj Ax
Ax
The corresponding element of length is
p ) 1/2
ds=|1+ (—yJ dx (5.37)
dx
and the total length of arc AB is
) 1/2

s b d
S=J ds=J 1+[—yj dx (5.38)
0 a dx

EXAMPLE 5.12 The circumference of a circle

The equation of the circle of radius a and centre at the origin is x>+ =a” so that
y=1(a®—x%)"? and dy/dx=Fx/(a*—x*)"2. Therefore,

2 2 2
1+(ﬂj =1+ —> =2
dx a2 — 52 2 2

and the circumference of the circle is

) 1/2

s:4J 1+[ﬂj dx:4aJ &
0 dx 0 \Ja® —x*
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(four times the length of that quarter in the first quadrant, see Example 5.11). The
integral is one of the standard integrals listed in Table 6.3:

s = 4alsin_1 [fﬂ =4a (sin_1 1—sin”! O)
a
0

The principal values of the inverse sine of 1 and of 0 are ©/2 and 0 respectively.
Therefore s=2na.

> Exercise 49

5.5 Uses of the integral calculus

The discussion of Section 5.4 was concerned with the use of the integral calculus
for the determination of geometric properties; in particular, the area of a plane figure
and the length of a curve in a plane. The generalization to curves in three dimensions,
to nonplanar surfaces, and to volumes is discussed in Chapters 9 and 10.

We saw in Section 5.3, equation (5.13), that the definite integral provides the
average value of a function. When the function represents, for example, the distri-
bution of mass in a physical body, the integral calculus can be used to determine
static properties of the body such as the total mass, the centre of mass, and the
moment of inertia in terms of definite integrals involving the mass density.
Similarly for a distribution of charge or of any physical property of a system that
is distributed in space. This use of the integral calculus for the determination of
static properties is introduced in Section 5.6 for properties distributed along a line
(the one-dimensional case); the three-dimensional case is discussed in Chapter 10.
The same methods are used in Chapter 21 for the analysis of probability distributions
in statistics.

The concept of the integral was introduced in Section 5.1 by considering the
motion of a body along a line. By Newton’s first law of motion, a body moving with
a given velocity at any time continues to move along a straight line with the same
velocity if no external forces act on the body; v=constant when F=0. On the
other hand, by Newton’s second law, the acceleration, or rate of change of velocity
a = dv/dt, experienced by a body of mass m in the presence of an external force F is
given by F'=ma. The use of the integral calculus for the description of the dynamics
of physical systems is introduced in Section 5.7 for motion along a straight line;
the more general case of motion in two and three dimensions is discussed in
Chapter 16. The application to pressure-volume work in thermodynamics is
discussed in Section 5.8.

The widest use of the integral calculus is for the solution (integration) of differential
equations; in particular, the equations of chemical kinetics and of other rate processes,
the equations of motion in classical mechanics (derived from Newton’s second
law for example), and the equations of motion in quantum mechanics (such as the
Schrédinger equation). This use of the integral calculus is discussed in Chapters 11
to 14.
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5.6 Static properties of matter

Consider a set of N discrete masses m,, m,, ..., m,, distributed along a (horizontal)
straight line, with mass m; at position x; with respect to a fixed point O as in Figure 5.15.

x4 Ty T3y ... ces Tn_q Ty

Py Py Py Py Py T

my My ms (o) My_1q my

Figure 5.15

The system of masses has the following properties:

N
(i) total mass: M = Z m;
i=1

N
(ii) first moment of mass about O: Z mx,
i=1

N
(iii) second moment of mass about O: 2 ml.xl.2 (5.39)

i=1
and there are similar definitions for all higher moments.

The first moment of mass, (ii), defines the position X of the centre of mass of the
system of masses:

N
Y myx, = MX (5.40)

The first moment of the system of masses is therefore equal to the moment of the total
mass M concentrated at the centre of mass.

T4 To T3 ... ces T TN
* * * * . T
oy e b
Fy Fy Fy Fyn_; Fy

Figure 5.16

In the presence of gravity, each mass experiences a force F,=m.g directed
downwards (Figure 5.16), where g is the standard acceleration of gravity (‘gravitational
constant’). This force F, is what is commonly called the weight of the body.
Multiplication of equation (5.40) by g gives

N
T=) Fx,=MgX=FX (5.41)

1

—_

i=
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where F = 2 F’ is the total force acting on the system of masses. The position X of the

centre of mass is then also called the centre of gravity, and the quantity 7 = ZFixl.

is called the moment of force or torque of the system of forces about the point O. If
the masses are attached to a uniform rigid rod (itself of negligible mass) then the
torque is a measure of the tendency of the forces to rotate the system around O as
pivot and, by equation (5.41), it is equal to the torque produced by the total force F
concentrated at the centre of mass. If the point O is at the centre of mass (gravity) then
X=0 and

(5.42)

Pﬂ
I
o
&
I
[w]

so that the total torque about the centre of mass is zero.

The second moment of mass, (iii), is the moment of inertia of the system of masses
with respect to the point O. It is the property of the mass distribution that is most
important in the description of the dynamics of rotating bodies.

EXAMPLE 5.13 A system of two masses

O
A R
Fy P F,
Figure 5.17

Figure 5.17 shows two bodies, masses m, and m,, joined by a rigid rod (of negligible
mass). The forces /| and F, are the weights of the bodies, and F is a counter force
acting at the pivot point O. If the pivot is at the centre of mass then, putting x, =—r
and x, =r, in equation (5.42),

1

Firi=Fyr, (law of levers)

and the body is at equilibrium with respect to rotation about the pivot O. The total
vertical force acting on the body is F'| + 7, — F, so that the body is at equilibrium with
respect to vertical motion if F'=F, +F,.

The moment of inertia of the two masses is / :mlrf+m2r§. When O is at the
centre of mass then X=0 in (5.40) so that m,r, =m,r,, and the distances r| and r,
can be written as
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where R=r, +r, is the distance between the masses. The moment of inertia is then

where the quantity y=m m,/(m, +m,) is the reduced mass of the system of two
masses (see also Example 1.18). The moment of inertia about the centre of mass of a
system of two masses is therefore the same as the moment of inertia of a single mass u
at distance R from the centre of mass.

> Exercise 50

The continuous case

Consider a continuous mass distribution such as a straight rod of matter of length /
(Figure 5.18).

Am

| | —
0 x T+ Ax l

Figure 5.18

Let the mass in the segment x to x+ Ax be Am, so that Am/Ax is the mass per unit
length in the segment. If the mass is distributed evenly over the length, then Am/Ax
is independent of the choice of segment. It is then the density (or, more correctly, the
linear mass density) p of the body, a constant throughout the length. In this case, the
total mass is M = pl. If the mass of the rod is not evenly distributed over its length,
then Am/Ax is the average density in the segment x to x+ Ax, and its value depends
on the position of the segment and on its length. As this length is reduced to zero, the
ratio approaches the limit

(5.43)

Am | _ dm
Ax dx

=1
pLx) Ax‘fo[

The value of the function p(x) at each point is the density at that point, and the
differential quantity dm = p(x)dx is the mass of a segment dx at x. The total mass of
the body is then

M 1
M= J dm= J p(x) dx (5.44)
0 0

Therefore, when a discrete mass distribution is replaced by a continuous distribution,
the sums of the discrete case are replaced by integrals. Thus, the average density is

!
p:MJO p(x) dx

—_— (5.45)
/ !
Jodx
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The position of the centre of mass is given by (see equation (5.40))

I Jl p(x)x dx
MX = J p(x)xdx, or X={—— (5.46)
0 Jo p(x) dx
and the moment of inertia with respect to an arbitrary point x,, on the line is
1
I= J p(x)(x — x,)* dx (5.47)
0

We note that, for example, the total mass can be interpreted as the ‘area under the
curve’ of the graph of the mass density function p(x).

EXAMPLE 5.14 Find the total mass, centre of mass, and moment of inertia of the
linear distribution of mass of length a and density p(x)=b(a—x),0<x<a.

The total mass is equal to the area a”h/2 of the triangle  p(x)
shaded in Figure 5.19. Thus

a a a2b
M:J p(x)dxzj bla—x)dx=——
0 2

0

0 a
The position of the centre of mass is .
Figure 5.19

1 2 (¢ a
X=— dx = — — dx =—
MJO p(x)x dx . JO (a—x)x dx 3

The moment of inertia with respect to an arbitrary point x,, on the line is

a a 2
1=J p(xX)(x = x,)° dx=bJ (a—x)(x-x,)° dx:bliz(a2 —4dax, +6x7)
0 0

The value of x,, for which / has its minimum value is given by

2
A 0= 4at12xy)
dx, 12

so that x,=a/3. The moment of inertia therefore has its smallest value when computed
with respect to the centre of mass; this is a general result.

» Exercise 51
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5.7 Dynamics

Velocity and distance

Asin Section 5.1, we consider a body moving along a curve from point A at time 7=¢,
to point B at time 7= f;, and let the distance from A along the curve be s(#) at some
intermediate time 7. By the discussion of Section 4.11, the quantity v(f)=ds/dt is the
velocity of the body at time #. The differential length ds=vdt isthe distance travelled
in the infinitesimal time interval df, and the total distance is then

s = J ds= J ’ u(t) dt (5.48)
0 1\

EXAMPLE 5.15 A body falling under the influence of gravity

A body of mass m falling freely under the influence of gravity experiences the constant
acceleration dv/dt=g (air resistance and other frictional forces are neglected). Then
v(t) = gt + v(0), where v(0) is the velocity at time ¢#=0. If the body falls from rest at
t=0, then v(¢) = gt. The distance travelled in the time interval 1=¢, to t=t¢; is then

‘B s 1
s=J v(t)dt=J gtdt=—g[té —ti]
‘A ‘A 2

Therefore, given that g~ 9.8 m s ™2, the distance travelled in the first second of fall is
4.9 m, and in the following second itis 4.9 x 2*-1)m=14.7m.

> Exercise 52

Force and work

Consider a body moving along the x direction between points A and B with velocity
v=dbx/dt. 1f a force F acts on the body then, by Newton’s second law, the acceleration
a experienced by the body is given by

F=ma= m@ (5.49)
dt

where m is the mass of the body. Work is done on the body by the application of
the force. If the force is constant then the work done is (work = force X distance)
W=F(xg—x,).

If the force is not constant between A and B, but is a function of position, F' = F(x),
then the work done is obtained by means of the integral calculus. The work done
on the body between positionsx and x+Ax is AW = F(x) Ax.Inthelimit Ax — 0, the
corresponding element of work is dW = F(x) dx and the total work done is the integral

w Xg
W=J dW=J F(x)dx (5.50)
0 X
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EXAMPLE 5.16 A body falling under the influence of gravity

A body of mass m falling freely under the influence of gravity experiences the constant
force F=mg directed downwards. This is the total force acting on the body in the
absence of air resistance and other frictional forces. The work done by gravity on the
body as it falls through a height / is therefore

h h
W=J Fdx=J mg dx = mgh
0 0

This is also the work that must be done against the force of gravity to raise the body
through the distance 4.

EXAMPLE 5.17 Electrostatic work

The force acting between two electric charges ¢, and ¢, separated by distance x in a
vacuum is given by Coulomb’s inverse-square law

99,

F(x)= 3

4n£0x

where ¢ is the permittivity of a vacuum.* Like charges (charges with the same
sign, such as two nuclei or two electrons) repel, so that, in Figure 5.20, the force
acting on g, due to the presence of g, acts in the positive x-direction, away
from ¢,. Unlike charges (of opposite signs, such as the proton and electron in the
hydrogen atom) attract, and the force on g, is directed towards ¢, (F is negative
in Figure 5.20).

— > F
q1 q2
o . =
0 x
Figure 5.20

Consider two like charges, initially infinitely far apart. Because the charges repel,
work must be done on the system to bring ¢, from infinity to the distance x from ¢q,.
The force —F must be applied to overcome the repulsion, and the work done is

e[ Foyae—0% (T __an| 1] _ a9
. dne, ) x> dme,| x| dngyx

* The presence of the factor 47e, ensures that the force acting between two charges of one coulomb separated by
one metre is one newton; N= CZ/(4TtEO mz) in terms of SI units.
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This work is positive for like charges. The same formula applies to the case of unlike
charges, but the work is then negative.

» Exercise 53

Work and energy

When work is done on a system by an external force, the energy of the system is
increased by the amount of the work done. Conversely, when a system does work
against an external force, the energy of the system is decreased by the amount of the
work done. The energy of a system is usually expressed as the sum of two parts. For a
simple system, with no internal structure, these parts are (i) the kinetic energy, or
translational energy, arising from the motion of the system in space, and (ii) the
potential energy, arising from the position of the system in space and from the forces
acting on the system at that position. In the case of a system with internal structure,
the kinetic energy is the sum of the kinetic energies of its constituent parts, and the
potential energy is the sum of the potential energies of its parts.

(i) Kinetic energy

The work done on a body by an external force F(x) as the body travels from point A
to point B is

A A

B B
WAB=J F(x)dxzmj de (5.51)

Because v= dx/dt, the element of length dx can be replaced by the differential v dt, so
that

B B B
Wyp=m @v dt=lm i(vz)dt=lm[v2] (5.52)
A dt 2 ), dt 2 A

in which use has been made of d(v%)/dt=2v dv/dt, and the integration limits now
refer to the times at A and B. It follows that the work done between A and B is

W, . = %m[vé - vi) (5.53)

AB

where v, and vy are the velocities of the body at A and B respectively. The quantity
%mvz is called the kinetic energy of the body and is usually denoted by the symbol T

(or K). The work done on the body is therefore equal to the change in kinetic energy:

Wow=Ty—T, (5.54)

We note that the kinetic energy of a body at rest is defined to be zero.

(ii) Potential energy and total energy

Let the force acting on a body depend only on the position of the body, so that
F=F(x). This condition excludes time-dependent forces and, more importantly,
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dissipative forces such as those due to friction. Then, by the fundamental theorem of
the calculus (equation (5.34)), there is a function f(x) such that F(x)=/f"(x) and

B
Wig = J F(x)dx= f(B)- f(A) (5.55)

A

The work done from A to B can therefore be expressed as the change in a quantity
which depends only on the end points A and B, and not on the path A to B. This
quantity is normally designated by —V, and V is called the potential energy of the
body. The work from A to B is then

B
W =J F(x)dx=V, =V, (5.56)
A

where V, and V7 are the values of the potential energy at A and B. When the work
done by a force is independent of the path, the force is called a conservative force and
is (-) the derivative of the potential energy (function):

F(x)= —2—:, Vi(x)= —JF(x) dx+C (5.57)

Three simple but important types of conservative force, and corresponding potential
energy, are

(a) F=constant, V(ix)=—Fx+C (5.58)

(b) F=—kx, V(x)= %kxz +C (5.59)
| 1

(¢) F=——2, Vix)=——+C (5.60)
X X

where C is an arbitrary constant. The graphs of V(x), for C=0, are illustrated in
Figure 5.21. In each case, the gradient of the graph is dV/dx=—F so that the force acts
in the direction of decreasing potential energy.

(a) F = constant (b) F=—ka (c) F=——
Figure 5.21
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We note that, whilst the kinetic energy has a well defined absolute value, this is not
true of the potential energy, for which only relative values are defined by equations
(5.56) and (5.57). Examples 5.18 and 5.19 below show how the zero of potential
energy is chosen in two different physical situations.

A system in which all the forces are conservative is called a conservative system.
In such a system, the work done in moving a body round a closed loop A - B — Ais
zero:

Waga=Wagt Wa=Vy, = V) +(Vy=V,)=0 (5.61)

Dissipative forces such as those due to friction are not conservative forces because the
work done against friction is always positive.
Combining the expressions (5.54) and (5.56) we have the result

T, +V,=Tg+Vy (5.62)

and it follows that, in a conservative system, the quantity 7+ V is constant. This
quantity is called the total energy of the system, £ =T+ V, and (5.62) is an expression
of the principle of the conservation of energy: if the forces acting on a body are
conservative, then the total energy of the body, T+ ¥, is conserved.

EXAMPLE 5.18 A body moving under the influence of gravity

Consider a body of mass m at height / above a horizontal
surface, as in Figure 5.22. The force of gravity acting on
. . . 0
the bodyis F'=-mg (negative because the force acts in the VF=—mg
negative x-direction) and the work done on the body as it

falls freely from height x =/ onto the surface at x=0 is

0 0
W:J Fdx:—mgj dx = mgh
h h

Figure 5.22

This work is the change of potential energy,
W=mgh=V(h)—V(0)

where V(x) is the potential energy of the body at height x. The natural choice of zero
of potential energy in this example is (0) =0, zero at the surface. Then V(x)=mgx
is the potential energy of the body at height x, and the force is related to it by
F=-dV/dx=-mg.

Let the body fall from rest at x =/ and let the kinetic energy at height x be 7(x).
Then 7(h) =0 and, by equation (5.54), the kinetic energy of the body when it reaches
the surface is 7(0) = mgh. In addition, because the force (a constant) is conservative,
the total energy of the body is conserved and is equal to £ = mgh, which is the potential
energy at x=/ (where the kinetic energy is zero) and is the kinetic energy at x=0
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(where the potential energy is zero). At an intermediate height, £=mgh = T(x) + V(x)
and the kinetic energy is

T(x)= %mvz = mg(h—x) (5.63)

If both the body and the surface are perfectly elastic, the velocity of the body is
reversed on contact with the surface, and the body returns to its original height at
x=h in an exact reversal of the falling motion. Thus, solving equation (5.63) for the
velocity,

v==.2g(h—x)

and the velocity of the body is negative as it falls and positive as it rises. In the absence
of dissipative forces the bouncing motion is repeated indefinitely.

EXAMPLE 5.19 Electrostatic potential energy

By Example 5.17, the work that must be done against the internal force to bring two
charges from infinite separation to separation xis W= g,q,/4mne,x. This is the same as
the work done by the internal force in separating the charges:

The force depends only on the relative positions of the charges and is conservative, so
that a potential energy function V(x) exists such that F(x)=-dV/dx and W= V(x) —
V(). It is conventional, and convenient, to choose the zero of potential energy of
interacting charges to be zero for infinite separation: /() = 0. Then

919,

V(x)=
) 4TC€OX

is the electrostatic potential energy of the system of two charges.

» Exercises 54, 55

5.8 Pressure-volume work

Consider a fluid (gas or liquid) enclosed in a uniform cylindrical container, closed at
one end and fitted with a piston as shown in Figure 5.23. Let 4 be the internal cross-
sectional area of the cylinder. A fluid with internal pressure p exerts a force of
magnitude |F|=pA on the surface of the piston, and the piston moves in or out
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]

Figure 5.23

according as the external pressure p_ , is greater than or less than p. If p_ >p then
the fluid is compressed, and the work done by the external force F, , in moving the
piston from a to b is

b
W, =J F,, dx (5.64)

a

Now, the external force has magnitude |F, |=p, 4, and a length of cylinder |dx]|
contains a volume |dV|=A|dx|. The work can therefore be written in ‘pressure-
volume’ form as

b

W, =—J Do AV (5.65)
a

in which the limits of integration now refer to the volume, and the minus sign is

included to make the work positive for compression. It can be shown that this

expression for the mechanical work done on a thermodynamic system is independent

of the shape of the container.

To compress the fluid, it is necessary that the external pressure be greater than the
internal pressure of the fluid. Let p, =(p+Ap) where Ap is a positive excess pressure
that, for simplicity, can be assumed to be constant throughout the compression.
Then, with V>V,

b b b
Wabz—J pdV—ApJ de—J pdV +Ap(V, =V,)

a a a

b
>—J pdVv

Conversely, to allow the fluid to expand from ¥V, to V itis necessary that the external
pressure be smaller than the internal pressure. If p__ =(p—Ap) then

(5.66)

ext

a
W, = —J pav+ApV,-V,)
b

>—J pdV
b

(5.67)
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The total work done on the fluid in the cycle a — b — a is therefore
Wpo=W,+ W, =2Ap(V, = V,)>0 (5.68)

and the process is said to be irreversible. This is analogous to the case in ordinary
dynamics when nonconservative dissipative forces are present. The process can be
made reversible only by letting the excess pressure, Ap in our example, approach zero.
In this (ideal) limit the work is reversible and

b
w,=-Ww,, = —J pdV (5.69)
Expansion of a gas

The equation of state of a gas is a relation of the form f(p, V, T) =0 amongst the
three thermodynamic quantities p, ¥, and T (for a given amount of gas). For example,
the equation of state for the ideal gas can be written as p/’—nRT=0. There is
therefore some freedom in the choice of conditions under which the expansion of the
gas can occur.

isobaric expansion

Expansion of a gas can occur at constant pressure; for example, the gas can be heated
to expand against a constant external pressure such as atmospheric pressure. The
reversible work done by the gas against the external pressure is then

b b
W=J pdV=pJ av=pWV,-Vv,) (5.70)
a a

For the ideal gas, p/'=nRT and

W=nR(T,~T,) (5.71)

isothermal expansion

Expansion of a gas can occur at constant temperature; for example, if the expansion
occurs with the container immersed in a heat bath at a given temperature. To
calculate the work it is necessary to know the equation of state. For the ideal gas,
p=nRT/V and the (reversible) work is

b b
%
W= J pdV =nRT d7V — nRT In—t = —nRT 0 22 (5.72)

a a a pa

> Exercise 56
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5.9 Exercises

Section 5.2

Evaluate the indefinite integrals:

1. J2 dx 2. Jx3 dx 3. fxm dx 4. d—); 5. jx_m dx
X

6. jsin 4x dx 7. je3x dx 8. Je_zx dx 9. _dx 10. J d
x—1 3—x

Evaluate the indefinite integrals subject to the given conditions:

11. y= sz dx; y=0 when x=3 12. y= Jcos4x dx; y=0 when x=n/4
2
13. I = J(5x4+2x+ 3)dx; I=4 when x=2 14. I = J3x+§x+l dx; I=3 when x=1
x
15. I= J[—4+4cos2x—;e2xJ dx; I=0 when x=0
Section 5.3
Evaluate the definite integrals:
+1 5 2 3
d
16. J 2x2+3x+4)dx 17. de 18. d—z’ 19. J Y
-1 3 L u L, U+2
5 /2 T 0
20. J e dt 21. J cos6d6  22. J cos30d6  23. j sin 2x dx
1 0 0 -n/4
24. (i) Show that the rate equation of a first-order decomposition reaction
d_
dt
can be written in the logarithmic form
dinx
dt
(ii) Integrate this equation with respect to # over the range 0 to ¢, and show that
in| "D |=_k and x(1) = x(0)e ¥
x(0)
25. The Clausius—Clapeyron equation for liquid-vapour equilibrium is
dinp AH,,
dT  RT?

If the enthalpy of vaporization, A, is constant in the temperature range 7| to T,
show, by integrating both sides of the equation with respect to 7, that

ln[%] ) AHVﬂp (1 ) l]
Py R \L T

where p, =p(T,) and p,=p(T)).
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Find the average values in the given intervals:
26. 2x>+3x+4; —1<x<+1  27.cos30; 0<O<m/2  28.1; 3<x<5

Demonstrate and sketch a graph to interpret:

3 1 2 3 3 6 6
29. J e’ a'xzj e dx+J e’ dx+J e " dx 30. J e’ dxzj e’ dx—J e dx
0 0 1 2 2 2 3

/2 n/2

T 0
cosx dx = —J cosx dx. (ii) CalculateJ cosx dx, J cos x dx,
1:/2 —-T

31. (i) Show that J
0

—-n

T
J cosx dx. (iii) Sketch a graph to interpret these results.
—-T

Evaluate and sketch a graph to interpret:

2+2  ifx<l
2

X if x>1

+3
32. J f(x) dx where f(x)= {
-1

. x if x>0
33. x) dx where f(x)=
Jlf() /) {_x N
+a _
o f
34, J f(x) dx where f(x)=4 © if x>0
. e ifx<0

1

35. (i) Show that c;i(xlnx —x)=Inx, (ii) evaluate J Inx dx.
X 0

Evaluate:

36. J dt 37 J e dx 38, J g J ﬁz
0 0 P x(x—1) 2 x(x—1)

For each function, state if it is an even function of x, an odd function, or neither. If neither,
give the even and odd components.

40. sin2x 41. cos 3x 42. sinxcosx 43, x 44, x* 45, 3x%+2x+1
46. ¢ 47. 3% +2x+1)e™

Section 5.4
2 2

48. The equation of an ellipse with centre at the origin is x—z + ZT =1, where,if a>b, ais
a
the major axis and b the minor axis (if a = b, we have a circle). Use Method 1 in

Example 5.11 to find the area of the ellipse.

49. Find the length of the curve y = %xﬂ ? between x=0 and x= 1.

Section 5.6

50. Three masses, m, = 1, m,= 2 and my= 3, lie on a straight line with m at x, = —4, m, at
x,=-1 and m, at x,=+4 with respect to a point O on the line. Calculate (i) the position
of the centre of mass, (ii) the moment of inertia with respect to O, and (iii) the moment
of inertia with respect to the centre of mass.

51. The distribution of mass in a straight rod of length / is given by the density function
plx) = %% 0 <x < /. Find (i) the total mass, (ii) the mean density, (iii) the centre of mass,
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(iv) the moment of inertia with respect to an arbitrary point x, on the line, (v) the
moment of inertia with respect to the centre of mass. (vi) Show that the moment of
inertia has its smallest value when computed with respect to the centre of mass.

Section 5.7

52. A body moves in a straight line with velocity v= 37 at time . Calculate the distance
travelled in time interval (i) t=0 — 1, (ii) =1 — 2, (iii) r1=3 —> 4.

53. A body of mass m moves in a straight line (the x-direction) under the influence of a force
F = kx. What is the work done on the body between x=x, and x=x;?

54. A body of mass m moves in a straight line (the x-direction) under the influence of a force
F = kx, where k is positive (see Exercise 53). (i) Find the potential energy ¥(x) (choose
7(0)=0).

The body is released from rest at x = 1. (ii) Find (a) the total energy £ and (b) the
kinetic energy 7(x) as functions of x. (iii) Sketch a graph showing the dependence of V(x),
T(x), and E on x. (iv) Use the graph to describe the motion of the body. (v) What would
be the motion if the body were released from rest at (a) x=—1, (b) x=0?

55. Repeat Exercise 54 with F'=—kx.

Section 5.8
56. A slightly imperfect gas obeys the van der Waals equation of state

2
[p+na](V —nb)=nRT
2

Find expressions for the work done by the gas in expanding reversibly from volume ¥, to
volume ¥, at (i) constant pressure, and (ii) constant temperature (assume @ and b are
constant).



6 Methods of integration

6.1 Concepts

To calculate the value of a definite integral it is normally necessary to evaluate the
corresponding indefinite integral; that is, given

Jf(x)dx=F(x)+C

we need to find the function F(x) whose derivative is f(x)=F’(x). We saw in
Section 4.6 that every continuous function can be differentiated by the application
of a small number of rules. Each such rule, on inversion, provides in principle a
rule of integration. In particular, the chain rule and the product rule provide, on
inversion, the two principal general methods for calculating integrals; the method
of substitution (Section 6.3) and integration by parts (Section 6.4).

The aim of these general methods of integration, and of the other particular methods
discussed in the following sections, is to reduce a given integral to standard form; that is,
to transform it into an integral whose value is given in a table of standard integrals.
A standard integral is simply an integral whose value is known and whose form can be
used for the evaluation of other ‘non-standard’ integrals. The most elementary standard
integrals are those given in Table 5.1, and a more comprehensive list is given in
the Appendix. Extensive tabulations of standard integrals have been published, and
it is our purpose in this chapter to show how (some of) these standard integrals
are obtained and, most important, how others can be reduced to standard form. It
must be remembered, however, that there are many functions whose integrals cannot
be expressed in terms of a finite number of elementary functions. In such cases,
approximate values are obtained by numerical methods; with the development of
computing machines, numerical methods of integration (numerical quadratures)
have become routine and accurate, and some of the simpler numerical methods are
discussed in Chapter 20.

We consider first the use of trigonometric relations (Section 3.4) for the integration
of some trigonometric functions.

6.2 The use of trigonometric relations

Table 6.1 contains a number of integrals that can be evaluated by making use of the
trigonometric relations (3.21) to (3.26) discussed in Section 3.4. The useful forms of
these relations are

1
c0s2x=5[1+cos 2x] (6.1)

sin’ x = %[1 —cos 2x] (6.2)
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. 1.

sinx cos x = Esm 2x (6.3)
L 1

sinx siny = E[cos(x —y)—cos(x+ y):l (6.4)

1

COSX COS y = E[cos(x — y)+cos(x+ y)] (6.5)
. 17 . .

sinx cosy = 5[s1n(x —y)+sin(x+ y)] (6.6)

More generally, the relations can be used to express a function sin” x cos” x, where
m and n are positive integers, in terms of simple sines and cosines, but alternative
methods of integration are often simpler to use when m or n is greater than 2.

Table 6.1

r

1 .
1. J COS2 ax dxzf[ax+smaxc0s ax}+C
a

r

. 1 .
2. J sin® ax dx = — [ax — sinax cosax]+ C
a

r

. 1 .
3. J sin ax cos ax dx=?s1n2 ax+C

a

Fora#b:

r

4. J sin ax sinbx dx = ;{

S.J

6. [sin ax cos bx dx = —;|:

sin(a—b)x sin(a+b)x +C
a-b a+b

r

sin(a — b)x + sin(a + b)x:| +C

cos ax cos bx dle
2 a—b a+b

cos(a—b)x + cos(a+ b)x +C
a-b a+b

EXAMPLES 6.1 The integrals in Table 6.1

Integral 1: Jcos2 2x dx

By equation (6.1), cos® 2x = %[1 + cos 4x] Therefore



6.3 The method of substitution

1 1 1.
cos® 2x dx =— [1+cos4dex=— x+—sin4x [+ C
2 2 4

= %[Zx +sin 2x cos 2x} +C
Integral 3: Jsin 2x cos 2x dx

. 1.
By equation (6.3), sin 2x cos2x = Esm 4x. Therefore

Jsin 2x cos2x dx = %Jsin4x dx = —% cosdx+C
1 .2 1., 1
=——|1-2sin“2x [+ C=—sin"2x+ C ——
8 4 8
1 ., ,
=—sin“ 2x+ C
4

where C” is a new arbitrary constant. Most tabulations of indefinite integrals omit the
arbitrary constant, and this example shows why different tabulations sometimes give
apparently different values for indefinite integrals.

Integral 4: Jsin 2x sin 4x dx

By equation (6.4), sin 2x sin 4x = %[cos(—Zx) —cos 6x] = %[cos 2x —cos 6x].

Therefore

sin2xsin4xabc=l [c:os2x—cos6x}dx=l szx—w +C
2 2 2 6

> Exercise 1-10

6.3 The method of substitution
The polynomial
f@)=(@x-1)’

can be integrated by first expanding the cube and then integrating term by term (see
the corresponding discussion of the chain rule in Section 4.6):

165
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F)=Q2x—1)7=8x"—12x* +6x—1

J(Ex— 1’de=8 Jx3dx— 12 szdx+ 6dex— de

=24 432 —x+ C’
=é@x—u4+c

(C=C"-1/8 is an arbitrary constant).
A simpler way of integrating the function is to make the substitution

u=2x-1, duzﬂdede
dx

where du is the differential of u(x). Then, dx = %du and
3 [ ! 1 4 1 4
2x-1) dxzz udu=§u +C=§(2x—l) +C

The integral has been transformed into a ‘standard integral’ by changing the variable
of integration from x to u. The method of substitution is also called integration by
change of variable.

In the general case, given the integral of a function f(x) whose form is non-standard,
the method of substitution is to find a new variable u(x) such that

Jf(x) dx = Jg(u) du (6.7)
where the integral on the right is a standard integral; thatis, g(u) is easier to integrate

than f(x). Differentiating both sides of (6.7) with respect to x gives:

on the left side, by definition of the indefinite integral,

diUf(x) dx] = /()
X

on the right side, by application of the chain rule,

d d di di
Eug(“) duJ = ZUg(”) duj x d—;’ = g(u)d—z

Therefore

1= g(u)% 68)
X
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and, substituting in (6.7),
du
Jf(x) dx = Jg(u)g dx = Jg(u) du (6.9)

The essential skill in applying the method of substitution is the ability to recognize
when an integrand can be written in the form (6.8). The transformation of the integral
is then achieved by the substitution

u=u(x), du= % dx (6.10)

or, alternatively, x=x(u), dx = % du.
u

EXAMPLE 6.2 Show that

(ax+ b)Y +C

J(ax +b)"dx =

a(n+1

where the numbers a, b, and n are arbitrary, except that n#—1.
Let u=ax+b. Then du=adx,and

n+l n+l
J(ax+ b)"dx=lju"du=lu—+ o= @&D o
a

an+l1 a(n+1)

» Exercises 11,12

EXAMPLE 6.3 Integrate Jf(x) dx = J(x +x? )_1/2 (1+2x) dx.

Because (1+2x)= di(x +x%), we make the substitution u=x+x>. Then
X
du=(142x)dx and
_ 2\-1/2 _ -2 du
f)=x+x")"7""(1+2x)=u o
X

Therefore

J(x + xz)_l/z(l +2x)dx = Ju_l/zdu =22+ C= 2(x + xz)l/2 +C
The result is confirmed by differentiation:

%[2@ +x2)2 4 c} =+ )21+ 2x)

» Exercises 13, 14
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EXAMPLE 6.4 Integrate J e @D (43 1 3y

Let u=2x*+3x+ 1. Then du = (4x+3)dyx,and
Je_(2x2+3x+])(4x +3)dx = Je_” du=—e“+C= —e_(2x2+3x+1) +C

» Exercises 15, 16

There are no all-embracing rules for finding the correct change of variable that will
transform an integral to standard form; proficiency in the art of integration is the
result of a lot of practice. Some of the simpler types of substitution are summarized in

Table 6.2.
Table 6.2
Type Substitution Result
(
1 J F () f(x) dx u=f(x), du=["(x) dx J wdu=3u"+C
3 (
2 | L) gy u=f(x), du=f"(x) dx J LU
J(x) u
'
3. Jf(sinx) cos x dx u=sinx, du=cos x dx J f(u) du
4. Jf(cos X) sin x dx u=cos X, du=—sinxdx —Jf(u) du

EXAMPLES 6.5 Integrals of type 1: Jf(x)f'(x) dx.

i) I= Jsin ax cos ax dx.

In this case, cos ax is proportional to the derivative of sin ax (and vice versa);
f(x)=sinax,  f'(x)=acosax

Therefore, putting u = sin ax, du = a cos ax dx,

I=l ualuziuzwLCzisin2 ax+C
a 2a 2a

We note that this integral is identical to case 3 in Table 6.1, and this example
demonstrates that there are often several ways of evaluating a particular integral.



6.3 The method of substitution

(i) I= Jln_x dx.
X
1

Because — = i1n x, welet u=Inx and du= l dx.Then
x dx X

I=Judu=%u2+C=%(lnx)2+C

» Exercises 17-20

EXAMPLES 6.6 Integrals of type 2: J% dx.
x

(i) 1=J 2" dx.
2x°+3

In this case, x is proportional to the derivative of 2x*+3: f(x)=2x%+3,
f’(x) =4x. Therefore, putting u = 2x>+3 and du=4xdx,

1=l @=llnu+c=lln(2x2+3)+c
4 u 4 4

(ii) I= Jcotx dx = J 09sx dx.
sinx

Let u=sinx. Then du=cosxdx,and

[:J@: Inu+ C =In(sinx)+ C
u

(iii) I :J ! dx.
xInx

Let u=1Inx. Then du:ldx, and
X
Izjﬂ:lnu+C:1n(lnx)+C
u

> Exercises 21-26
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EXAMPLES 6.7 Integrals of type 3: Jf(sin X) cos x dx.

i) I= Jsin” x cos x dx, where a is an arbitrary number (but a #-1).

Let u=sinx. Then du=cos x dx, and

I=|udu= ! uyC= ! sin'x+C
a+1 a+1

(ii) 7 :J SN cos x dx.

Let u=sinx. Then du=cosx dx, and
I=Jeu du=é"+C=e" +C

» Exercises 27,28

Trigonometric and hyperbolic substitutions

The standard integrals listed in Table 6.3 can be evaluated by substituting appropriate
trigonometric and hyperbolic functions for the variable x.

Table 6.3

1.(

=sin”~ [j+ C, a’>x?

\/_
2, [\/__cosh [ ] lnx+m}+c, P> a
\/_ ( J 1nx+\/m}+c

4. ( dx =1tanl(xj+c

Ja2+x a a

5. ( dx ltanh [ J+C—l |:a+x:|+C, a*>x?
2 2 a 2

Ja —x a a—x




6.3 The method of substitution

Integral 1 in the table is evaluated by means of the substitution x =a sin 6. Then

dx=acos 0d0 and \/a -X —\/a —a’ sin B—a\/l—sm 0 =acosb.

dx acos0df _ d0=0+C=sin"'| = |+C
\/az—x acosf a

Similarly, integral 2 is evaluated by means of the substitution x =a cosh u. Integral 4,
evaluated by means of the substitution x=atan 6, is used in Section 6.6 for the
integration of rational functions. Integral 5 can be evaluated either by means of
the substitution x=atanhu or by expressing the integrand in terms of partial
fractions to give the logarithmic form (see Section 6.6). Alternatively, all the integrals
in Table 6.3 are readily obtained by integrating the standard derivatives listed in
Tables 4.5 and 4.6.

Such substitutions are useful when the integrand contains the square root of a
quadratic function.

Therefore

EXAMPLE 6.8 Evaluate ﬁ/a2 —x%dx.

Let x=asin 6. Then dx=a cos 6d0, \/a —x?> =acos0,and

J\/az —x’dx= achos2 0do

This is integral 1 in Table 6.1. Therefore

22 2
J a* —xtdx="— J(l+cos20)d9——(9+s1n000s9)+C

Now sin 8=x/a, cos 0=+/a* — x* /a, and O=sin"' (x/a). Therefore,

1 . 1
J\/az —xza’nga2 sin 1(£]+5x\/a2 -x*+C
a

> Exercises 29-32
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Definite integrals

When the variable of integration of a definite integral is changed, from x to u(x) say,
the limits of integration must also be changed. If the range of integration over x is
from a to b then the range of integration over u(x) is from u(a) to u(b):

b u(b)
J f(x) dx=J g(u) du (6.11)

u(a)

T

EXAMPLE 6.9 Integrate /= J cos” x sin x dx.
0

Substitute #=cosx and du=-sinxdx. When x=0, u=cos0=+1; when x=m,
u=cos t=—1. Therefore

-1 +1
1=—J u2du=+J u? du
+1 -1

since interchanging the limits changes the sign of the integral. Then

T +1 3 +1 )
cos’ x sin x dx = u? du= L -
0 1 3 3
-1
2

EXAMPLE 6.10 Find the area of the circle whose equation is x* + y* = a.

As in Example 5.11, let 4 be the area of that quarter of the circle that lies in the first
quadrant, in which both x and y are positive (Figure 5.12). Then y =/ a® —x* and

A=Ja \/az —x2dx
0

As in Example 6.8, the integral is evaluated by means of the substitution x=asin 6,
and the new integration limits are 6=0 when x=0 and 6= n/2 when x=a.
Therefore,

n/2 2
/2
A=d* cos20d0=a—[9+sin9c059] / -
0 2 0 4

The area of the circle is four times this.

> Exercises 33-39
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6.4 Integration by parts

y=chosxdx

the integrand is the product of two quite different types of function; the polynomial x
and the trigonometric function cos x. The value of the integral is

In the integral

y=xsinx+cosx+C

as can be verified by differentiation:

L % 5in 2) + 2 cos x)

=(sinx +x cos x) + (—sin x) =x cos x

The product rule has been used to differentiate the product x sin x, and the method of
integration by parts is used to integrate products of this type. In general, let y=uv,
where « and vare functions of x. Then

Qzu@+v@ (6.12)
dx dx dx

and, integrating both sides of this equation with respect to x,

ded —Ju—dx+fv@dx (6.13)
dx

The left-hand side is equal to y =uv by definition, and the equation can be rearranged as

uﬂdxzm)— Uﬂdx (6.14)
dx dx

This equation, the inverse of the product rule, is the rule of integration by parts. Given
anintegrandlike x cos x, one of the factors is identified with u in (6.14), the other with
dv/ dx. For example, let

X

Then

—=1, v=sinx
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and (6.14) becomes
xi(sin X)dx=xsinx— sinxi(x) dx
dx dx

=xsinx—Jsinxdx
=xsinx+cosx+C

The art of integration by parts is the ability to make the correct choice of u and v.
Thus, the choice of u=cosx and dv/dx=x in our example gives

xcosxabc:lx2 CcoS X — lx2 x(—sinx)dx
2 2
1, 1| - .
=—x“cosx+— | x“sinxdx
2 2

and the problem has become more difficult. This demonstrates the rule that if one of
the factors is a polynomial then, with only one important exception, the polynomial
must be chosen as the function u in equation (6.14).

EXAMPLE 6.11 Integrate by parts Jx2 cos x dx.

d d .
Let u=x* and av_ cos x. Then d—u =2x and v=sinx, and
X X

Jx cosxdx=x smx—ijsmxdx

The degree of the polynomial under the integral sign has been decreased by one; x* has

d .
been replaced by x. Integrating the new integral by parts, with #=x and d—v = sin x, gives
x

stinxdx=—xcosx+Icosxdx=—xcosx+sinx
Therefore

sz cos x dx = x” sin x — 2[—x cos X + sin x]+ C
=x? sin x + 2x cos x — 2sin x + C
The results may be verified by differentiation.

» Exercises 40-45




6.4 Integration by parts

In general, a polynomial of degree n can be removed by n successive integrations by
parts. The exception to the rule is when the other factor is a logarithmic function.

EXAMPLE 6.12 Integrate by parts Jx" Inx dx,(n#-1).

In this case, choosing u=x" leads to a more complicated integral. The correct

choiceis u=Inx and ﬁzx". Then du_1 and v=x"""/(n+1), and
dx dx x

= Lx'“rl Inx— x"dx
n+1 n+1
— xn+1 Inx xn+1
n+l (n+1)°
1 n+l
_ e pinx-1]+C
(n+1)

A special case of this integral is Jln xdex=xlnx-x+C

> Exercises 46-48

Integration by parts is straightforward only if one of the factors is a polynomial.

o0

EXAMPLE 6.13 Integrate J e “cosxdx, (a>0).
0

In this case either factor can be chosen as u in (6.14); for example, if u=¢™* and
dv
e =cosx then, for the indefinite integral,

X

1= Je‘” cosxdx=e “sinx+ aJe“’x sin x dx
=e P sinx+ a{—e_‘”‘ COS X — aJe_‘”‘ cOS X dx}

=e @ sinx —ae “ cosx — azje_‘”‘ cosx dx

=e “sinx—ae “ cosx—a’l
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Then, solving for /,

I= Je_“x cos x dx = 5 e “(sinx—acosx)+C

1+a

and

o0
_ a
j e “cosxdx= 5
0 1+a

» Exercises 49-51

6.5 Reduction formulas

The method of integration by parts can be used to derive formulas for families of
related integrals. Consider the integral

I = Jx"e“x dx
n

d
where 7 is a positive integer. Choosing #=x" and “— = ¢* in the formula (6.14),
p g g I

1 n
-
I =—x"e™ —— | x"e™ dx
a a

or

1
I =—x"e"™ —EI,H (6.15)
a a

This result is called a reduction formula for I, or a recurrence relation between I

and /. For example
1 5 3 1, 2 1 1

I,=—xe"-=1, I, =—x"e"-=1I, I =—xe™ ——1

37, P 27, a ! 1=, a0
where

ax 1 ax
Iozje dx=—e""+C
a

Then

1
I =—ea"{x3 —éx2 +£x—£}+C
a a 2P



6.5 Reduction formulas

More important still, the recurrence relation is ideally suited for the computation of
one or several members of a family of integrals.

Reduction formulas are particularly simple for some important definite integrals in
the physical sciences. For example, the integral

1, = J e r'"dr (a>0) (6.16)
0

where 7 is a positive integer or zero, occurs in the quantum-mechanical description of
the properties of the hydrogen atom. Integration by parts gives

n

When n#0, the quantity e r
Therefore

is zero at both integration limits, »=0 and r — co.

and it follows that

* 1
I, :J e rtdr= Z+1 (6.17)
a

where n!=n(n—1)(n—2) --- 1 is the factorial of n.

EXAMPLE 6.14 Determine a reduction formula for I, = Jcos" x dx where nis a
positive integer.

'x and @ =cos x. Then

Write the integrand as cos" ' xcosx, and let u=cos" y
X

v=sinx, and
I, = cos" ! x sinx + (n— I)J cos" 2 x sin® x dx
L2 2
and, because sin“x=1—cos”x,

I = cos" ' xsinx+(n—1) Jcos”_2 xdx—(n—1) Jcos" X dx

1

=cos" xsinx+(n—1I _,—(n-1I

—2
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Solving for 1, then gives

1 _ . n—1
I =—cos" "xsinx +
n n

[n72

> Exercises 52-54

EXAMPLE 6.15 Determine a reduction formula for the definite integral

n/2
I, :J cos” x dx.

0
From the result of Example 6.14,

| */2 1
I, = [—cos"1 X sin x} Py
n 0

Because sin 0=0 and cos”" '(n/2)=0 if n> 1, it follows that

with

For example,

I,==1 ="x-] =—
442 4720 16

> Exercises 55, 56

o0

EXAMPLE 6.16 Determine a reduction formula for /7, = J e dr
0

tl}”z a

d _ —ar? . L 1 —ar? | e
Because d—e =-2ar e “ , the integrand is written as 5. —2are™ " |,
r a

Then, by parts,

e—arz rn dr = _ie—ar2 rnfl + (I’l - 1) e—grz rn—2 dr
0 2a 0 2a ),

ar

Now e~ ’ —0 as r—oo and,if n>1, " 1=0 when r=0. Then, for n>2,



6.6 Rational integrands. The method of partial fractions

e—arz rn dr = (n - 1) efarz rn72 dl", In — (I’l — l) I =
0 2a J, 2a "

When n=1,

When n=0,

I, =J o dr=t \/E (6.18)
0 2\Na

This last integral is a standard integral that cannot be evaluated by the methods
described in this chapter (see Section 9.11).

The integrals / are important in several branches of chemistry. For example,
in modern computational methods for the calculation of molecular wave functions,
the molecular orbitals are expressed in terms of ‘gaussian basis functions’. Such a
function is essentially the exponential ¢ multiplied by a polynomial, and the use
of these functions leads to integrals of the type discussed in this example.

> Exercises 57-62

6.6 Rational integrands. The method of partial fractions

A rational algebraic function has the general form P(x)/Q(x) where P(x) and Q(x)
are polynomials:

2
P(x) _ 4 +ax+ax” +-+ax"

O(x) b +bx+bx’+-+b x"

It was shown in Sections 2.6 and 2.7 that every such function can be expressed as the
sum of a polynomial and one or more partial fractions of types (if complex numbers
are excluded)

.. ax+b
s _ 6.19
(x+a)" W ()c2 +px+q)" (6.19)

O]

where n is a positive integer and the quadratic 2+ px + ¢ hasno real roots; that is, its
discriminant p2 —4q is negative.
Integrals of type (i)

These are the integrals that occur in the theory of elementary kinetic processes:

In(x+a)+C if n=1

J d__ -1 (6.20)

) —— T 4 if asl
Fra)” L )ty
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dx

EXAMPLE 6.17 Integrate | ————.
2-x)4-x)

The integrand can be expressed in terms of partial fractions as

1 I
Q2-x)4-x) 2|2-x 4-x

Therefore

J dx 1[( 1 1 ]
—= | —- dx
2-x)4-x) 2)\2-x 4-x

1 1, (4-x
=E[—1n(2—x)+1n(4—x)]+c=51n[2_x]+c
EXAMPLE 6.18 Integrate J& dx.
P =3x+2

The cubic in the denominator can be factorized as x* —3x+2 = (x — 1)*(x +2) so that
the integrand can be expressed in terms of partial fractions as

x4l 121
¥ -3x+2 x-1 (x=1)? x+2

Sx+1 dx dx dx
dx = +2 -
x*=3x+2 x—1 (x—1%> Jx+2

:1n(x—1)—il—1n(x+2)+C
X—

—In x—1] 2 ‘C
x+2 x—1

Then

> Exercises 63-65

Integrals of type (ii)

We first consider two special forms.

The numerator is the derivative of the quadratic

In this case, the integral is either of type 2 in Table 6.2 or it is a simple generalization
thereof:

J 24p g | S, (6.21)
%+ px+q) Lf(x)]"



6.6 Rational integrands. The method of partial fractions
If u=f(x)=x"+px+gq then du=71"(x)dx=(2x+p)dx, and

Inu+C if n=1

J%dxzfd_:: -1 . X (6.22)
(x* + px+q) u Pl +C if n>
Therefore,
oxt ln(x2+px+q)+C if n=1
J—z YTP = - ) (6.23)
(x“+ px+q)" —+C if n>1

(n— 1)(x2 + px+q)
> Exercises 66, 67

dx

The numerator is unity: JZ—
(x*+ px+q)"

The integral is evaluated by first transforming the quadratic in the denominator into
the form u? +a®. We write

2 2
X’ + px+q= (x + gj - LPTM] (6.24)

where p*—4q is the discriminant of the quadratic. Because it has been assumed that
the quadratic has no real roots, the discriminant is negative, but 4¢g — p? is positive:

2 2
x2+px+q=(x+§] +[4qu]=u2+a2 (6.25)

where u=x+p/2 and a’=(4q—p*)/4>0. Then, because dx = du,

J dx _J du
(x2 +px+q)" (u2 +ad° )"

We now use the trigonometric substitution u=atan 6. Then du=a sec’ 6d6=
(a/cos® 0) dB, and u* +a* = a’(tan® O+ 1) =a’/cos’ 6. Therefore

J du _ ! Jcosz”_2 0do (6.26)

(u2 + a2)n a2n—1

When n=1,

J zd” - =1Jde=9+c=ltan—l[ﬁj+c (6.27)
u- +a a a a a

which is one of the standard integrals in Table 6.3. When 7 > 1, the integral (6.26) can
be evaluated, for example, by reduction as in Example 6.14.
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dx

EXAMPLE 6.19 Integrate J—
x* +2x+5

The quadratic function x*+2x+5 can be written as (x + 1)*+ 27 Then, by equation
(6.27),with a=2 and u=x+1,

dx dx 1, 4 x+1
5 = S =5 tan +C
x°+2x+5 (x+1)*+2% 2 2

> Exercise 68

dx

EXAMPLE 6.20 Integrate J—
(x* +2x+5)°

By equation (6.26), with n=3, a=2, and u=x+1,

in cos* 0 de
(x* +2x+5)>° 32

where tan =u/a=(x+ 1)/2. Then, by reduction as in Example 6.14,
Jcos4 0do= %sin 6 cos® 6 + %Jcos2 0do
=lsinecos3 6+§sin90059+§0+C
4 8 8
We need to change variable from 6 back to u (and then to x). If tan 6=u/a then

O=tan"' (u/a) and it is readily verified that

u a

sinf = ———, cosf=—-o
Ju? +d? Ju? +d?
Then
3

cos49dG=l ua +§ ua +§tan71 e
4w +a*) 8ut+d’ a

and

J dx 1 2(x+1) (x+1) 3 fx+1
=— + +—=tan [ — ||+ C
(2 +2x+5° 32[ (x*+2x+5)?% 4(x*+2x+5) 8 2

» Exercise 69
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The general form: Jax—er dx

()c2 + px+q)"

The numerator can be written as

a ap
ax+b=5(2x+p)+[ —TJ (6.28)

so that the integral is expressed in terms of the special cases discussed above:

Jzax+b dxzﬁj 22x+p dr
(x“+px+q) 2) (x*+px+q)

(6.29)
Ly J oo
2 ()C2 + px+q)"
> Exercises 70, 71
Rational trigonometric integrands
By trigonometry,
. .0 6 2sin gcosg
sinf = 2sin—cos— = % %
cos” 7+ sin 3
(6.30)
Y coszg—sinzg
cosf@ =cos”——sin"—= % 7o
2 2 cos™s +sin” 7

Then, dividing the numerators and denominators by cos® /2 and putting 7= tan 6/2,
we obtain

2

cosf =

sin@ = X X t= tang (6.31)
1+¢ 2

1+1¢
The trigonometric functions sin @ and cos 6 are rational functions of #. A trigonometric
function of 0 that becomes a rational (algebraic) function of # when we make the
substitution #=tan 6/2 is called a rational trigonometric function of 6. Every such
function can be integrated by the methods described earlier in this section. Thus, if
the integrand in the integral J' f(6)d0 is a rational trigonometric function of 6, the
substitution

dt (6.32)
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gives

Jf(e) d6 = f zlfi (t"z) dr (6.33)

where f(0) in terms of  is a rational function of «.

> Exercise 72

EXAMPLE 6.21 Examples of the substitution ¢=tan 6/2.

@) J J dt—Jldt=1nt+c=1ntane/2+c
sin 6 1+ ¢ 1+ ¢ t
42
(i) @ __|| 2 345 70 | = [ 2
3+5cos6 1+£2 1+¢ 8 — 2
_ dt :_1 2+t +C
4-¢ 4 2-¢

_ 1| 2+@n0/2)
4 | 2—-tan6/2

making use of standard integral 5 in Table 6.3.

> Exercises 73-75

This method can be applied in all cases but is not always the simplest in practice.
For example, the application of the method to the integration of the elementary
trigonometric functions sin 6 and cos 6 is considerable more complicated than the

use of the standard integrals.

6.7 Parametric differentiation of integrals

Consider the indefinite integral

1
Je_ax di=——e * +C, (a#0)
o

The integral can be treated as a function of the parameter «; differentiation then

gives



6.7 Parametric differentiation of integrals

In addition, by integration by parts,

4 e lde=—|xe™ dx= L + e
da o o

4 e dx= 4 e ™ |dx

do da

so that the order of integration with respect to x and differentiation with respect to o
can be interchanged in this case. This result is true in the general case

It follows that

J f(x,a)dx=F(x,a)+C (6.34)

if f(x, @) and di f(x, ) are continuous functions of x and a:
a

diajf(x’ o)dx = J[dia f(x, a)de = dioc F(x,a) (6.35)

For the corresponding definite integral, if the limits are independent of the
parameter «,

b b
%J‘af(x, o) dx = Ja (% S(x, O!)] dxziF(b, a)—%F(a, o)  (6.36)

When one or both of the limits of integration are infinite, it is necessary to ensure that
the integral of the function and that of its derivative are both convergent.

o0

EXAMPLE 6.22 Integrate J e “x" dx.
0

The integral was evaluated in Section 6.5 from a reduction formula derived by
successive integrations by parts. An alternative method is to differentiate the simple
standard integral

J e_”"”dx:l, (a#0)
0 a

The nth derivative of e™* with respecttoais (=1)"x" ™ so that

© n © n \
J e dx = (—1y" 2 J e = (—1y" 2 [1]: =
0 da" ) da"\a) a"*
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EXAMPLE 6.23 IntegrateJ S0 .

0o X

The integral cannot be evaluated by the standard methods discussed in this chapter;
the method of integration by parts does not work. We consider instead the related
integral

I(O{) J SlIl x

)= —J ¢ sin x dx
do 0

Then

and the new integral can be integrated by parts as in Example 6.13. Then

d 1

ol =- (6.37)

1+o°

and, integrating with respect to o,

I(a)z—J da2
1+

To obtain the value of the constant of integration, we note that /(o) >0 as a— oo,
so that

=—tan' ¢+ C

. _ b
C=lim tan”' ¢ ==
o—>0

To retrieve the original integral we now set a=0:

1(0)= J SIX = —tan 0+ 2 =§ (6.38)

» Exercise 76

When the limits of integration also depend on the parameter, the result of differen-
tiating the integral is given by Leibniz’s theorem: if a(c) and () are continuous
functions of a,

b(e) b(e)

d

d db da
da a(@) [Ef(x, a)de + f(b, OC)E - f(a, 0:)% (6.39)

f(x, 00)dx = J
a(a)



6.8 Exercises

6.8 Exercises

Section 6.2

Evaluate the indefinite integrals:

1. Jsinz 3x dx 2. Jsin 3x cos 3x dx 3. Jsin 3x cos 2x dx
4. Jsin x cos 3x dx 5. Jsin 3x sin x dx 6. Jcos 5x cos 2x dx

Evaluate the definite integrals:

2 T2 T
7. J cos? 3x dx 8. J sin 2x cos 2x dx 9. J sin x cos 2x dx
0 0 0

10. The wave functions for a particle in a box of length / are

y,(x)= ?sin[?x], n=1,2,3 ...

Show that the functions satisfy the orthonormality conditions

1 .
1 fm=
VY, dx= e
0 0 ifm#n

Section 6.3

Evaluate the indefinite integrals (use the substitutions in parentheses, when given):

11. J(3x+1)5 dx (u=3x+1) 12. J(zx—l)l/2 dx
13. J(3x2 +2x+5)°CBx+ D) dx  (u=3x"+2x+5) 14 J(zf +3x—1)32x% + 1) dx
15. j(3x2 +2)e 2 g (u=x3+2x) 16. J(l—x)e“_zxz dx

17. JX\M'—XZ dx (u=4—x2) 18. JcostZSinx dx

19. Jex(1+ex)l/2 dx (u=1+¢ 20. jx cos (3x% — 1) dx
2_
21. J22x+1dx (u=x2+x+2) 22. thxdx
X +x+2 2x° —x? +3
23. Jde (u=1-sinx) 24, Jtanxdx
1-sinx

25 [——2—ax 26, [P 4
Ja—x? In(cosx)

187



188  Chapter 6 Methods of integration

27. Jsin3x cosx dx (u=sinx) 28. Jln(cos x) sinx dx

x2dx

dx .
29. 30. (x=sin 6)
J4+x2 Jxll—xz

32. (i) Use the substitution x=a sinh u to show that J

h! [x) +C.
Vi +a?
(ii) Use the substitution u = x++x?+a® to show that J\/% = ln[x +Vx2+d? ]+ C.
X" +a
Evaluate the definite integrals:

) . n/2
33, J x dx 34, J de 35. J \/sin@cos6 d6
0 0

1 3X2 -2 \/;
1 dx 0
2

36. | —— 37. J xe™" dx

0y2-x 0
38. Line shapes in magnetic resonance spectroscopy are often described by the Lorentz

function
T
glo)=—

n1+T2(co a))

Findj g(w) do.

@y

39. An approximate expression for the rotational partition function of a linear rotor is
00
q = J 2J +1)e U 4y
0

where GR = hz/ 27k is the rotational temperature, I is the moment of inertia, and k is
Boltzmann’s constant. Evaluate the integral.

Section 6.4

Evaluate the integrals:

r r

40. Jx sin x dx 41. J x° sin x dx 42, J (x+ 1) cos2xdx  43. szezx dx

o r
xe* dx 45, J x2e ¥ dx 46. Jxlnxdx 47. Jlnx
0

51. ¥ cos 3x dx

r r
48. J x> 1n x dx 49, J e ¥ sin 2x dx 50. J ™ cos bx dx



6.8 Exercises
Section 6.5
52. Determine a reduction formula for Jsin" x dx, where n is a positive integer.

53. Show that, for integers m>0 and n>1,

e -
sin™*! @ cos” 0+ n—1

m+n m+n

Jsin’"@cos”QdGz jsin’"ecos”_ZGdG

54. Use the results of Exercises 52 and 53 to evaluate Jsin5 x cos* x dx.

55. Show that, for integers m>0 and n>1,

n/2 ! n/2
J sin” §cos" 6 do = J sin™ @ cos" > 6dO

0 m+n ),
Evaluate
1[/2 )
56. J sin® x cos® x dx. 57. J re " dr
0 0
58. J P2 dr 59. J P dgr
0 0

60. The probability that a molecule of mass m in a gas at temperature 7 has speed vis given
by the Maxwell-Boltzmann distribution

32
f(v)=4n [2 WIZT] 17267"”’2/2/”
T

©

where k is Boltzmann’s constant. Find the average speed v = J vf(v) dv.
0

61. For the Maxwell-Boltzmann distribution in Exercise 60, find the root mean square speed

\/Uzz, where 172 =J v f(v) dv.

0

62. Line shapes in spectroscopy are sometimes analysed in terms of second moments. The
second moment of a signal centred at angular frequency , is

J (0~ g(w) do

where g(w) is a shape function for the signal. Evaluate the integral for the gaussian curve

g(w)= \E T exp
T

Section 6.6

Evaluate the indefinite integrals:

1
_ZTZ(m_w0)2:|

63. de 64. |2 40 65. (* =3r+3)
(2x—1)(x+3) (x +3)(x +4) (x + 1)(x + 2)(x +3)
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+2
66. sz dx 67. szz dx 68. szx
x“+4x+5 (x"+3)(x"+4) x“+4x+5

d 4x+3
69. szz 70. sz dx 71. IZHZ dx
(x"+4x+5) x“+4x+5 (x“+4x+5)
0 2 .
72. If t= tana, show that 46 = — dt (Equation (6.33))
1+1¢

Evaluate by means of the substitution ¢ = tan 6/2:

73 | 40 70, | 99 75 | — 90
cosf 5—3cos O 1+ sin 8 + cos 6

Section 6.7
76. By differentiation of the integral

e_‘”zdle T
0 2Va

with respect to a, show that

” gt g 135 @n=1)
- 2n+1 n
0




7 Sequences and series

7.1 Concepts

A series is a set of terms that is to be summed. The terms can be numbers, variables,
functions, or more complex quantities. A series can be finite, containing a finite
number of terms,

U tu,tu;+--+u,
or it can be infinite,
Uy Uy + gyt

where the dots mean that the sum is to be extended indefinitely (ad infinitum). The
terms themselves form a sequence. Sequences are discussed in Section 7.2, finite
series in 7.3, infinite series and tests of convergence in 7.4 and 7.5. In Section 7.6 we
discuss how the MacLaurin and Taylor series can be used to represent certain types of
function as power series (‘infinite polynomials’), and in 7.7 how they are used to
obtain approximate values of functions. Some properties of power series are described
in Section 7.8.

Series occur in all branches of the physical sciences, and the representation of
functions as series is an essential tool for the solution of many physical problems.
Some functions, such as the exponential function and other transcendental functions,
are defined as series, as are some important physical quantities; for example, the
partition function in statistical thermodynamics. We will see in Chapters 12-14 that
the differential equations that are important in the physical sciences often have
solutions that can only be represented as series. Approximate and numerical methods
of solution of problems are often based on series. For example, solutions of the
Schrédinger equation are often represented as series, both in formal theory and in
approximate methods such as the method of ‘linear combination of atomic orbitals’
in molecular-orbital theory (LCAO-MO). An important application of series is in the
analysis of wave forms in terms of Fourier series and Fourier transforms; Fourier
analysis is discussed in Chapter 15.

7.2 Sequences
A sequence is an ordered set of terms
Uy, Uy, Uy, ..
with a rule that specifies each term. For example, the numbers

1, 3,57, ..
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form a sequence defined by the general term
u=1+2(r-1), r=1,2,3, ...

Alternatively, the rule can be expressed as a recurrence relation plus an initial term:
u, =u+2, u =1

so that, for example, u;=u,+2=7+2=9. This sequence is an example of the
arithmetic progression

a, a+d, a+2d, a+3d, ... (7.1)
with rule
\=a or u=a+@r-0d, r=1,2,3,... (7.2)

Another simple, but important, sequence is the geometric progression

a, ax, ax?, ax3, (7.3)
with rule
_ _ | _
U, =xu, u=a or u=ax -, r=1,2,3.. (7.4)

A sequence of terms u_is denoted by {u}.

EXAMPLES 7.1 Sequences
(i) Arithmetic progression:
0, 5, 10, 15, ... u, , =u+5, u=0
1, -1, =3, -5, ... u=1=-2(r-1), r=1,2,3,...

(ii) Geometric progression:1

1, 7, 49, 343, ... u, =Tu, u=1
1 1 1
17 PSE RS T I u =—, r:O,1,2,3, e
24 8 "o
1 1 1 1
L -=, = -, u_ =——u, u =1
3 9 27 r+l 3 ¥ 1

! The Rhind papyrus (c. 1650 BC) contains a problem concerning 7 houses, 49 cats, 343 mice, 2401 ears of
grain, 16807 hekats’. The version of the ‘St. Ives problem’ in Fibonacci’s Liber abaci (1202 AD) is 7 old women
went to Rome; each woman had 7 mules and each mule carried 7 sacks; each sack contained 7 loaves; with each loaf
were 7 knives, and each knife was put up in 7 sheaths’.
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(iii) Harmonic sequence:

1’

W | =
N
=N

1
55
(iv) Fibonacci sequence (‘series’):?

=u

1, 1,2 3,58, 13, ... u

r+2 r+1 7 0 1

» Exercises 1-10

Limits of sequences

1
The terms of the harmonic sequence —,
r

1,

i

1
o

W | —

1
5’
decrease in magnitude as » increases, and approach the value zero as » tends to

infinity. The quantity

r—ow\ r

is called the limit of the sequence, and in this case the limit is finite and unique.
Similarly, the sequence

N | —
(SRS
Bw
(VRN

has general term u_ = (r—1)/r and limit lim [(r - 1)/r] =1. Thus,
r—0

Uy =09,  u,,,=0.99, =0.999,

10 Y1000

and when r=10", the term u_has n 9’s after the decimal point. When the limit u of a
sequence is finite and unique the sequence is said to converge to the limit #. When the

2 This is the solution to the paria coniculorum, or rabbit problem, given in Fibonacci’s Liber abaci: ‘how many
pairs of rabbits can be bred from one pair in one year if each pair breeds one other pair every month, and they
begin to breed in the second month after birth?’ The Fibonacci sequence has been linked with various patterns of
growth and behaviour in nature.

193



194

Chapter 7 Sequences and series

limit is not finite or not unique the sequence is divergent. For example, the arithmetic
progression (7.1) is necessarily divergent for all values of d:

lim [a+d(r—1)|= o0

r—>0

The geometric progression (7.3) is interesting because it is convergent for some
values of x and divergent for others. It shows the six possible types of behaviour,
characteristic of many sequences, illustrated in Figure 7.1.

10 100 1 1 10 10
0 I r
(d) (e) (f)

(a) (b) ()

Figure 7.1

The examples shown are (for a=1):

(a) x>1 1, 2, 4, 8, ...
(b) x=1 1,1, 1,1, ...
© o0<x<1 1,4 11
2 48
(d) -1<x<0 1,—1, l—l
2 4 8
(e) x=-1 1, -1, 1, -1, ...
(f) x<-1 1, -2, 4, -8, ...

The sequence is convergent only for x=+1 and |x| < 1, types (b), (¢c), and (d).

The behaviour of a sequence in the limit does not necessarily depend on the
behaviour of a finite part of the sequence. An important example is the sequence of
the terms {x'/r!} in the expansion of the exponential function (Section 3.6). This
sequence has limit zero for all values of x; thus, the ratio of consecutive terms is

r+l r
X X=X 50 as r—o oo forallx
(r+1)! rt ] r+l1

but the terms increase in magnitude when »+ 1 <|x|, decrease when r+ 1 >|x|. For
example,

3 3 3% 3 3 3
e=l+=—+—+=—+=—+

— -+ =143+45+4.5+3.375+2.025+---
12t 31 41 5!
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EXAMPLES 7.2 Limits lim (u,).
r—>00

(i) u, =

1 1 1
We have u, =5—— so that u, _>E as r — oo,

B
) 2r +2r +1
(if) U, =———
ro—r+l
2
Dividing top and bottom by 7%, u, :M% 2asr—o
1=1/r+1/r?
1 .
(iii) u, =sin——sin0=0 as r >

7

(iv) The Fibonacci sequence (Example 7.1(iv)) is divergent, but a convergent
sequence is obtained from the ratios of consecutive terms, u., /ur. The first 10
terms are 1, 2, 1.5, 1.6666, 1.6, 1.6350, 1.6153, 1.6190. 1.6176, 1.6181, and the
limit of the sequence is

lim (u,,, /u,)=9=01+5)/2=1618034.

Thus, dividing the recurrence relation v, ,=u_ +u by u_,,

ur+2/ur+l =1+ ur/ur+l
and taking the limit » — oo gives ¢=1+ 1/¢. Then ¢*—¢—1=0, with positive
solution ¢=(1+ J5 )/ 2. This is identical to the quantity known in geometry as

the ‘golden section’ (ratio).’

» Exercises 11-17

* The golden section was known to the Greeks as ‘the division of a straight line in extreme and mean ratio’
(Euclid, ‘The elements’, Book II, Proposition 11, Book VI, Proposition 30). Its present name originated in 15th
Century Italy when it was taken up by artists as a ‘divine proportion” and used in painting and architecture.
Luca Pacioli (1445-1517) wrote De divina proportione (1509), with illustrations thought to be by Leonardo da
Vinci. Pacioli’s Summa de arithmetica, geometrica, proportioni et proportionalita (Venice, 1494) was one of the
first comprehensive mathematics book to be printed; it contained the first published description of double-
entry bookkeeping. In his ‘Lives of the artists’, Giorgio Vasari (1511-1574) accuses Pacioli of plagiarising the
mathematical works of Piero della Francesca (c. 1420-1492).
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7.3 Finite series

Given a sequence u,, i, u the partial sums

FURER

e N e B
II II |I

+u +u

with general term

n
S, =u fuy Fuy+etu, =D U (7.5)
r=1
also form a sequence, $,,8, 8, ... Asequence obtained in this way is called a series

and, when the sequence converges, the limit

§=lim § = lim Zu (7.6)

n—o n—o
r=1

is called the sum of the series.

The word series is commonly also used for the sums of terms themselves. A finite
series of n terms is then

n

Nou, =y fuy et
with sum § , and the infinite series is

o0

3w, =y Ay e

r=1

with sum (if it exists) given by (7.6).

The arithmetic series

The sum of the first n terms of the arithmetic progression (7.1) is

S, :i[a+(r—l)d]:a+[a+d]+[a+2d]+~--+[a+(n—l)d]

r=1
The value of the finite series is obtained by considering the sum in reverse order,

=la+(n-1d]+[a+(n-2)d]+--+a
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Then, addition of the two forms, term by term, gives

28 =[2a+(n—-1Dd]+[2a+(n—1)d]+ - +[2a+(n~-1)d]
=n[2a+(n—-1)d]

so that
_n
S, —5[2a+(n—1)d] (7.7)
In particular, the sum of the first # natural numbers is (a=d=1)
1
Sn=1+2+3+~-+n=5n(n+l) (7.8)

» Exercises 18,19

The geometric series
The sum of the first n terms of the geometric progression (7.3) is
n—1

S =Zaxr —at+ax+ax*+ax>+-+ax"
r=0

1

To obtain the value of the series, multiply by x,
xSnzax+ax2+ax3+ax4+ s ax”

and subtract the two series term by term:

S —xS =a-ax"=a(l-x")

Therefore*
1-x"
S =a , (x#1) (7.9)
1-x
Then, for a=1,
ll—x =l+x+xi 40+ X" (7.10)
—-x

* A discussion of the sum of the geometric series is given in Euclid’s ‘Elements’, Book IX, Proposition 35.
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This equation can be regarded in two ways:

(i) the value of the sum (1 +x+x*+---+x"") is (1-x")/(1-x),
(ii) the series (1+x+x>+---+x"") isthe expansion of the function (1 —x")/(1 —x)
in powers of x.

This concept of the expansion of one function in terms of a set of (other) functions
provides an important tool for the representation of complicated (or unknown)
functions in the physical sciences.

» Exercises 20-23

The binomial expansion

The binomial expansion is the expansion of the function (1 +x)" in powers of x when
n is a positive integer. Examples of such expansions are

(1+x)=1+2x+x"
(1+xP=143x+3x2+x>

(1 +x)4: 1+ 4x + 6x% + 4% +x*

In the general case,

o+ x" (7.11)

(1+x)" =1+nx+ n(n'_l)x2 = n(n_l;(n_z)f +
with general term

nn—-)(n-2)....(n—-r+1) v

r!

EXAMPLE 7.3 Expand (1 +x)° in powers of x.

By equation (7.11), with n=6,

6xX5 5, 6Xx5%x4 3 6X5%X4%x3 4
X"+ X X
2x1 3x2x1 4x3x2x1

(1+x)° =1+6x+

6X5X4X3X2x5+6X5X4X3X2X1x6
S5x4x3x2x1 6x5x4x3x2x1

=1+6x+15x* +20x> +15x* + 6x° +x°

» Exercises 24, 25




7.3 Finite series

The coefficient of x" in the expansion (7.11) is

[n]= n(n=D(n=2)..(n—r+) __ n (7.12)

r r! r(n—r)!

and is called a binomial coefficient (sometimes read as ‘n choose r’). The binomial
coefficients are important in probability theory, where they are often given the symbol

"C (or C"); we shall see in Chapter 21 that [l’f] is the number of combinations of n

objects taken 7 at a time. In terms of binomial coefficients, the expansion is

(1+x)" = Z(njx (7.13)

r=0\"

A more general form of the binomial expansion is

(x+p)"=Y (Z]ﬂy”’ (7.14)

r=0

EXAMPLE 7.4 Calculate the binomial coefficients [5} and use them to expand

7

(i) (1+x)° and (ii) (x+3)’ in powers of x.

By the definition of the binomial coefficients,

!
5 = 5 = 5 , 7’20,1,2, ,5
7 5—-r r(S-r)

Therefore, remembering that 0! =1,

D O QM-

(i) Byequation (7.13),

=1+5x+10x% +10x° +5x* +°
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(ii) By equation (7.14),

5 5 5 5 5
5 _ 0,5 1,4 273 3,72
)y =
(x+3 X3+ x 3T+ 3 3
1 2 3 4 5

=243+ 405x +270x> +90x> +15x* + x°

> Exercises 26-33

The binomial coefficients form a pattern of numbers called the Pascal triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Each row begins and ends with the number 1 for the coefficients of x” and "
the expansion of (x+ )", and each interior number is the sum of the two numbers
diagonally above it.

The multinomial expansion

This is the generalization of the binomial expansion (7.14),

(x,+xy++x,)" 22 2 'xlnlxznz---xknk (7.15)

|
n, n, n, nln k'

in which the k-fold sum is over all positive integer and zero values of n,, n,, ..., n,,
subject to the constraint 7, +n,+ --- + n, = n. The multinomial coefficients

n n!

. tnten, !
m | nlnyleon !

> Blaise Pascal (1623 -1662). French philosopher and mathematician who made contributions to geometry, the
calculus and, with Fermat, developed the mathematical theory of probability (at the instigation of the gambler
Antoine Gombard, Chevalier de Méré). The Pascal triangle appears in the Traité du triangle arithmétique,
avec quelques autres petits traités sur la méme maniére, published posthumously in 1665. The work contains a
discussion of the properties of the binomial coefficients, with applications in games of chance. The triangle was
known long before; it appeared in a book by the Chinese mathematician Yang Hui in 1261, and the properties of
the binomial coefficients were discussed by the Persian Jamshid Al-Kashi in his Key to arithmetic, (c. 1425).
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are important in combinatorial theory (Section 21.6) and are used in a popular deriva-
tion of the Boltzmann distribution in statistical thermodynamics (Example 21.12).

EXAMPLE 7.5 Expand the trinomial (a+5+ c)3.

The possible values of (n,, n,,n,) are

(3,0,0), (0,3,0), (0,0,3), (2,1,0), (2,0,1), (1,2,0), (1,0,2),
0,2,1), (0,1,2), (1,1, 1)

with distinct multinomial coefficients

3! 3! 3!
3!0!0!_1’ 210! 7 1!1!1!_6

Therefore
(a+b+c)’ =@+ + ) +3(a*b +a’c+ab® + ac® + b*c + be?) + 6abe

» Exercises 34, 35

The method of differences

Many simple finite series can be summed if the general term u_can be written as the
difference

Then

=(y+u,+-+uy_ +v)—(y+v++v_)

:vn_UO

1 1 1 1
=—d— 4.4 .
r(r+1) 1.2 2.3 n(n+1)

EXAMPLE 7.6 Find the sum of the series Z

r=1

The general term can be written as

1 1 1

r(r+1):r r+1

and, therefore,
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i 1 B n _1_ n 1
r(r+1) <

r=I1 rlr r:lr-’-1
1 1 1 1 1 1 1 1
ot — || oo ——
1 2 3 n 2 3 n n+l

b _n

n+l n+l

> Exercises 36-39

Some finite series

The arithmetic series (7.8) is the simplest example of the family of series 2 " where
m is a positive integer; that is, the sum of powers of the natural numbers;® some of

these sums and other finite series are given in Table 7.1.

Table 7.1 Some finite series

N r=14243++n =ln2+ln=ln(’l+1)
i 2 2 2

! 15 1, 1 1
NP =1422 43+’ =+ 0P +—n=—n(n+1)(2n+1)
3720 6 6

r=1

o | 1 | 1
2r3 =1+2°+3%++n’ :Zn4+fn3+fn2 :an(n+1)2

r=1 2 4
Zr4=1+24+34+...+n4=1n5+1 sl L,
— 5 2 3 30

Zr(r+l) = fn(n+1)(n+2)

r=1

i r(r+1)(r+2)= in(n+ D(n+2)(n+3)
r=1

“ 1 n

or(r+l) T+l

o _1 1
Z r(r+ 1)(r+2) 4 2(n+1)(n+2)

r=1

The sums of many other series can be derived from these.

® The general method for generating these sums is due to the Swiss mathematician Jakob Bernoulli
(1654-1705), Professor of mathematics at Basel. With his brother Johann (1667-1748), professor of mathematics
in Groningen and at Basel, and in collaboration with Leibniz, he also made contributions to the calculus, theory of
differential equations, series, and the calculus of variations. It was this collaboration that led to the success of
Leibniz’s formulation of the calculus; by 1700 most of the elementary calculus (described in this book) had been
developed. Newton’s method of fluxions was never well known outside England. It was Jakob Bernoulli who first

used the word ‘integral’.
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EXAMPLE 7.7 Find the sum of the first n terms of the series 2-5+3-7+4:9+ ---

The general termis u = (r+ 1)(2r+3) for r=1,2,3, ... Then
u,=2r(r+1)+3r+3

and
Nou =2 r(r+D)+3) r+33 1
r=1 r=1 r=1 r=1
1 1
:2Xgn(n+l)(n+2)+3><En(n+1)+3><n

:%n(4n2+21n+35)

» Exercise 40

7.4 Infinite series

The limit of a sequence of partial sums is the (sum of the) infinite series

n—oo | &=
r=

S= lim [ unJ=u1+u2+u3+~- (7.16)
1

where the dots mean that the sum is to be extended indefinitely. The series has a
sum only if the limit is finite and unique; that is, when the sequence of partial sums
converges.

The geometric series

The geometric series is the limit of the sequence of partial sums

a1
S =l+x+x’+-+x"" = . x#l

(when x=1 the sum is n and the series diverges). The sequence of sums shows all six
types of behaviour illustrated in Figure 7.1 (type (b) only for the trivial case x=0),
and converges only when |x| < 1. Thus, when |x|< 1, x" — 0 as n — o, and

. 1-x" 1
lim =—
n—o| 1—x 1—x
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1
so that the geometric series is the expansion of the function 1 in powers of x:

1
l—=1+x+x2+x3+---, [x|<1 (7.17)
-X

The series diverges for all other values of x (x| > 1).

> Exercises 41-45

The harmonic series

S:]+l+l+l+...
2 3 4

Despite appearances, this series diverges. It can be written as a sum of partial sums,

1 (1 1 11 11
S=l+—+|=+—[+|=+=+=+=
2 (3 4 56 7 8
1 1 1 1 1 1 1 1
H—t—t—F =t =t —F+—+— |+
9 10 11 12 13 14 15 16
1
—1+5+s1+52+s3+---

in which s, contains 2" terms of which the last, and smallest, has value 1 /2" Each
of these sums is therefore larger than 2" x (1/2"*") = 1/2; for example,

1 11 1 1_1 111
s =ot—>—+— S,=—+—+-to>—t-+t-+
4 56 8 8 8 8 8
It follows that
S>1+l+l+l+l+~--
2.2 2 2

. . 7
and the series diverges.

7.5 Tests of convergence

The example of the geometric series demonstrates that it is straightforward to show
that a series converges, or otherwise, if a closed formula is known for the partial sums.

7 This demonstration of the divergence of the harmonic series and discussions of other infinite series are found
in Oresme’s Quaestiones super geometriam Euclidis (c. 1350).
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The sum of the infinite series is then the limit of the sequence of partial sums. On the
other hand, the example of the harmonic series shows that when such a formula is not
known less direct procedures must be followed.

Given a series

o0

Yoa =a+a,+a;+-

r=1

a necessary first condition for convergence is that the limit of the sequence {a } be
Z€ero:

arﬁo as r—ow

If this condition is satisfied, the series can be tested for convergence in a number of
ways.

The comparison test
Let

A=a +a,+---+a -+

4

B=b +by+--+b +--
r
be two series of positive terms. Then:

(i) Ifseries B converges, then series A converges if a <b..
(ii) If series B diverges, then series A divergesif a 2b.

EXAMPLE 7.8 The series

S:]+L+L+L+...
2P 3P 4P

converges if p>1 and divergesif p<1.

(i) p=1:Sisthe harmonic series, and diverges.
(ii) p < 1:eachterm of S (after the first) is larger than the corresponding terms of the
harmonic series, and § diverges.
(iii) p > 1: write the series as

=l+s +5,+
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inwhich s contains 2" terms of which the first, and largest, is 1/2"”. Each sum

2" 1

2 | or7!

n

and

s, is then less than

| 1 Y (1Y

2r71 ’ pa " 2p71

S<1+

The series on the right is a convergent geometric series ZX’ with x=1/2"""<1.

» Exercises 46, 47

d’Alembert’s ratio test®

The series a, +a,+ - +a,+a +
r r+l1

a
(i) convergesif lim [-“L<1
r—0( a
2
.s . . . ar+l
(ii) divergesif lim >1
r—>0 a}‘

(iii) may do either if the limit equals 1, and further tests are necessary.

EXAMPLES 7.9 The ratio test

(i) The geometric series 1+x T

r+l

a
The general termis a =x" sothat @, =x"" and —*1 = X, independent of . Then
a

”

a
lim || = | x|
row| a,

and the series converges if |x| < 1, diverges if |x| > 1, and the test fails for x ==1.
In this case it is readily shown by inspection that the series diverges when x ==1.

8 Jean LeRond d’Alembert (1717-1783). Secretary of the French Academy, he is best known for his contribution
to the post-Newtonian development of mechanics with his principle of virtual work (d’Alembert’s principle)
published in his Traité de Dynamique (1743). He contributed to the theory of partial differential equations, the
calculus, and infinite series. In his Différentiel (1754) in the Encyclopédie des sciences, des arts et des métiers
(1751-1772) he first gave the derivative as the limit of a quotient of increments but, because of the conceptual
difficulties associated with the limit as a process consisting of an infinite number of steps, the definition was not
accepted until the work of Cauchy (1821). He gave the complete solution of the precession of the equinoxes.
Although the ratio test is usually ascribed to him, and sometimes to Cauchy, it was probably first given in 1776 by
the Cambridge mathematician Edward Waring (1734-1793).
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23
. . . X
(ii) The exponential series 1+ —+—+—+---
o2t 3
x xr+1 a.,
The general termis @, =— sothat @, =——— and —* = —— Then
oo o(r+ ) a r+l
lim [ = lim =0
r—oo| a, r—olr+1

and the series converges for all values of x.

» Exercises 48, 49

Cauchy’s integral test’

Let a,+a,+---+a,+ - beaseries of decreasing positive terms, a, , <a,. Let a(x)
be a function of the continuous variable x such that a(x) decreases as x increases and
a(r)=a,. The series then

o0

converges if J a(x)dx  converges (is finite and unique)
1

diverges if Ja(x)dx diverges
1

EXAMPLE 7.10 The harmonic series 1+ % + % +oeee

r

[ L[],

1

1 1
In this case, a. =— and a(x)=—.Then
r X

and Inx — o as x — co. The harmonic series therefore diverges.

» Exercises 50, 51

® Augustin-Louis Cauchy (1789-1857). The leading French mathematician of the first half of the nineteenth
century, he is best known for his work on the theory of functions of a complex variable, with the Cauchy integral
theorem and the calculus of residues. He made contributions to, amongst others, partial differential equations, the
theory of elasticity, infinite series, and limits (see d’Alembert). He invented the word determinant for his class of
alternating symmetric functions (1812). The integral test is sometimes named for MacLaurin.
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Alternating series

If the terms of the series a, +a, +a, + -+ become progressively smaller and alternate
in sign then the series converges. For example, the alternating harmonic series

1 1 1
l——+———+--
2 3 4

converges. We will see in Section 7.6 that the sum of this series is In 2.

7.6 MaclLaurin and Taylor series

Power series

A power series in the variable x has the form of an ‘infinite polynomial’
Fexte,xt e+
Cotex+e,x +eyx

where ¢, ¢, c,, ... are constants. The convergence properties of such series can be
investigated by the methods described in the previous section. Thus, applying the

ratio test, a power series converges when

n+l
. € . |€
lim |- =|x| lim [ <1
n—o0 cnx” n—w| ¢,
or, equivalently, when
. c,
[x|< lim =R (7.18)
n—x0|(C
n+l

where R is called the radius of convergence of the series. The series is therefore
convergent when |x| <R; it diverges when |x| >R, and the case x==%R has to be
tested by other methods.

The geometric and exponential series are examples of power series. The
geometric series has radius of convergence R =1, the exponential series has R=o0
(see Examples 7.9).

EXAMPLES 7.11 Radius of convergence

(i) The coefficient of x” in the series

1
is ¢, =—.Bytheratiotest, |c /c  |=(n+1)/n—1 as n— o and the radius of
n

convergenceis R = 1. The series therefore converges when |x| <1 and diverges when
|x|> 1. It also diverges when x = 1, when it is the harmonic series, but converges
to In2 when x=-1 (see the MacLaurin series for the logarithmic function).
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(ii) The coefficient of x” in the series

00 _3 n
2{( X)

n2

is ¢, = (=3)"/n*. By the ratio test, le,/c,..|=1/3)n/n+ 1> = (1/3) as n —
and the radius of convergence is R =1/3. The series therefore converges when
|x| < 1/3. Tt also converges when |x|=1/3 (see Example 7.8).

> Exercises 52-57

The MacLaurin series'®

We saw in Section 7.4 that the geometric series can be regarded as the expansion of the
function 1/(1 —x) in powers of x. Similarly, the exponential series can be regarded as
the expansion of that function f(x) =e* whose derivative is equal to itself, /"(x)=f(x).
Many other functions can be expanded in this way.

Let f(x) be a function of x that can be represented as a power series

f(x)=co+clx+czx2+c3x3+c4x4+ (7.19)

The coefficients ¢, ¢, c,, ... canbe obtained in the following way. The derivatives of
the function are

o _df .
S ) :E=6‘1+2C2x+3c3x +4c4x 4
ooy 2 LS )
S(x) :—2=202+6c3x+1204x +.--
X
17 d3f 2
S (x):F:6C3x +24c4x+...
X

Then, letting x=0,

f0)=c,, f(0)=c,, ["(0)=2lc, ["(0)=3lc,,

and, in general, for the nth derivative,

d"f(x)

o)==
dx

1
=nlc, c =— £"(0)
n n n!
x=0

1 Colin MacLaurin (1698-1746), professor of mathematics at Edinburgh. The series called after him appeared
in his Treatise of fluxions (1742), but the more general Taylor series was published in 1715, and was known to
the Scottish mathematician James Gregory (1638-1675). The Treatise contains also the method of deciding the
maximum/minimum question by investigating the sign of a higher derivative.
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Substitution into (7.19) then gives

f=10)+5 f(0)+ f”(0)+ f"’(0)+ 2 f<">(0) (7.20)

n=0 1

This power series is called the MacLaurin series
expansion of the function f{(x).

The MacLaurin series is an expansion of the function f(z)
f(x) about the point x=0 (Figure 7.2); that is, the value
of the function at point x is expressed in terms of the
values of the function and its derivatives at x=0. For
this to be possible the function and its derivatives
must existat x =0 and throughout the interval 0 tox. In
addition, the expansion is valid only within the radius of
convergence of the series.

Figure 7.2

Examples of MacLaurin series

1. The binomial series’

The binomial series is the MacLaurin expansion of the function (1 +x)? for arbitrary
values of . We have

) =1+

[ =a(l+a)!

f7(x) =a(a—1)(1+x)"?
f7(x) =a(a—1)(a=2)(1 +x)*>

P =a(a-1)a-2)...(a—n+ 1)1 +x)*"

When x =0, the factor (1+x)*™" is replaced by 1,

fO)=1, f(0)=a, f"O)=al@a-1), f"(0)=a(a-1)a-2),

and the MacLaurin expansion is

(1+x)*=1+ax+

a(a—1) 24 a(a—1)(a-2) [
2

3 (7.21)

' The binomial theorem (series) was discovered by Newton in 1665 and described in 1676 in letters written to
Henry Oldenburg, secretary of the Royal Society, for transmission to Leibniz. The theorem was published by
Wallis in his Algebra of 1685.



7.6 MacLaurin and Taylor series

with general term

a(a-1)(a-2)..(a—n+1) ,
n! *

The series (7.21) is called the binomial series, and is the generalization of the
binomial expansion, equation (7.11), to arbitrary powers. In fact, when a is a positive
integer n, the (n+ 1)th derivative and all higher derivatives are zero, and (7.21)
reduces to the binomial expansion. When a is not a positive integer, the series has
radius of convergence R = 1. Thus, applying the ratio test,

1 | r |
= lim =
V' —00 a—}"|

e
R=lim [—*

r—0 cl‘+1

and the binomial series converges for values —1 <x < 1. It may also converge when
x==l1.

The more general form, the expansion of (x+y)% is obtained from (7.21) by
factorizing out the term x* if |x| > [y| or y* if |y|>|x|. Thus, if |x|> |y,

(x+y)* :x“[1+zj
x

_ H_a[z}_a(a—l)[z]:_a(a—l)(a—2)(lJ3+m
X 2! X 3! b

and the series converges since |y/x| < 1. Equation (7.22) can also be written as

(7.22)

-1 -D(a-2
(x+y)a :xa_'_axafly_'_a(a )xa—2y2+a(a )((Z )xa73

5 ; P4 (7.23)

EXAMPLES 7.12

2, (EDE2)(3)

0 ﬁ= (1-x)" = 1+(—l)(—x)+%(—x) Ny

(=x)* +---

=l4+x+x0 410+

(i) (1+x)2=1+ (%J(x) + (é)gé) () + B (x) +---

x o2 X st
=l+-———+———
2 8 16 128
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1/2 1\ 1
(ii) (8+x)1/2=J§(1+§J =8 1+(%j(§]+(2)£!2)[

2 3 4
:\/g[l+i_x_+ X Sx +J

16 512 8192 524288

For example, if x =1, using the first five terms of the series,

+__
16 512 8192 524288
= /8 X 1.06065941 = 2.999998

\/§=\/§(1+L—L 1 5 +J

2. Trigonometric functions

The trigonometric functions sinx, cosx and tan x have continuous derivatives at
x =0, and can be expanded as MacLaurin series. For example, for the sine function,

f(x)=sinx, f'(x)=cosx, [f"(x)=-sinx, f[”(x)=-cosx,

f(0)=0, f0)=1, f7(0)=0, f7(0)=-1,
Then

XX X

sinx=x—"—+——"—+---
357
Comparison with the exponential series shows that the sine series converges for all
values of x.

3. The logarithmic function

The function Inx cannot be expanded as a power series in x because the function
and all its derivatives are discontinuous at x =0. However, the function In(1 +x) is
well behaved at x=0:

/@ =h(+x) 0 =0
/ _L 7 =
S@ = £ =1
O — 5 f7(0) =-1
(1+x)

) =2 770 = 2
(I+x)

7o) = — £7(0) =31

(1+x)*



7.6 MacLaurin and Taylor series

The nth derivative at x=0 is /")(0) = (=1)""'(n - 1)!, and

2 x3 x4

ln(1+x)=x—x—+———+---
2 3 4

The series converges when |x|<1. Thus, ¢ /c ., =(r+1)/r—1 as r - and by
the ratio test (7.18), the radius of convergence is R = 1. In addition, the series is the
(convergent) alternating harmonic series when x=1:

ln2:1—l+l—l+
2 3 4

4. A list of some useful series

1. (1+x)a=1+ax+a(az'_l)xz+a(a_1;(a_2)x3+m x| <1
3.5 7
2. sinx:x——+x——x—+~-- all x
357
2 4 6
3. Cosle__+x__x_+... allx
TG
3 5 7
2 1
4 tanx=x+— 4% +7_x T, SX<y
315 315 2 2
2 3 4
5. ln(1+x):x_x_+x__x_+m —1<x<+1
2 3 4
23 4
6. € =lhx+—t+—t—t- all x
203 4
3005 7
7. sinhx=x+"—+—+"—+--- allx
357N
2t S
8. coshx=1+—+—+—+--- all x
20 4 6

> Exercises 58-67

The Taylor series'?

The MacLaurin series, the expansion of a function f(x) about the point x=0, is a
special case of the more general expansion of the function about the point x =a:

"2 Brook Taylor (1685-1731), secretary of the Royal Society. The series called after him appeared in his
Methodus incrementorum (1715), but had been known to James Gregory.
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(x a) (x— a) (x- a)

J(x)=f(a)+

S (a)+ f@)+——f"(a)+

(7.24)
2 (.X' na) f(n)( )

n=0

This power series in (x —a) is called a Taylor series expansion of the function f(x).
The verification and conditions of existence of the Taylor series are as for the
MacLaurin series.

EXAMPLE 7.13 Taylor series

(i) Expand x* about the point x= 1.
We have

Fx) =xt, () =4x", fr(x)=4x3x%, f7(x)=4lx, [(x)=4!,
M) =0ifn>4

=1 ()= % 171 = ; £7(1)= % £y =41

Therefore,

xt = 1+[?](x—1)+[;](x—1)2 +{:J(x—l)3 +(x-1)*

(ii) Expand cosx about x=mr/2.

f(x)=cosx, f'(x)=-sinx, f”(x)=—cosx, f”(x)=sinx, ...

S@/2)=0, f(n/2)=-1, ["(r/2)=0, ["(/2)=1, ...

Therefore
1 ;1 s 1 ,
cosx=—(x—n/2)+§(x—1t/2) —a(x—n/Z) +%(x—1t/2) +oe

» Exercises 68-71

7.7 Approximate values and limits

The MacLaurin and Taylor series provide a systematic tool for approximating
functions in the form of polynomials. Consider, for example, the logarithmic series

2 .3 4
ln(1+x)=x—x—+x——x—+~--, —l<x<+1
2 3 4



7.7 Approximate values and limits

If the series is terminated after a finite number of terms, the result is a polynomial
approximation to the function. The series therefore provides a sequence of such

approximations:

Some values of these are shown in Table 7.2.

Table 7.2 Values of In(1 +x)

u=x u2=x—x2/2 u3=x—x2/2+x3/3 ln(1+x)=’}i_1)1010(un)
0 0 0 0

0.0001 0.0000 9999 5 0.0000 9999 5000 0.0000 9999 5000
0.001 0.0009 995 0.0009 9950 0333 0.0009 9950 0333
0.01 0.0099 5 0.0099 5033 33 0.0099 5033 08

0.1 0.095 0.0953 333 0.0953 310

0.2 0.18 0.1826 66 0.1823 21

1.0 0.5 0.83 0.69

The table shows that u, =x is a good approximation to In(1 +x) when x<0.1 and
that the series converges rapidly for these small values of x, each term providing at
least one additional figure of accuracy. Convergence is less good for larger values of x,
and eight terms are needed to give 10% accuracy when x = 1. The theoretical basis for
this use of the series is Taylor’s theorem.

Taylor’s theorem

Let f{x) be a continuous single-valued function of x with continuous derivatives

L), (), .., f(x) inthe interval a tox, and let /""V(x) exist within the interval.
Then
1= 1@+ 8D 0 O
(7.25)
PO 0y 1 R, ()
where
R 0=C00 “)) £ b) (7.26)

and a<b<x is some point in the interval. The term R (x) is called the remainder
term and is the error involved in approximating the function by a polynomial of
degree n. The smallest and largest values of R, (x) are lower and upper bounds to the
error. The infinite series is obtained in the limit n — oo if R (x) =0 as n— oo.
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EXAMPLE 7.14 The exponential series

By Taylor’s theorem (for a=0),

2 n

X X
e =l+x+—+-+—+R (x)
2! n "

where

xn+l 5

= e
" (n+1)

for some point 0 <b <x. When x>0, the smallest and largest values of R, are given
by

xn+l xn+| .

<R <
D) S ey ©

Then

2 n n+l 2 n n+1
X ¥ X X ¥
I+x+—+--+—+ <e <l+x+—+--+—+ e
! n  (n+1) 2! n  (n+1)

For example, when x=0.2 and n=3 (and rounding all numbers to six decimal places),
the cubic approximation has value

2 3
(02)°  (02)

A =1402+ =1.221333

and the error bounds are given by

0.000067 < R, < 0.000067¢"
so that

1.221333 +0.000067 < €’ < 1.221333 + 0.000067¢"*
The lower bound is 1.221400. For the upper bound,

"% < 1.221333 +0.000067¢"
"2 - 0.000067¢%% =0.999933¢%2 < 1.221333

Therefore

%2 <1.221333/0.999933 = 1.221415



7.7 Approximate values and limits
and
1.221400 < ™* < 1.221415
The exact value is 1.221403.

> Exercise 72

Limits

The MacLaurin series shows how a function behaves when the variable is very small.
Thus In(1 +x) =x when x is small enough, so that in the immediate vicinity of x=0
the function y=1In(1 +x) can be approximated by the straight line y =x. Similarly,
when x is small enough,

. X
sinx=x——+"——-.=x
34
2 4 2
X X X
cosx=1-—+"——.2]1 -
20 4 2

Another way of expressing the same results is in terms of limits. Thus (Figure 7.3)

sin x ¥ oxt
- = 1 _ ...
x 33 Y

so that in the limit x — 0, !

lim (W] =1 (7.27) o~ x o~

X N o \ ’
Similarly, v sin

X
Figure 7.3
1—
lim( "0”] _1 (7.28)
x—0 x2 2

More generally, the use of power series provides a systematic way of determining the
limit of the quotent of two functions,

lim EACO)
x—a g(x)

when f(x) > 0 and g(x) > 0 as x — a. It is not possible to substitute x =a in this
case because the result would be the indeterminate 0/0. However, if both functions
are expanded as Taylor series, by equation (7.24), we have
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2
o S@*a=af @+ @

- 2
) @+ - g @+ B

g"(a)+ -

Then because f(a)=g(a)=0,

(x

;!a) f”(a)+

5 g =9

7(x) _ Sf(a)+

gy

and, if g’(a) is not zero,

im L9 _S@ S (7.29)

x—a g(x) g'(a) x>a g'(x)

This method of finding limits is called PHépital’s rule."” If g’(a)=0 but f"(a)#0 the
limit is infinite. If /(@) and g’(a) are both zero the process is repeated to give

lim L&) _ (@

7.30
x=a g(x)  g"(a) 730

and so on.

EXAMPLE 7.15 Find the limits.
. . sinx —x
o ()

siny—x  (x—x/3+x° /51— —x
x3 x3

X33+ x5 = 1 2 1
= x/3.+); /3 me— = a5 x>0
X 35 6

2 x
(i) lim [LZJ
x—=a (ex_l)

13 Guillaume Francois Antoine de I"'Hopital (1661-1704). French nobleman and amateur mathematician, he
was tutored by Johann Bernoulli in the new calculus. The rule ascribed to him was contained in a letter from
Bernoulli in 1694 and appeared in 'Hopital’s influential textbook on the calculus, Analyse des infiniment petits
(1696).



7.8 Operations with power series
The numerator is x*(1 +x+x2/2 + ---). The denominator is
[(I4+x+x22+4 )= 1P =(@x+x?2+ )P =x"+x"+ -
Therefore,

xre® X (1+x+--7)
= -

(e =1 x2(I+x+-)

1 as x—0

This example is important in the statistical mechanics of solids. In Einstein’s
theory of the heat capacity of simple atomic solids, each atom in the solid is
assumed to vibrate with the same frequency v. The molar heat capacity of the
solid is then

with x =hv/kT, where h is Planck’s constant, & is Boltzmann’s constant, R is the
gas constant and 7'is the temperature. The taking of the limit x — 0 corresponds
toletting 7— oco. Then C,— 3R.

> Exercises 73-77

7.8 Operations with power series

Let

A(x)= i ax" and B(x)= i b x"
=0 =0

be two power series with radii of convergence R, and R, respectively.

(i) Addition and subtraction.

The power series may be added or subtracted term by term to give a power series
C(x)= A(x)£B(x)=Y (a b )x" (7.31)
r=1

whose radius of convergence is at least as large as the smaller of R, and R,

(ii)  Multiplication.
The product of 4(x) and B(x) is the double infinite sum

C(x)= A(x)B(x) = i 200: abx"™

r=0s5=0
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and this can be rearranged as the Cauchy product

C(x) = ayb, +(ayb, + a,b))x +(ayb, + a,b, + azbo)x2 +-oo= z cx’ (7.32)

where ¢ = ab
r ir—i

i=0

The radius of convergence of the product is equal to the smaller of R, and R,.

EXAMPLE 7.16 Multiplication of power series

2
e3x><e_2x=[1+3x+(3x) HH( 2wy + T2 2x) ]
2! 2!

2 2
= 1+[1x(- 2)+3x1]x+{1x( 22) +3%(= 2)+37><1:|x o

x2
=l+x+—+--=e
2!

X

> Exercise 78

(iij)  Differentiation and integration.

A power series may be differentiated or integrated term by term to give a power series
whose radius of convergence is the same as that of the original series. Thus, term by
term differentiation of

A(x)= z ax" =a,+ax+ a2x2 + a3x3 +oe
r=0

gives

—= 2 mrxr_1 =a,+2ax+ 3a3x2 e (7.33)

Similarly, termwise integration of the series 4(x) gives

0

JA(x)dx = i a | x"dx= z Lo lye
r=0

ot
(7.34)

4 3

—c+a0x+—x +Ex
2

The radius of convergence of both the derived series and integrated seriesis R=R ,.



7.9 Exercises

EXAMPLE 7.17 Differentiation and integration of power series

ap_ :i(l+x+x2+x3+x4+---)
dx\l-x) dx

=14+ 2x+3x +4x 4+ =

(1-x)°

J[ ! ]dx—J(1+x+x e A )dx
1-x

x2 x3 x4 5
:c+x+7+—+—+?+---:—ln(l—x)+c

> Exercises 79, 80

7.9 Exercises

Section 7.2
Find (a) the general term and (b) the recurrence relation for the sequences:
1. 1,4, 7, 10, ... 2.1,3,09, 27, ... 3.1, -4 L L
757025 125
Find the first 6 terms of the sequences:
1 2
4, ur+1=ur+5; u1=0 (3] n=0,12,.
1 w,
u =———; x=12,3,.. 7. w,,, =" w=1
*ox(x+2) n
8 u ,=u, +2u; uy=1u=3 9. u, ,=3u, —2u; u=1lu=1/2
10. Upn = 3un+1 - 2un; Uy=1u,
Find the limit » — o for:
2
' AL PP VR P 14. — 15. ——— 16 3rotdrtl
3 r+2 r+2 rrar+l 57 —6r—1

17. Find the limit of the sequence {u , /u } for u ,=u , +2u; wu,=1, u,=3
(see Exercise 8).

Section 7.3

Find the sum of (i) the first n terms, (ii) the first 10 terms:

18. 1+5+9+13+--- 19. 3-2-7-12—--- 20. 14+34+9+27+---
1 1 1

21, l+—+—+—+
3 9 27

Find the sum of the first n terms:
22. 0 +x 23, x+ 202443 4 oo
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Use equation (7.11) to expand in powers of x:
24, (1+x)°  25. (1+x)

Calculate the binomial coefficients (n} r=0,1,...,n, for
r

26. n=3 27. n=4 28. n=7

Use equation (7.13) or (7.14) to expand in powers of x:
29. (1-x*  30. 1+30)* 3L (1-4x)° 32. 3-20* 33. B+x)°

4!
34. (i) Calculate the distinct trinomial coefficients ——————. (ii) Use the coefficients to

TRER
expand (a+b+ o). s
3!
35. (i) Calculate the distinct coefficients ———————. (ii) Use the coefficients to expand
3 nln,'n,!n,!
(a+b+c+d). 1723
10 1
36. Find .
oin(n+1)
. . 1 11 1 . . 2 1
37. (i) Verify that = —| ————|, then (ii) find the sum of the series 2 _
r(r+2) 2\r r+2 o rr+2)
38. (i) Express _ in partial fractions, then (ii) show that
r(r+1)(r+2)

n 1 1 1
2 Fr+D)(r+2) 4 2n+1)(n+2)

r=1

39. (i) Verify that (1+ r)3 — =372+ 3r+ 1, then (ii) show that

2*!4 P2 = én(n+ D(2n+1)

r=

40. (i) Expand (1+ r)6 — /%, then (ii) use the series in Table 7.1 to find the sum of the series
3
r=1

Section 7.4
(i) Expand in powers of x to terms in x%. (ii) Find the values of x for which the series converge:

1 1 1
42, .
1-3x 1+ 5x2 2+x

41.

44. (i) Use the geometric series to express the number 1/(1 05— 1) as a decimal fraction.
(ii) Show that the decimal representation of 1/7 can be written as 142857/ (105-1)
(see Section 1.4).

45. The vibrational partition function of a harmonic oscillator is given by the series

0

—nb,, /T

g, =2 "
n=0

where 6, =hv,/k is the vibrational temperature. Confirm that the series is a convergent
geometric series, and find its sum.



7.9 Exercises

Section 7.5
Examine the following series for convergence by
) & < Inr
Comparison test (use Inn<n): 46. — 47. -
n=2 In r=1 T
o0 sll o0 ]
D’Alembert ratio test: 48. 2 49, —
=0 (S+ 1)‘ =1 ra
. | S|
Cauchy integral test: 50. ) — 51.
r=1 ra n=2 nlnn
Section 7.6

Find the radius of convergence of each of the following series:

52. i X 53. i (=1 x* 54. i nx" 55. ix—z
m=0 4m r=0 n=1 n=1 N

® (—1)" 2n
s6. Y w57, 3 DX
n=0 3"
Write down the first 5 terms of the MacLaurin series of the following functions:

1
60. (1-x)" 6L

58. (1+x)'° 59, .
1+x 3+x

In(1-2x)+2 . T -1
IA=20220 gy o 65. ¢
X X

62. sin 2x’ 63.

66. A body with rest mass m and speed v has relativistic energy

2
2 moc

E=mc" =—/—e
\/1—1}2/c2

and kinetic energy T'=E — moc2. Express T'as a power series in v and show that the series
reduces to the nonrelativistic kinetic energy in the limit v/c — 0.
67. The equation of state of a gas can be expressed in terms of the series

" i
pV =nRTY B(T) =
i=0 4

where the B, are called virial coefficients. Find the first three coefficients for

2
(i) the van der Waals equation, [ p+ nza](V —nb)=nRT
V
(ii) the Dieterici equation, p(V —nb) = nRTe~“" KTV

(i) Expand each of the following functions as a Taylor series about the given point, and
(ii) find the values of x for which the series converges:

1
68. —,1 69. ', 2 70. sinx, /2 71. Inx, 2
x
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Section 7.7

72. (i) Find the MacLaurin expansion of the function (8 +x)
this expansion to find an approximate value of /9 . (iii) Use this value and Taylor’s
theorem for the remainder to compute upper and lower bounds to the value of 9.

13 up to terms in x. (ii) Use

Find the limits:
.e - . tanx—sinx . efte =2 .
73. lim 74. lim —— 75. lim ——— 76. lim
x>0 x x—0 X x>0 cosx—1 x—>12 1

77. The energy density of black-body radiation at temperature 7'is given by the Planck

formula

8nhe e _
p() ==l M 11!
A
where A is the wavelength. Show that the formula reduces to the classical Rayleigh-Jeans
law p=8nkT/ 2* () for long wavelengths (A — o), (ii) if Planck’s constant is set to zero
(h—0).

Section 7.8

78. Find the Cauchy product of the power series expansions of sinx and cos x, and show
that it is equal to %sin 2x.

79. Differentiate the power series expansion of sin x and show that the result is cos x.

80. Integrate the power series expansion of sin x and show that the resultis C — cos x, where
Cis a constant.



8 Complex numbers

8.1 Concepts

We saw in Section 1.7 and in Chapter 2 that the solutions of algebraic equations are

not always real numbers; in particular, the solutions of the equation x*=—1 are

x= i\/—_l , and the square root of a negative number is not a real number.! Such
numbers are incorporated into the system of numbers by defining the square root of
—1 as a new number which is usually denoted by the symbol i (or j in engineering
mathematics) with the property

i?=-1 (8.1)

A number containing i = V-1 is called a complex number; examples of complex
numbers are 2i,—37, and 2 + 5i. The general complex number has the form (the letter
z is usually used to denote a complex number)

z=x+1iy (8.2)

where x and y are real numbers. The number x is called the real part of z, and y is called
the imaginary part of z:

x=Re (2), y=Im(2) (8.3)
If x=0 then z=1iy is called pure imaginary. If y=0 then z=x is real, so that the

set of complex numbers includes the real numbers as subset.

Powers of i

Every integer power of i is one of the numbers i, —i, 1, —1; for example

. . IR i
P=i*xi=—i, it =(*)? =1, it=cz—=—=j
i 2 -l
In general, for integers n=0, £1,+2, ...,
l~4n :_’_1’ l-4n+1 =+i, l-4n+2:_1’ l-4n+3 =—j (84)

! Square roots of negative numbers are mentioned in Cardano’s Ars Magna of 1545 in connection with the
solution of quadratic and cubic equations. Cardano called such a result ‘as subtle as it is useless’. Rafael Bombelli
(1526-1572), Italian engineer, called +J-1 ‘pitt di meno’ (plus of minus) and ‘meno di meno’ (minus of minus),
and presented the arithmetic of complex numbers in his Algebra of 1572. The first serious consideration of
complex numbers was by Albert Girard (1595-1632) who in his L’invention nouvelle en I'algébre (New discovery
in algebra), 1629, published the first statement of the fundamental theorem of algebra. He called the complex
solutions of equations ‘impossible’ but ‘good for three things: for the certainty of the general rule (the theorem),
for the fact that there are no other solutions, and for their use’. Descartes used the words ‘real’ and ‘imaginary’.
Leibniz factorized x* + a* = (x + a\ﬁ)(x - ax/;)(x + a\/——i)(x - a\/——i). Euler proposed the symbol i for V=1 in
1777, and this was adopted by Gauss in his Disquisitiones arithmeticae of 1801.
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Apart from their role in extending the concept of number, complex numbers occur in
several branches of mathematics that are important in the physical sciences; for
example, the solutions of the differential equations of motion in both classical and
quantum mechanics often involve complex numbers. Complex numbers also occur
in the formulation of physical theory; the basic equations of quantum mechanics

necessarily involve i=+/-1.

8.2 Algebra of complex numbers

Complex numbers can be added, subtracted, multiplied, and divided in much the
same way as ordinary real numbers. It is only necessary to remember to replace i* by
—1 whenever it occurs. Let two complex numbers be

z, =X+, z

=x,+iy, (8.5)

1 2

Equality
Two complex numbers are equal if their real parts are equal and if their imaginary
parts are equal:

z,=z, if x,=x, and y =y, (8.6)

Addition
Z+z, = +x) +i(y, +,) (8.7)

The real parts of z, and z, are added to give the real part of the sum, the imaginary
parts are added to give the imaginary part of the sum.

EXAMPLES 8.1 Addition and subtraction
i) G+2)+@-3)=B+4)+2-3)i=7—-i
(i) B+2)—(3-2))=3-3)+(2+2)i=4i
(1)) B+2)+@-2))=7

> Exercises 1-3

Multiplication
2,2, = (x1 + iyl)()c2 + iyz)
=x,(x, +iy,) + iy, (x, + iy,) = (x,x, +ix, y,) + (i, x, + izylyz) (8.8)
= (X1X2 _ylyz) + i(x]yz +y1x2)

using i?=—1.
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EXAMPLES 8.2 Multiplication

() Q+30)(3+4)=2(3+4i)+3i(3+4i)=6+8i+9i+12i*=—6+17i
(i) i(2-3i)=2i—3i*=3+2i

» Exercises 4-7

The complex conjugate

If z=x+1iy is an arbitrary complex number then the number obtained from it by
replacing i by —i is

¥ =x—1iy (8.9)
and is called the complex conjugate of z (sometimes Z is used instead of z¥). z is then

also the complex conjugate of z*. The conjugate pair of complex numbers z and z*
has the following properties:

1) %(z+z*):%[(x+iy)+(x—iy)]zxZRe(z) (8.10)

(i) l(z—z*):1[(x+iy)—(x—iy)]=iy=ilm(z) 8.11)
2 2 '

(iil) zz*=(x+iy)(x—iy)=x>+y* (real and positive) (8.12)

EXAMPLES 8.3 Conjugate pairs of complex numbers
(i) If z=2+3i then z*¥*=2-3i and

1
—(z+z%=2, lZ—z* =3i, zz%=22+3*=13
2 2
(ii) If z=1—1i then z*=1+1{ and
1 1 .
—(z+z%=1, —(z—z%) =, zz¥*= =
2( +z%)=1 2( *) *=14+1=2

(iii) Solve the quadratic equation z*—3z+4=0 (see Example 2.18).

z=@=l[3iﬁ}=%[3iiﬁ]

2 2
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and the roots of the quadratic are the complex conjugate pair
1 . 1 .
ZZE 3+1\ﬁ s Z*ZE 3—lﬁ .

> Exercises 8-11

Division

z X, +1i
Z+Z=—1—(1 yl)

1 2 - .
zZ, (x2 + 1y2)

The division can be performed by the rules of ordinary long division. The simpler
method is to make use of property (8.12) of conjugate pairs to transform the
denominator into a real number. Thus, multiplying top and bottom by z¥=x, —iy,,
the complex conjugate of the denominator, we have

z zlz;k gy, —iy,) (g Dy (x, —1y)

Z5 Zzz;< (xz + iyz )(xz - iyg) x§ + y;

(8.13)
XX, + X, — X
Y2 TN n Xy =XV,

2. 2 2. 2
Xy 0, X, t ),

The division is defined only if z, #0; thatis, x,#0 and y, #0.

EXAMPLES 8.4 Division

2+3i _(2+30)3-40)_ 18+i _18 i

O 34 (G+4i)3-4i) ¥ 4+42 25 25

(ii) le:=(1+z:)(1+z:)=0+2i=l_
1-i (A-H14+§) 1+1

> Exercises 12-15

8.3 Graphical representation

The complex number z=x+1iy is represented graphically by a point in a plane,
with coordinates (x, ), as in Figure 8.1.> The plane is called the complex plane. Real

% John Wallis (1616-1703) first suggested that pure imaginary numbers might be represented on a line
perpendicular to the axis of real numbers. Caspar Wessel (1745-1818), Norwegian surveyor, discussed the graphical
representation of complex numbers in his On the analytical representation of direction of 1797, and Jean Robert
Argand (1768-1822), Swiss bookkeeper, in his Essai of 1806. Gauss used the same interpretation of complex
numbers in his fourth and final proof of the fundamental theorem of algebra in 1848, by which time he believed
mathematicians were comfortable enough with complex numbers to accept it. The complex plane is also called the
Gaussian plane.



8.3 Graphical representation

numbers, with y =0, are represented by points on the x or real axis and pure imaginary
numbers, with x =0, lie on the y or imaginary axis. The representation is called the
Argand diagram.

y (imaginary axis)

z (real axis)

Figure 8.1

The distance of point z from the origin, »=+/x* + y?, is called the modulus or
absolute value of z and is written

r=modz=|z]| (8.14)

Complex numbers with the same modulus =]z | lie on the circle of radius 7 in the
plane. When |z| =1 the point lies on the unit circle.

The polar representation

The position of the point z=x+iy in the plane can be specified in terms of the polar
coordinates 7 and 6, as in Figure 8.1. Then

x=rcos 6, y=rsin 6
and the complex number can be written in the polar form
z=r(cos B+ isin 6) (8.15)
The angle Ois called the argument or angle of z,
O=argz (8.16)

The angle can have any real value but, as discussed in Chapter 3, the trigonometric
functions in (8.15) are periodic functions of 8so that the number z is unchanged when
a multiple of 2x is added to 6. A unique value can be computed from x and y by
the prescription given in Section 3.5 for the transformation from cartesian to polar
coordinates; thus, given that tan 6=y/x,

arg z=tan"" [Z] if x>0
x
(8.17)

=tan~! (Z]+n if x<0
x

in which the inverse tangent has its principal value.
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EXAMPLES 8.5 Express z=x+iy in polar form.

(i) z=1+1i

Wehave x=1 and y=1 so that

r=lz|=yx2+y* =2, tan™ [Z]=tan_l(1)

X

The principal value of tan™'(1) is n/4, and argz=m/4 because the point lies in
the first quadrant. Therefore

Y z=141
T T
=+/2 —+isin—
z x/—(cos4 zsm4j .
0
x
(i) RNy ©
2 2
Figure 8.2
Wehave x=—1/2 and y=—+/3/2 so that Y
2 2
1 3 0T
T
(-5)
tan ™! (Z]=tan_l(\/§) 27 2
* Figure 8.3

The principal value of tan_l(x/g) is ©/3 and, because x<0, it follows that
argz=tan —1(\5) + 1 =4n/3. Therefore

4t . 4m
zZ=Cc0S— +Isin—
3 3

» Exercises 16-22

Representation of arithmetic operations
Addition and subtraction

In Figure 8.4, the numbers z, =x, +iy, and z,=x, + iy, are represented by points P
and Q, respectively. The representation of the sum

z +z,=(x, +x) +i(y, +,)



8.3 Graphical representation

is obtained by completing the parallelogram OPSQ. Point § has coordinates (x, +x,,
¥, +¥,) and therefore represents the sum. Similarly for subtraction; the difference

z,—z, isthesumof z, and —z,.
y
_________________ . S(z1 + 22)
=
Y — - /1
_____ - / |
Q(22) / :
/o
Ya P(z4) ! :
|
| |
1 1 x
O L1 Lo

Figure 8.4

Multiplication and division

The operations of multiplication and division are the more easily described when the
numbers are expressed in polar form. If

z,=r,(cos 6, +isin §), z,=r,(cos 6, +isin 6,) (8.18)
then

2,2, =r,1,(cos 6, +isin 6,)(cos 6, +isin )
=r,7,[(cos 6, cos 6, —sin 6, sin 6,) +i(cos 6, sin 6, +sin O, cos H,)] (8.19)

=r,r,[cos(6, + 6)) +isin(6, + 6,)]

It follows that the product of two complex numbers has modulus equal to the product
of the moduli of the numbers, and has argument equal to the sum of the arguments:

|z,2, =]z, %]z, ], arg (z,z,)=arg (z,) +arg (z,) (8.20)
Y
2122
21
22
T2
To ’[']
0, + 0,
0
0, \
x
o

Figure 8.5
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If the two numbers are a complex conjugate pair, z=x+iy and z* =x — iy, then

|z|=| 2% = Jx* + )%, arg z=—arg z*
and
zz* =]z =x"+)7, argzz*=0

In the case of division,

2 |Zl| 2
S= arg| L |=arg(z) - arg ()
% |Zz| %
and
a_h _ sin (6. —
22_7’2 [cos(@1 0,)+isin(6, QZ)J

For the inverse of a complex number, it follows from (8.22) that

! [cos (—6) +isin (—6)]

z
and, because cos(—6)=cos 6 and sin(—0) =—sin O,

l=l(cos 6 — isin 6)
z r

(8.21)

(8.22)

(8.23)

(8.24)

EXAMPLES 8.6 Express each of z,z,, z,/z, and z,/z, as a single complex number

for
4n 4n
:\/5 cos£+isinE , Z, =Cc0S— + I Sin—
“ 4 4 2 3 3

(see Examples 8.5)
We have 7, = V2, r,=1, 6,=m/4, and 6,=4n/3. Therefore

(i) nr,= V2, 6, + 60,=191/12 and, by equation (8.19),

1 .
ZIZZ = I"ll"z I:COS(BI + 02) + isin(@l + 92):| = ﬁ{cos% +7sin

197

12

|



8.3 Graphical representation

(ii) n /r2 =2, 6, — 6,=—-13m/12 and, by equation (8.22),

N

22" cos(6, - 0,) +isin(6, - 6,) ]
o n

= \/5 cos(—lf—zn] +i sin[—lf—;ﬂ

:\/5 cos%— isinB—n]

12

(i) z,/z, :(zl/zz)_] and, by equation (8.24),

> Exercises 23, 24

de Moivre’s formula

It follows from the relations (8.20) that the product of three or more complex
numbers has modulus equal to the product of the moduli of the numbers and has
argument equal to the sum of the arguments. For example, for the product of three
numbers,

|2,2,25 1= 2,2, | X| 23| = | 2, [ X | 2, | X | 2, |

arg (z,z,z;) =arg (z,z,) +arg (z;) =arg (z)) + arg (z,) + arg (z,)
Therefore
2,2y2, =1 Fy15[cos (0, + 6, + 0;) +isin(6, + 6, + 6,)]
and, in general,

Z.2, 2 =T
n

2 ryeer,[cos(,+6,+ -+ 6 )+isin(0,+6,+--+6)] (8.25)

1
In the special case, when all the numbers are equal to z=r(cos 60+ sin ),
z"=r"(cos n@+isin nb) (8.26)

For a number on the unit circle in the complex plane (#=1), z=cos 6+ sin 8 and

(cos 0+isin 6)"=cos n6+isinnb (8.27)
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This is de Moivre’s formula for positive integers n.” The formula is also valid for other
values of n. For example, by equations (8.27) and (8.23),

! = ! = cos(—n6) + isin(—nb)
(cos @ +isin @)" cosnB+isin nb

so that
(cos 6+ sin 8) ™ =cos(—nB) + i sin(-nO) = cos n@—i sin nb (8.28)

de Moivre’s formula can be used to derive many of the formulas of trigonometry (see
Section 3.4). For example, equation (8.27) with n=2 is

(cos O+isin 0)2 =c0s260+isin26
Expansion of the left side of this gives
(cos® O—sin® @) +i(2 sin O cos 0) = cos 260+ i sin 20

A single equation between two complex numbers is equivalent to two equations
between real numbers; two complex numbers are equal only when the real parts are
equal and the imaginary parts are equal. Therefore,

cos’ 6—sin’ 6= cos 26, 2 sin Ocos O=sin 260

(see equations (3.23) and (3.24)). Similar formulas, expressing sin 70 and cos 0 in
terms of powers of sin 8 and cos 8, are obtained in this way for any positive integer n;
the expression on the left side of equation (8.27) is expanded by means of the binomial
formula, equation (7.14), and its real and imaginary parts equated to the corresponding
terms on the right side of the equation.

The generalization and significance of de Moivre’s formula are discussed in
Section 8.5.

EXAMPLE 8.7 Express cos 50 and sin 50 in terms of sin 6 and cos 6.
By the binomial expansion (7.14), or by using Pascal’s triangle,

(a+b)’ =a’+5a*b+10a°b> + 10a%b + 5ab* + b°
so that

(cos @+ isin B)’ =(cos’ 6—10 cos’ @sin” 0+ 5 cos Osin 0)
+i(5 cos* Bsin O— 10 cos? Osin® O+ sin’ )

3 Abraham de Moivre (1667-1754), fled to England in 1688 from the persecution of the French Huguenots.
The first form of the formula occurs in a Philosophical Transactions paper of 1707. de Moivre was a friend of
Newton. In his later years, Newton would tell visitors who came to him with questions on mathematics to ‘go to
Mr. de Moivre, he knows these things better than I do’.
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Therefore,

cos 50=rcos’ 8- 10 cos’ sin® O+ 5 cos Osin* =16 cos’ 6— 20 cos® 6+ 5 cos 6

sin 50=sin’ 6— 10 sin® O cos® O+ 5 sin Hcos* 6= 16 sin’ §—20 sin* 6+ 5 sin 6
and the final expressions have been obtained by using the formula sin” 6+ cos” 6= 1.

» Exercises 25-27

8.4 Complex functions

Let g(x) and A (x) be (real) functions of the real variable x. A complex function of x
is then

J(x) =g(x) +ih(x) (8.29)

where i =+/-1.Sucha function differs in no essential way from a real function of one
variable, except that the possible values of the function are complex numbers. The
discussion of the properties of complex numbers applies to complex functions; for
example, the complex conjugate function f*(x) is defined by

F*(0)=g(x) - ih(x) (8.30)
with property
SR *x) =1 () [ =g(x)” + h(x)’ (8.31)

where | f(x)| is the modulus of the function. The quantity ff* plays an important
role in wave theories, when the wave function is complex.

EXAMPLE 8.8

(i) Express the complex function f(x)= 2x%+(7+2i)x — (4 +i) in the form f(x)=
2(x) +ih(x), where g(x) and h(x) are real. (ii) Solve g(x)=0, A(x)=0, then f(x)=0.
(iii) Find | f(x) [*

() f(x)=Qx*+Tx—4)+i(2x—1)
(i) g(x)=2x"+7Tx—4=(2x—1)(x+4)=0when x=1/2 and x=—4
h(x)=2x-1=0 when x=1/2
Therefore f(x)=0 when x=1/2
(iii) | f(x) P =g(x)* + h(x)* = 4x* +28x° + 37x* = 60x + 17

» Exercise 28

235



236

Chapter 8 Complex numbers

A more advanced application of complex numbers is in the extension of the concepts
of variable and function to include complex variables and functions of a complex
variable.* Thus, if x and y are real variables then z=x+ iy is a complex variable, and
f(z) is a function of the complex variable z. For example, the function

f@)=+z+1
can be written as
@)=+ +@x+i)+ 1= =y +x+ D) +i2xy+)
=g(x, y) +ih(x,y)

where g(x,y) and A(x,y), the real and imaginary parts of f(z), are real functions of
x and y. The properties of f(z) asa function of the single complex variable z are more
general than the properties of real functions. For many purposes in the physical
sciences only one such function is of importance, and is discussed in the following
section.

» Exercise 29

8.5 Euler’s formula

It is known from the theory of functions of a complex variable that the exponential
function e, where z is a complex number, can be expanded in the familiar infinite
series

2 3
F=ltzt—t . (8.32)
203

If z is the imaginary number z=i6 then

ei9=1+(i0)+ﬂ+@+---

2! 3!
0> o* 6° 0 6 6

=|l-—+——-—+|+i|0——+———+
20 4 6 357

The real and imaginary parts of this function are the series expansions of the
trigonometric functions cos 8 and sin 6, respectively (see Section 7.6), so that

¢®=cos O+isin 6 (8.33)

* The first discussion of functions of a complex variable appeared in a letter by Gauss to Bessel in 1811, together
with a description of the geometric interpretation of complex numbers. The theory was developed independently
by Cauchy from about 1814. Cauchy was the most prolific mathematician of the 19th century. He swamped the
weekly bulletin of the Paris Academy of Sciences, Comptes Rendus, forcing it to introduce a rule, still in force,
restricting publications to four pages.



8.5 Euler’s formula

This relation between the exponential function and the trigonometric functions is
called Euler’s formula.” It forms the basis for the unified theory of the elementary
functions, and it is one of the important relations in mathematics.

The function z=e" has modulus |z|=+/cos’O+sin’0 =1 and argument
arg z= 6. For each value of 6, the number lies on the unit circle of the complex plane,
and as 0 varies from 0 to 2n the function defines the unit circle (Figure 8.6). The
complex conjugate of z=¢"? is

Yy
z*=¢%=cos O—isin O (8.34) »
el
. 1
and this is also the inverse, z ' =z* = ¢ %, Then f
o) X
¥ =z =% 0="=1 ¢
1 —i0
€
The pair of equations (8.33) and (8.34) can be inverted to
give relations for the trigonometric functions in terms of .
. Figure 8.6
the exponentials:
17 . »
cos 0= E[e’e +e ’9] (8.35)
) 1¢ . »
sin @ = —(e’e —e ’ej (8.36)
2i

From the polar form of a complex number, equation (8.15), it now follows that every
complex number can be written as

z:x+iy=rei9 (8.37)

where r=|z| and O=argz. The complex conjugate and inverse functions of z are

_i _ 1 1 _;
z¥=x—iy=re o = =—¢ (8.38)

EXAMPLE 8.9 The number z=1+1.

It was shown in Example 8.5 that

T T
z=1+i=~2|cos=+isin—

> The formula, and others for the logarithmic and trigonometric functions of z, appeared in Euler’s Introductio
of 1748.
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238  Chapter 8 Complex numbers

The number can therefore be written as

7= \/Eeiﬂ:/4

with complex conjugate and inverse

z¥= ﬁe—f“/4 = ﬁ(cosg—ising]

1= Le_""/4 L cosZ — i sin L
2074 4
Also,

cos% _ %[e"‘/“ + e—m/4j’ sin® = i_(eiﬂ/‘* _ e_i“/4)

> Exercises 30-33

EXAMPLE 8.10 Express in cartesian form x + iy
() 26 =2 cosn/3 +isinn/3 )= 2[1/2+ i\/§/2] — 1443
(ii) e ™2 =cos(-n/2)+isin(-n/2)=—i

> Exercises 34-36

EXAMPLE 8.11 The number ¢™.

By Euler’s formula,
e"=cosm+isinm
Because cost=—1 and sinn=0 it follows that

elTC — _1

(8.39)

This relation, involving the transcendental numbers e and =, the negative unit —1,
and the imaginary unit , is probably the most remarkable relation in mathematics.

> Exercises 37-39

> Exercises 40-42



8.5 Euler’s formula

de Moivre’s formula

When 6 in Euler’s formula, (8.33), is replaced by n68 where  is an arbitrary number,
the result is

= cos n6+isinnd

ein
But because ¢"%=(¢?)", it follows that

(€"®)" = (cos 6+ sin 6)" = cos n6+i sin nO (8.40)

This is de Moivre’s formula, (8.27), generalized for arbitrary numbers » (that can
themselves be complex).

EXAMPLE 8.12 The square root of i:

We have i=¢™2. Therefore /i = +e™4 = i[cosn/4+ isinn/4} = i%[l+ i]
2

Check: (i%[l-ﬁ-i}) =11+ +2i)=i

» Exercise 43

Rotation operators

When a complex number z=re® is multiplied by ¢ the product is a number with
the same modulus as z but with argument increased by 6:

ezOZ — ezerewc — rez(oc+9)

Graphically, as shown in Figure 8.7, the multiplication corresponds to the (anti-
clockwise) rotation of the representative point through angle 8 about the origin of the

complex plane, from

z=x+iy=rcosa+irsina

with cartesian coordinates x=rcos o/, y=rsin o to (2, y)
0__ _r_ s .’ P (7] z(x,y)
ez=z7=x"+i =rcos(a+ 0)+irsin(a+ 0) o

with coordinates

x"=rcos(a+ 0)=r(cos acos 6—sin o sin 6)

y'=rsin(o+ 0)=r(sin acos 8+ cos asin 0) Figure 8.7
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The coordinates of the rotated point are therefore related to the coordinates of the
unrotated point by

x'=xcos O—ysin O
L (8.41)
y'=xsin +ycos 0

The function ¢’ can be regarded as a representation of the rotation operator R,
which transforms the coordinates (x, y) of a point z into the coordinates (x’, y") of
the rotated point z”:

Rox,y)=(",)") (8.42)

Equations (8.41) play an important role in the mathematical formulation of rotations
(see Chapter 18).

> Exercise 44

8.6 Periodicity

The trigonometric functions cos 6 and sin 6 are periodic functions of 6 with period
21 (see Section 3.2). It follows that the exponential function "% is also periodic with
period 2x. Thus, if is increased by 2,

O = 105 2 = 61%(cos 27 + i sin 27)

Therefore, because cos 2n=1 and sin 2r =0, it follows that ¢* =1 and

(0421 _ 6

More generally, the function is unchanged when a multiple of 2n is added to 6:
O Z o0 =0 41,42, .. (8.43)

Graphically, changing the argument 6 by 2nn corresponds to moving the represen-
tative point on the unit circle through » full rotations back to its original position
(n anticlockwise rotations if n is positive, |n| clockwise rotations if n is negative).
The function e’ occurs in the physical sciences whenever periodic motion is
described or when a system has periodic structure. We consider here three important
representative classes of physical situations exhibiting periodic behaviour.

Periodicity on a circle. The n nth roots of 1

Figure 8.8 shows three equidistant points on the unit
circle, at the vertices of an equilateral triangle. The Z
points correspond to complex numbers

z,= e(2nk/3)i, k=0,1,2 20

with unit modulus and arguments 2mk/3. These
numbers have the property

\3 .
(Zk)3 :(e(2nk/3)z) — ki
Figure 8.8
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so that each is a cube root of the number 1:

zozeozl
i . 1 3
z, = 2™/ = cos +ism—=——+§i
- 4 C4n 1
z, :e4’”/3:cos—n+ism—n:———£i
3 2 2

We note that z, and z, are a complex conjugate pair, with ¢*3 = M3 Because

of the periodicity of the exponential, the three roots can be specified by any three
consecutive values of k; conveniently as

2=, k=011

_ _ +omi/3
such that z,=1, z,,=e¢ .

In general the 7 nth roots of the number 1 are®

‘ 0, +1, £2, ..., +(n—-1)/2 if nis odd
=il for k= (8.44)
0, £1, 2, ..., #(n/2-1),n/2  if niseven

Zr

Thus when 7 is odd, the only real root is +1 (for k=0) and the rest occur as complex
conjugate pairs. When 7 is even, two of the roots are real, +1 (for k=0, n/2). The n
representative points lie on the vertices of a regular n-sided polygon.

EXAMPLE 8.13 The six sixth roots of 1.

The six roots are

7= k=0,£1,42,3

2 21
or zozeozl
; n,..n 1. 3, 23 20
zH—eir”/3=cos—ilsm—=—i—z
- 3 2 2
i2ni/3 2n .. 2n 1 \/g .
z,=e =cos— Fisin—=——%—1i 2 P
2 3 3 272 -2 -1
z.=e"=cosm+isinn=—1 Figure 8.9

3

> Exercises 45-47

¢ The nth roots of a complex number were discussed by de Moivre in a Philosophical Transactions paper of 1739.

241



242

Chapter 8 Complex numbers

A function that has the same circular periodicity as the figure with n equidistant
points on a circle is

1(0)=e™? (8.45)
This function is periodic in 6 with period 2r/n. Thus
f(9+ 27'5/}’[) — ein(9+2ﬂ/l’l) — einex eZﬂ?i — einazf(e)

Such functions are important for the description of systems with circular periodicity.

Periodicity on a line

Figure 8.10

Figure 8.10 shows a simple linear array of equidistant points representing, for example,
alinear lattice. A function of x that has the same periodicity as the lattice must satisfy
the periodicity condition

Seta)=£(x) (8.46)
The simplest such function is

f)=e (8:47)
Thus,

f(x + a) — eZn(x+a)i/a — eZTin/a X e2TCi =f(x)82ni =f(x)

Functions like (8.47) are important for the description of the properties of periodic
systems such as crystals. The functions are readily generalized for three-dimensional
periodic systems: the function

f(x, y, Z) _ eani/anTryi/beZthi/c (8.48)

has period a in the x-direction, b in the y-direction, and c in the z-direction.

Rotation in quantum mechanics ™ m;
T1

Figure 8.11 shows a system of two masses, m, and m,, o f

joined by a rigid rod (of negligible mass) rotating about

the centre of mass at O. As discussed in Section 5.6  m, N 2

(Example 5.13) the system has moment of inertia /= ur*
where u=mm,/(m +m,) is the reduced mass and
r=r +r, is the distance between the masses. Such a Figure 8.11



8.6 Periodicity

system is called a ‘rigid rotor’ and the equation of motion in quantum mechanics (the
Schrédinger equation) for a rigid rotor in a plane is

h2 2
AV _ gy, (8.49)
21 462

where the wave function y= y(6) is a function of the orientation variable 6, and E is
the (positive) kinetic energy of rotation. The rigid rotor is used in chemistry to model
the rotational motion of a molecule.

Equation (8.49) can be written

2
d—"z’ ——— (8.50)
46

where a®=2IE/h*> 0, and it is readily verified that a solution of this equation is
w(0) = Ce? (8.51)

where C is an arbitrary constant (see Section 12.7 for a more complete discussion).
Thus,

2
d—w=iaCei“9, d Y _ (ia)> Ce = —a’Ce™ = -’y
do 6

For the solution (8.51) to be physically significant, and represent rotation, it is neces-
sary that the wave function be unchanged when 8is replaced by 8+ 2m; it must satisfy
the periodicity condition

y(0+2m)=y(6) (8.52)
For the function (8.51),

W(9+ 2n) = Ceia(6+2n) — Ceia@ % e2nai — l//(0) % eZnui

and the periodicity condition is satisfied if 2na isa multiple of 2m; thatis, if a=n for
n=0,%1,%2, ... The physically significant solutions of the Schrodinger equation are
therefore

w(0)=Ce",  n=0,%1,%2,... (8.53)

where the ‘quantum number’ # has been used to label the solutions. The corresponding
values of the energy E =h’a*/2I are

= i’

8.54
"= 57 (8.54)
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We note that the quantization of the energy of the system has arisen as a consequence
of applying the periodicity condition (periodic boundary condition) to the solutions.
We note also that the set of wave functions includes all the functions (8.45) for the
possible periodicities around a circle.

> Exercise 48

8.7 Evaluation of integrals

Integration with respect to a complex variable is an important part of the theory
of functions of a complex variable, but is used only in advanced applications in the
physical sciences. Ordinary integration over complex functions obeys the same
rules as integration over real functions. In addition, complex functions can be used
to simplify the evaluation of certain types of integral. For example, it is shown in
Example 6.13, how the integral

Je_“x cos x dx

can be evaluated by the method of integration by parts. An alternative, more elegant,
method is to express the trigonometric function in terms of the (complex) exponential
function. We consider the general form

Izje“"cosbxdx

Because cos bx is the real part of e it follows that the integral 7 is the real part of
ibx,

the integral obtained from / by replacing cos bx by ™
1= ReJ ™ e dx = ReJ Lt gy

The complex integral is evaluated by means of the ordinary rule for the integration of
an exponential function. Thus (ignoring the constant of integration),

(a+ib)x ibx
i e e
e(a+1b)x de = — = ™ .
a+ib a+ib

and this can be resolved into its real and imaginary parts:

Qlatibe g ax| €08 bx + i'sin bx
a+ib

eax

=—0> 7 [(a cos bx + b sin bx) + i(a sin bx — b cos bx)]
(a+b%)
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The integral 7 is the real part of this:

Jeax cos by dx = e (a cossz +2b sin bx) (8.55)
a +b
The imaginary part is a bonus:
Je”x sin bx dx = & (asin be — 2b cos bx) (8.56)
a” +b

» Exercises 49, 50

8.8 Exercises

Section 8.2

Express as a single complex number:

1. 2+3i)+(4-50) 2. 2+3)+(2-3i) 3. 2+43)-(2-30) 4. 5+3)(3-0)

5. (1-3i)? 6. (1+2i) 7. (1=3i)(1+3i)

8. If z=3 -2}, find (i) z* and (ii) zz*. (iii) Express the real and imaginary parts of z in terms
ofzand z*.

9. Find z such that zz* +4(z —z*) =5+ 16i.

Solve the equations:

10. 2-2z+4=0 1L z°+8=0

Express as a single complex number:

1-i 1 3+2i 1 3-4i

12. 13, —— . - .
1+ 5+3i 3-2i 5 3+4i

Section 8.3

(i) Plot as a point in the complex plane, (ii) find the modulus and argument, (iii) Express in
polar form r(cos 6+ sin 6):

16.2i 17.-3  18. 1—-i  19. B+i  20. 6+6i  21. 2—/12i

22. 1/i

Given z, and z,, express (i) z z,, (ii) z,/z,, (iii) z,/z, as a single complex number for

23. z, =2[cosg+isin;], z, =3(cos§+isin§]

3n .. 3=m 2 .. 2m
24. 21:5 CoOS—+isin— |, z, =cos— +isin—
4 4 3 3

25. For z= 3(cosg +isin g] find (i) 2%, (ii) 2.

26. Use de Moivre’s formula to show that
(i) cos40=cos* 6 —6cos’ Osin’ H+sin* 6
(ii) sin46 =4 sin Ocos O(cos> O—sin® 6)
27. Use de Moivre’s formula to expand cos 8x as a polynomial in cos x.
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Section 8.4

28. (i) Express the complex function f(x)=3x%+ (1 +2i)x+2(i— 1) in the form
f(x)=g(x) + ih(x), where g(x) and h(x) are real. (ii) solve g(x)=0, A(x) =0, then
f(x)=0. (iid) find | /().

29. (i) Express the complex function f(z) = z2=2z+3 in the form f@)y=g(x,y)+ih(x,y)
where g(x, y) and A(x, y) are real functions of the real variables x and y. (ii) Find the
(real) solutions of the pair of equations g(x, y)=0 and /(x, y) =0, and hence of f(z) =0,
(iii) Solve f(z) =0 directly in terms of z to confirm the results of (ii).

Section 8.5
Express (i) z, (ii) z*, (iii) ztin exponential form re'®:
30. z=1-i 3L z=+3+i 32.z=2i  33.z=-3

Express in cartesian form x + iy:
34. 3¢ 35. ¢ 36. 2¢"/°  37. 0% 38, M 39, &
40. Use Euler’s formulas for cosx and sinx to show that
(i) cosix=coshx, (ii) sinix=isinhx, (iii) tanix=itanhx
41. Express cos(a +ib) in the form x +iy.
42. Show that Inz=In|z|+iargz
43. Use de Moivre’s formula to find the square roots of —i. Locate them on the complex
plane.
44. Find the number obtained from z=3 +2i by
(i) anticlockwise rotation through 30°,
(ii) clockwise rotation through 30° about the origin of the complex plane.

Section 8.6

Find all the roots and plot them in the complex plane:

5.6 4.1 4N
48. The wave functions for the quantum mechanical rigid rotor in a plane are
v, (0)=Ce"’ n=0,%1,%2, ...
2n
(i) Calculate the ‘normalization constant’ C for which J ‘wn(e)‘z do=1.
2n ’

(i) Show that J v (O, (0)d0=0 if m#n.
0

Section 8.7

Use complex numbers to integrate:

49, J e ¥ cos2x dx 50. J e>* sin® x dx
0 0



9 Functions of several
variables

9.1 Concepts

When the equation of state of the ideal gas is written in the form
nRT
V=f(p,T,n)=7

it is implied that the volume ¥ of the gas is determined by the values of the pressure
P> the temperature 7, and the amount of substance #; that is, V' is a function of the
three variables p, T, and n. Functions of more than one variable occur widely in
the physical sciences; examples are the thermodynamic functions of state, as in the
above example, and all those physical properties of a system whose values depend
on position. For example, mass density and potential energy were discussed in
Chapter 5 as functions of one variable only, the position along a line. More generally,
functions of position are functions of the three coordinates of a point in ordinary
three-dimensional space.

Let the variable z be a function of the two variables x and y. For example, the equation

z=xz—2xy—3y2

gives z as a particular function of x and y. The expression on the right of the equation
defines the function

f(x,y)=x2—2xy—3y2 9.1)

whose value for a given pair of values of x and y is to be assigned to the variable z. The
variables x and y are called independent variables if no relation exists between them
such that the value of one depends on the value of the other.

EXAMPLE 9.1 The values of the function (9.1) when (x, y)=(2, 1), (x, )=(1, 0),
and (x,y)=(0, 1) are

f2,1)=22-2x2x1-3x1*=-3
f(1,00=1=2x1x0-3x0*=1
£(0,1)=0*-2x0x1-3x1*=-3

> Exercises 1,2




248

Chapter 9 Functions of several variables

9.2 Graphical representation

We saw in Section 2.2 that a (real) function of one variable defines a curve in a plane;
for example, the graph of y=x>—2x—3 is shown in Figure 2.1. A function of two
independent variables, z=f(x, ), defines a surface in a three-dimensional space.’

z

Figure 9.1

In Figure 9.1, Ox, Oy, and Oz are three perpendicular axes, the pair of values (x, y)
specifies a point in the (horizontal) xy-plane, and the value of the function is represented
by the point P at height z above the plane (coordinate systems in three dimensions are
discussed in Chapter 10). As the point (x, y) moves in the xy-plane, the locus of the
point P maps out a surface; that is, the point P moves on the surface, and the surface
is the representation of the function.

It is possible to draw beautiful three-dimensional representations of functions of
two variables by means of modern computer graphics, but such complete physical
representations are not possible for functions of three or more variables. In the
general case, a function of several variables can be visualized, at least in part, by assigning
values to all the variables except one, and plotting the resulting function of the one
variable only. Examples of such plots are Figures 4.1 and 4.2 for the volume of the
perfect gas, V=f(p, T, n) =nRT/p. Figure 4.1 is the graph of V" as a function of 7'with
p and n held constant, whilst Figure 4.2 is the graph of V" as a function of p at constant
T and n. Such simple graphs are often the most useful representation of a function.
Figure 9.2 shows graphs of the function (9.1) as a function of x for several values of .

f(z.y) y=
y=1
\\/ y=3
Figure 9.2

! The representation of surfaces by functions of two variables and the concept of partial derivatives were first
considered by Leibniz in the 1690’s.



9.3 Partial differentiation

Each of these graphs is a planar ‘cut’ through the three-dimensional surface. In the
general case, a function of n variables defines a ‘surface’ in an (n + 1)-dimensional
space, and its graph as a function of one of the variables is obtained by taking a planar
cut through the representative (n + 1)-dimensional surface.

9.3 Partial differentiation

We saw in Chapter 4 that the first derivative of a function of one variable is
interpreted graphically as the slope of a tangent line to its graph, and dynamically as
the rate of change of the function with respect to the variable. For a function of
two or more variables there exist as many independent first derivatives as there are
independent variables. For example, the function

z=f(x,y)=x"—2xy -3y’

can be differentiated with respect to variable x, with y treated as a constant, to give the
partial derivative of the function with respect to x

oz
—=2x-2
ox Y

(read as ‘partial dz by dx’),”> and with respect to y at constant x for the partial
derivative with respect to y

oz
—=-2x-6y
dy

The existence of partial derivatives and the validity of the operation of partial differ-
entiation are subject to the same conditions of continuity and smoothness as for the
ordinary (total) derivative. If these conditions are satisfied then the partial derivatives
of a function of two variables are defined by the limits (compare equation (4.8))

x_ {f(HAx, =S, y)} ©2)
dx Ax—0 Ax
x_ {f(x,ymy)—f(x, y)} ©3)
dy Ay—0 Ay

The geometric interpretation of these quantities is shown in Figure 9.3. The plane
ABC is parallel to the xz-plane, so that y = constant in the plane and the values of
dz/dx for this value of y are the slopes of the tangent lines to the curve APB. In the
same way, the plane DEF is parallel to the yz-plane, and the values of dz/dy are

2 The notation 0z/dx was first used by Legendre in 1788, but began to be accepted only after Jacobi used it in
his theory of determinants in 1841.
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z
D B
1 |
1 |
1 P |
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i I
I Z:
]
1 O /.C y
| ,le
A I B
/
A
T
Figure 9.3

the slopes of the tangent lines to the curve DPE. The two tangent lines at point P in
Figure 9.3 therefore represent the rates of change of the function z=/{(x, ), with dz/dx
for the rate of change along the x-direction and dz/dy for the rate of change along the
y-direction.

The two tangent lines at P in Figure 9.3 define the tangent plane at P; that is, the
plane that touches the representative surface of the function only at the point P. Every
other line through P in the tangent plane is then also a tangent line and its slope is the
derivative of the function in some direction. Such a derivative can be expressed in
terms of the ‘standard’ derivatives dz/dx and dz/dy.

Oz/0y
0 x
ol 0z /0x
Figure 9.4

In Figure 9.4, the distance  along the direction at angle Oto the x-direction is given by
the pair of ‘parametric equations’

x=rcos 6, y=rsin 0 (9.4)
and the derivative of the function z=f{(x, y) along this r-direction is

%=g—icose+?—;sin0 (9.5)

(see Example 9.17).



9.3 Partial differentiation

EXAMPLES 9.2 Partial differentiation

() oy, 2)=x>+2p +327 +4xy+ Sxz + 6yz

al:2x-+-4y+52, al:4y-+-4x+6z, al:6z+5x+6y

ox dy 0z

(i)  floy)=E2+2p9)"?

Let f= u'? where u=x*+ 2y”. Then, by the chain rule,

ox du ox 2

al=£xa—u=lu_l/z ><4y=2y()c2 +2y2)_

dy du dy 2

1/2

(i)  f(xny)=ysin@x’+)7)
of

By the chain rule, > =2xy cos(x* + y?)
X
To find gl, let f=ux v where u=y and v=sin(x*>+?%). Then, by the product
Y

rule,

al=u><%+v><a—u=y><2ycos(x2+y2)+sin(xz+yz)><1
dy dy dy

=2y2 cos(x2 +y2)+sin(x2 +y2)

» Exercises 3-7

Higher derivatives

Like the derivative of a function of one variable (Section 4.9), the partial derivative
of a function of more than one variable can itself be differentiated if it satisfies the
necessary conditions of continuity and smoothness. For example, the cubic function
in two variables

z=x"+ 2x2y + 3xy2 + 4y3

has partial first derivatives

%=3x2+4xy+3y2, a—Z=2x2+6xy+l2y2
ox dy
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and each of these can be differentiated with respect to either variable to give four
partial second derivatives. Differentiation of dz/dx gives

d(az) 0%z d [ dz 0’z
— |5 |=5=6x+4y, —||= =4x+6
ox [ax] x> Ty dy (ax] dyox rroy

and differentiation of dz/dy gives

d (o) 0%z 0| oz 0’z
O E 22 cexr 24y, L|E =2 —4x+6
dy (ay] o’ rray ox (ayj 0xdy xroy

For a function of two variables, there are a possible 8 partial third derivatives, 16
fourth derivatives, and so on; in general a possible 2" nth derivatives. In terms of
Figure 9.3, the first derivative dz/dx is the gradient at a point, P say, on the curve
APB, and 9°z/0x? is the rate of change of this gradient as the point P moves along
the curve. On the other hand, the ‘mixed’ second derivative 0°z/dydz=9(dz/0x)/dy
is the rate of change of the gradient dz/dx (in the x-direction) as the point P moves
along the curve DPE (in the perpendicular y-direction).

We note that, for the cubic function, the two mixed second derivatives are identical.
This is true for functions whose first derivatives are continuous, and is therefore (very
nearly) always true in practice:

9’z B 9%z
oxdy  dyox

(9.6)

Similar results are obtained for higher derivatives.

Alternative notations

The above symbols for partial derivatives become unwieldy for the higher derivatives,
and the following more compact notation is often used:

S _Jf

_2f
S = oxdy’ Sz = oxoyoz

_axz’

L= S (9.7)

ax

In this notation, equation (9.6) becomes f = and, for example, f, o = on =
(subject to the relevant continuity conditions).

In some applications, particularly in thermodynamics, it is necessary to specify
explicitly which variables (or combinations of variables) are to be kept constant. This
is achieved by adding the constant variables as subscripts to the ordinary symbol for the
partial derivative. For example, for a function of three variables f{(x, y, z), the symbol

o
e
y,.z

means the derivative of f with respect to x at constant y and z.



9.4 Stationary points

EXAMPLES 9.3 More partial derivatives

(i) The nonzero partial derivatives of u=x+ y2+2)° are

2 3
%:1, a_“:2y+6y2, M:2+12y, a—u=12
ox ay ayz ay3

(ii) The first and second partial derivatives of u=sinx cosy+x/y are

ou 1 ou

. ) X
U =—=CoSXcosy+—, u =—=-—sinxsiny — —
T Ox y Y 9y y2
_8214_ . _azu_ . +2x
u_ = 2 = —sinxcos y, U, = 7 =-—sinxcos y +—

X y

o*u . 1 0%u ) 1

u =——=-cosxsiny——, u _=——=-—cosxsiny——

¥ dxdy y P dyox 2

and u_=u
Xy VX

(iii) For theideal gas, V'=nRT/p and

op Ton pz’ oT oon p | onm o7 P

> Exercises 8-20

9.4 Stationary points

We saw in Section 4.10 that a function f(x) of one variable has a stationary value
at point x =a if its derivative at that point is zero; that is, if /"(a)=0. Geometrically,
the graph of the function has zero slope at the stationary point; its tangent line is
‘horizontal’. The corresponding condition for a function of two variables is that the
tangent plane be horizontal. A function f{(x,y) then has stationary pointat (x,y)=(a, b)
ifits partial first derivatives are zero:

IS _F _
ik 0 at (a,b) (9.9)

or f(a, b)= ]; (a, b)=0. In view of equation (9.5), these are sufficient for all the first
derivatives of a continuous function to be zero at a point.
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EXAMPLE 9.4 Find the stationary points of the function
fx, ) =x’+ 6)cy2 - 2y3 —12x
We have

of 2 2 of 2
Y 321672 -12, ZL=1200-6
9 X y 9 xy Yy

and these are zero when
2 2_ _
X" +2y° =4, y2x-y)=0

The second equation is satisfied when either y=0 or y =2x, and substitution of these
in the first equation gives the four stationary points

(2,0), (=2,0), (2/3,4/3), (-2/3,-4/3)

> Exercises 21-23

For a function of one variable, a stationary point at x=a is a local maximum if the
second derivative is negative, /(@) <0, a local minimum if f”(a)>0, and may be a
point of inflection if f”(a)=0. The corresponding conditions for a function of two
variables are

];x< 0 and fyy <0 for a maximum (9.10a)

/>0 and f >0 foraminimum (9.10b)
and

S fyy - fiy >( for either a maximum or a minimum (9.10¢)

Ifthe quantity A=f, 1= fy is negative then the point is a saddle point; a maximum
in one direction and a minimum in another. If A=0 then further tests are required
to determine the nature of the point. The corresponding conditions are more

complicated for functions of more than two variables.

EXAMPLE 9.5 The nature of the stationary points of Example 9.4.

The stationary points of the function f{(x, y) = x° +6xy> =2y — 12x are

(2,0), (-2,0), (2/3,4/3), (-2/3,-4/3)



9.4 Stationary points

The determination of the nature of these points is summarized in the following table.

Table 9.1
2
x y I fy y 1. ) - fy - fxy nature
2 0 12 24 0 >0 minimum
-2 0 -12 —24 0 >0 maximum
2 4
d = 4 -8 16 <0 saddle point
3 3
2 4
-3 -3 —4 8 -16 <0 saddle point

> Exercises 24-26

Optimization with constraints

The finding of the maxima and minima (extremum values) of a function is called
optimization. In Example 9.4 the variables x and y are independent variables, with no
constraints on their values. In many applications in the physical sciences, however,
the optimization may be subject to one or more constraints; we have constrained
optimization. These constraints usually take the form of one or more relations
amongst the variables.

EXAMPLE 9.6 Find the extremum value of the function

S, y)=3x=2)°

subject to the constraint x+y=2.

In the absence of the constraint, the function has a saddle point at x=» =0, and no
maxima or minima. The constraint is a relation between the variables x and y that
reduces the number of independent variables to 1. In the present case, the search for
a stationary value is restricted to the line y =2 —x. Thus, substituting y=2 —x in the
function gives

S0, y)=F(x)=3x" =22 —x)’ =x"+8x—8
Then, for a stationary value,
F'(x)=2x+8=0, F"(x)=2

so that F(x) has minimum value for x =—4. The extremum point of f(x, ) istherefore
a minimum point at (x, y)=(—4, 6), and the extremum value of the function is
(=4, 6)=-24.

» Exercises 27(i), 28(i)
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The optimization problem in this example has been simplified by using the constraint
to eliminate one of the variables. In general, however, such a simplification is either
difficult or impossible, particularly for functions of more than two variables or when
there are several constraint relations. A general procedure for solving many of the
constrained optimization problems in the physical sciences is the method of
Lagrange multipliers.’

We consider a function of three variables, f(x, y, z), and the constraint relation
g(x, v, z) = contant. By the method of Lagrangian multipliers there exists a number A
such that

o ,og I o o 08
T %8 L_3%8_g L_3%¥_y 9.11
ox  ox dy I oz dz (5.11)

at the stationary points. These three equations and the constraint relation are
sufficient to determine the values of the stationary points and of the corresponding
values of the Lagrange multiplier 7.

EXAMPLE 9.7 Use the method of Lagrange multipliers to find the extremum value
of the function f=3x>—2)? subject to the constraint x+y =2 (Example 9.6).

We have g=x+y and f—Ag=3x>—2y%— A(x + ), so that the three equations to be
solved are

i(f—ﬂ,g)=6x—/l=0, i(f—/lg)=—4y—/1=0, g=x+y=2
ox dy

The solution is x=—4, y=6, A=-24, and f(—4, 6)=—24 as in Example 9.6.

> Exercise 27(ii), 28(ii)

In the general case, the optimization is that of a function of n variables,
Sy, x5, .00, X) (9.12a)
subject to m (<n) constraint relations

Xy X X35 s X)) =1y, k=1,2,3,...m (9.12b)

? Joseph-Louis Lagrange (1736-1813), born in Turin, made important contributions to many branches
of mathematics, and has been called the greatest mathematician of the 18th century (‘Lagrange is the lofty
pyramid of the mathematical sciences’, Napoleon Bonaparte). His greatest achievement was the development of
the calculus of variations, and in his Mécanique analytique of 1788 he extended the mechanics of Newton
and Euler. He emphasized that problems in mechanics can generally be solved by reducing them to differential
equations. Lagrange invented the name ‘derived function’ (hence ‘derivative’) and notation f”(x) for the derivative

of f(x).
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where a,,a,,...,a, are constants. The procedure is to construct the auxiliary
function

(P:f_;tlgl_ﬂ’zgz_)’3g3_”'_;tmgm:f_z)‘kgk (9.13)
k=1

and to solve the n+m equations

n %)
%=a—f—2/lkﬁ=0, i=1,2,3,..,n
ox, ox, o " ox (9.14)
8, =4, k=1,2,3,..,m

for the n variables x, and the m multipliers 4,.

The following examples demonstrate one application of the method of Lagrangian
multipliers in geometry (or packaging) and one important application in chemistry.
Another application, the derivation of the Boltzmann distribution, is discussed in
Chapter 21.

EXAMPLE 9.8 Find the dimensions of the rectangular box of largest volume for
given surface area.

The volume of a box of sides x, y, and z is V'=xyz and its surface area is
A =2(xy+yz+zx). The problem is therefore to find the maximum value of V' subject
to the constraint 4 = constant. By the method of Lagrangian multipliers we form the
auxiliary function ¢=V— 14, and solve the set of equations

%zyZ—Zl(y-l-Z):O, %ZXZ—ZA(X+Z)=O,
ax ay

%=xy—2/'t(x+y)=0
oz

Multiplication of the first equation by x, the second by y, and the third by z gives
xyz =2A(xy +xz)=xyz = 2A(xy +yz) =xyz = 2A(xz+yz) =0
It follows that x =y =z, and the box is a cube of side ,/A/ 6.

» Exercise 29

EXAMPLE 9.9 Secular equations

Variation principles in the physical sciences often lead to the problem of finding the

stationary values of a ‘quadratic form’ in the n variables, x , x,, ..., x,

n n

S x50, x,) = ZZ Cijxl.xj

i=1 j=1
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subject to the constraint
- 2
g(xps %y, X)) = le. =1
i=1
where the Cl.j are constants (with Cl.]. = Cﬂ.). For example, for n=3,
2
S(x x5, x3)=C, 1x1 +2C %%, +2C 3x %, + C)y x5, +2C, X, %, + C33x3
. . 2,2, 2
with constraint g =x;+xtxy= 1.
By the method of Lagrange multipliers the stationary values of the function are

obtained by forming the auxiliary function ¢=f—Ag and solving equations (9.14).
For the case n=3, we have

o=(C,, - /l)x1+2C 2 X%, +2C x5, +(Cy l)x2+2C x2x3+(C33—/1)x§

Differentiation with respect to X, Xy, and Xy and setting each derivative to zero then
gives the set of simultaneous equations

(C“—/l)x1+ C12x2 + C13x3 =0

C21x1 + (sz_ ).)x2 + C23x3 =0
C31x1 + C32x2 + (C33 — )u)x3 =0

Equations of this kind are often called secular equations. They occur, for example, in
the ‘method of linear combinations’ in quantum chemistry, when the quadratic form
represents the energy of the system (or an orbital energy in molecular orbital theory)
and the numbers x,, x,, ..., x, provide a representation of the state (of an orbital in
molecular orbital theory). The significance and solution of such systems of equations
are discussed in Chapters 17 and 19.

» Exercise 30

9.5 The total differential

Let z=f(x, y) be a function of the variables x and y, and let the values of the variables
change continuously from (x, y), at point p in Figure 9.5, to (x + Ax, y + Ay) at point
q. The corresponding change in the function is

Az=z —z =f(x+Ax,y+Ay)—f(x,y)

and is shown in the figure as the displacement P to Q on the representative surface of
the function; Az is the change of ‘height’ on the surface.



9.5 The total differential

Figure 9.5

For example, for the quadratic function ax? + bxy + cy?,

z, =fx,y)= ax’ + bxy + cy2

2, =0+ Ax, y+ Ay) = alx + Ax) +b(x + Ax)(y + Ay) +c(y + Ay)°
and
Az=z,—z,=(Qax+by)Ax+(bx+2cy)Ay + a(Ax)* + b(AX)(Ay) + c(Ay)

Now, because
%=2ax+by, a—Z=bx+2cy
ox dy

e e, 10:_
28}62_ ’ 8x3y_ ’ 2ay2_

the change in the function can be written as

oz oz

Az=|—[Ax+|—|A
) (BxJ ’ (ay J g
1{ 9%z 5 0’z 1{ 9%z 2
+—| —|(Ax)" +| =— |[(A)(Ay) + =| — |(A

2[ax2J< ) [axay (B0 @+3| 25 |B)
This expression is exact for the present case, and for all functions whose third and
higher derivatives are zero. For a general function f(x, y), (9.15) represent the first few

terms of a Taylor expansion of the function at point (x + Ax, y + Ay) about the point
(x,y) (compare with equation (7.24) for a function of one variable).

(9.15)
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If Ax and Ay are small enough, the terms quadratic in A are small compared with
the linear terms, and an approximate value of Az is

Az = (%] Ax + (a—ZJ Ay (9.16)
ox ) Y ),

This result, valid for all continuous functions of two variables, shows that when the
changes Ax and Ay are small enough the total change in z is approximately equal to
the change in z due to change Ax alone (the first term of the expression on the right of
(9.16)) plus the change in z due to change Ay alone (the second term). In addition, the
accuracy of the expression improves as Ax and Ay approach zero. As in Section 4.12,
we consider infinitesimal changes dx and dy, and define the quantity

oz oz
dz = [B_ny dx + [g}x dy (9.17)

as the limiting case of (9.16). This quantity is called the total differential of z with
respect tox and y.*

The concept of the total differential is readily generalized for functions of any
number of variables; for a function of » variables,

z=f{x, x,, X5, ...,xn)
the total differential is
0z oz oz | oz
dz=|— |dx, +| — |dx, + -+ | — |dx = — |dx. 9.18
: ox, ! b, *2 an " ,g; ox, ! (-18)

where, for example, dz/dx, is the partial derivative with respect to variable x, with all
other variables, x,, x,, ..., x , kept constant.

EXAMPLES 9.10 Find the total differential:

z_1 %=—iz, dz=[a—z]dx+[a—zjdy=ldx—idy
ox y oy y ) . y

* The total differential and the equality of the mixed second derivatives were discovered in 1719 by Nicolaus
(II) Bernoulli (1687-1759). The nephew of Johann (I) and Jakob (John and James, or Jean et Jacques), he is not to
be confused with Nicolaus (I), his father, nor with Nicolaus (III), the son of Johann (I) and brother of Daniel and
Johann (II). It is Daniel Bernoulli (1700-1782) who wrote the Hydrodynamica of 1738 which contains the concept
of ‘Bernoulli’s Theorem’ and a development of the kinetic theory of gases.



9.5 The total differential
(ii) uz(xz-i-yz+zz)]/2

ou_ o o op_X  Odu_y du_z
ax—x(x +y +2z7) = ay_u’ %

du=[a_u) dx+[a_uJ dy+[%j dZ:l(X dx+ydy+zdz)
ox 2 dy o x 0z Xy u
(iii) x=rsin 6cos ¢

%zsin@cosq), g—i;:rcosecosd), %z—rsinesinq)

d[a_] d(a_] de+(a_x] do
o, 00, 190) g

=sin @ cos ¢ dr +r cos 8 cos ¢ d6 — r sin @ sin ¢ d¢

» Exercises 31-35

EXAMPLE 9.11 Differential volume

The volume of a one-component thermodynamic system is a function of pressure
p, temperature 7, and amount of substance n: V= V(p, T, n). The total differential
volume is

dV:[a_V] dT+[8_V] dp+[a_V] in
oT pon op T.n on T

=aVdT —xVdp+V, dn

where

o= %[g—;] the thermal expansivity (coefficient of thermal expansion)
p,n

K=- 1 [B_V] the isothermal compressibility
V\ op T.n

v, = (B_Vj the molar volume
on T

» Exercise 36
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One of the principal uses of the total differential in the physical sciences is in the
formulation of the laws of thermodynamics (see Examples 9.22 and 9.27). In the
following sections we use (9.16) and its limiting form (9.17) to derive a number of
differential and integral properties of functions.

9.6 Some differential properties

The total derivative

In the function of two variables, z=f{(x, y), let x and y be functions of a third
variable ¢:

x=x(f), y=y(t) (9.19)
Then z=£(x(?), y(¢)) is essentially a function of the single variable ¢, and there exists
an ordinary derivative dz/dr. This derivative is called the total derivative of z with
respect to ¢, and can be obtained directly by substituting the functions x(¢) and y(¢)
for the variables in f(x, y) and differentiating the resulting function of #. It can also be

obtained indirectly, by dividing the expression (9.16) by At and taking the limit
At — 0. Thus, division of

by At gives
gz[a_z] &[a_z] Ay 9.20)
At | ox yAt ), At

and, in the limit At — 0,
@ _ o ﬂ+ =) b (9.21)
dt | ox ydt dy ), dt

Alternatively, the same result is obtained by dividing the total differential (9.17) by
(infinitesimal) d.

Equation (9.21) is a generalization of the chain rule (see Section 4.6). For a function
of n variables, u=f(x,, x,, x;, ..., x,), in which the variables are all functions of £,

du | ou |dx; | du |dx, du |dx,
—_— = —— 4+ ——=+ | — |
dt \ox, | dt |ox, ) dt ox, | dt

[
_i:I ox; | dt

(9.22)
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EXAMPLE 9.12 Given z=x>+)" where x=¢' and y=¢"', find dz/dt.

(i) By substitution:

z=eM 4, % =26 — 3¢ =2y - 3y3

(ii) By the chain rule (9.21), we have

9o _
ox

9 _
8y_

2 dx _ dy ~t

2x, 3y and —t=e=x, —=—e =-y

Therefore,

d_dedx ddy

= =2 32 )= 252 = 330
dt ox dt 9y dt (2x) x(x)+@By") x(-y)=2x" -3y

and this is identical to the result obtained by substitution.

> Exercises 37-39

EXAMPLE 9.13 Walking on a circle

The equation of a circle in the xy-plane with centre at the origin and radius a is
x*+y?=4”. A displacement on the circle is most easily described when the equation
of the circle is expressed in terms of the polar coordinates » and 6:

x=acos 6, y=asinf
These have the form of the pair of equations (9.19), with ¢ replaced by 0. In general,

such equations are called the parametric equations of a curve. Let z=f{x, y). Then,
by equation (9.21), since dx/d0=—y and dy/dO=x,

do | ox yd@ d ). do ox y P ),

For example, if z=xy then o =y, %: x, and &= =x?-)’
ox do

oy

> Exercise 40
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A special case of the total derivative (9.21) is obtained if ¢ is replaced by x. Then

y=y(x) is an explicit function of x and z=f(x, y(x)) can be treated as a function of
the single variable x. Then, from (9.21),

e g (9.23)
dx | ox y ), dx '

We note thatif x=x(#) then this total derivative with respect to x is related to the total
derivative (9.21) with respect to ¢ by the chain rule:

dz _dzdx [dz| dx [(dz| dy bx\
Y e ) ey e A (9.24)
B les

dr dx dt axydt

EXAMPLE 9.14

(i) Given z=x?+y°, where y=1/x, find dz/dx. Then, (ii) if x=¢/, find dz/dt.

d 1
(i) Byequation (9.23), since d_ic} = —x—z = —yz,
dz E)z oz dy
— = =2x+(3 X 2x -3
e 5 dx Gy x (-y*)=2x-3y*

(i) If x=¢' then ? =¢' =x,and
t

dz dz dx

=2x* - 3xy4
dt dx dt

This is identical to the result of Example 9.12, since x=1/y.

> Exercise 41

Walking on a contour

Consider changes in x and y that leave the value of the function z=f{(x, y) unchanged.
In Figure 9.6, the plane ABC is parallel to the xy-plane, so that all points on the curve
APB on the representative surface are at constant value of z. The displacement P to Q
therefore lies on a contour of the surface. Then, by (9.16),

Az=0=|Z| Av+| & Ay (9.25)
ax ay
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z
C B
| Q
\P
A !
i
Ob -t y
d b
// a
,’/ P Az
/7 Ay
a
x
Figure 9.6

and, after division by Ax,

(&) () &
(3] 5.2

In the limit Ax — 0, the ratio Ay/Ax approaches the derivative of y with respect to x

at constant z, and
ox y dy ) \ox ),

The same result is obtained directly from the total differential (9.17) by considering
infinitesimal changes dx and dy such that dz=0:

BZ] (az]
dz=0=|— | dx+|— | dy
[ax y dy .

To obtain (9.26) we divide (formally) by dx and, because the process is at constant z,
we replace dy/dx by the partial derivative at constant z.
Equation (9.26) can be rearranged as

ERCHORS

and this is the gradient of the graph of the function y(x) for which z is constant; that is,
the gradient of the curve ab in the xy-plane in Figure 9.6 for which AB is a contour.
In addition, because
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oz ox
)02 »

the equation can also be written as

L) (2) (=
EEE) o

This form is sometimes called the -1 rule’.

The presence of the - sign in equations (9.27) and (9.29) sometimes causes unease,
but it can be explained geometrically. Thus, for the particular z-surface shown in
Figures 9.3 and 9.6 the slopes along the x and y directions are both negative at P (the
gradient lines slope ‘downward’), so that (dz/ ax)y and (dz/dy), are negative and their
quotient in equation (9.27) is positive. However, Figure 9.6 shows that for motion
along the contour from P to Q, Ay is necessarily positive but Ax negative (or vice versa
for motion Q to P) so that (dy/ ax)z is negative. Hence the - sign. Similar considerations
apply to the other three possible pairs of signs of the slopes.

We note that the distinction between dependent and independent variables has
disappeared from equations (9.26) to (9.29); any one variable can be regarded as a
function of the other two. We note also that whereas (9.26) is readily generalized for
sets of more than three variables, equations (9.27) and (9.29) are true for only three
variables at a time (all others being kept constant).

EXAMPLES 9.15

(i) Given z=x2y3, find [a_y] .
z

ox
ox ¥ P ),
By equation (9.27),
BRCIOE
a.x 7 a.x ¥ ay x 3x2y2 3x
3 (o 172 a_y
(ii) For r—(x +y ) , find [ax]r'

o x

oy dy X
= =" T =) d = =—-—
ox r dy r o (ax]r y



9.6 Some differential properties

The representative surface of the function r= (x> + yz)]/ ? isavertical cone whose

contours (7= constant) are circles of radius r parallel to the xy-plane. The quantity
—x/y is the gradient at (x, y) on the circle.

(iii) The differential volume of a thermodynamic system is (see Example 9.11)

oT dp

By equation (9.29) —lz[a—V] (a_p] (a_Tj
’ I )r\oT )\ oV ),

so that

| _ [V dV | _ o _  expansivity
aT ), -~ or » P )r "~k compressibility

» Exercises 42,43

v = (B—V] dT + [8_V] dp (for fixed amount n).
p T

Change of constant variable

Let z=f{(x, y) be a function of the variables x and y, and let u=g(x, y) be some other
function of x and y. Consider changes in the variables such that u is constant. Then,
division of the total differential dz by infinitesimal change dx at constant u gives

) (&) (&) (2
SREEGIE)

This equation shows how the partial derivative with respect to x at constant y is
related to the partial derivative with respect to x when some function u(x, y) of x and
v is kept constant.

EXAMPLE 9.16 Let z=/(x,y) and u=x”+y". Then, by equation (9.27),

R1-43)/6)-3

and, therefore, by equation (9.30),

BRG]
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This expression is closely related to that in Example 9.13 (walking on a circle) for
dz/d®. Thus, when u is constant (= a’, say), u=x>+y>=a” is the equation of a circle

of radius «, and displacements at constant u are therefore constrained to the circle,
with x=a cos 6 and dx/d6=-y. Then,

d_[0z) dr [
a6 (ax) a6~ \ax),

For example, if z=xy then % =y- xz/y and Ez x*—y?
ox |, do

> Exercises 44-46

Change of independent variables

Let z=£(x, y) be a function of the independent variables x and y with total differential
of z with respect to x and y,

oz 0z
dz = [ajydx + [@jxdy (917)

Let the variables x and y be themselves functions of two other independent variables,
uand v:

x=x(u, v), y=y(u, v) (9.31)

Then z can be treated as a function of u and v, and its total differential with respect to

the new variables is
dr=| Z | aus| Z | aw (9.32)
Ju v dv "

The relationships between the partial derivatives in (9.32) and those in (9.17) can be
obtained in the following way. Divide the total differential (9.17) by du at constant v
to give equation (9.33a), and by dvat constant u to give (9.33b):

) () () (%) (@ o350
auv_axyauv ) \ou), ooR
G| %] [ox) (%) P

ELAELELGLEL e
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The inverse relationships are obtained in the same way from (9.32):

) (&) (o) (%) (a0 o5
E)xy_auvaxy avuaxy R
oz oz ou 0z v

GLEIELELEL e

EXAMPLE 9.17 From cartesian to polar coordinates

Let z=f(x, y) beafunction of the cartesian coordinates of a point in the xy-plane. The
position of the point is specified equally well in terms of the polar coordinates » and 6,
where x =x(r, 6)=rcos 8 and y=y(r, 0) =rsin 6. Then, replacing u by » and v by 0
in equations (9.33),

8_228_2 a—x+% a—y=8—2c0s0+% sin 6
o )y axyare )\ or g axy P ),

(9.35)
a) (3] (ax) [2) (@) __ (=), (=
00, \ax ) (00, "\ oy ), (00, lax), "o ),

The first of these is identical to equation (9.5) and has the same graphical interpretation.
The second is identical to the result obtained in Example 9.13 for motion around a
circle. The inverse relationships are, by equations (9.34),

) _(2) (o) [2) (90) _of) _sne(
axy_Breaxy 89r8xy_ 8r9 r aer

(9.36)
oz oz or dz 20 . oz cos@ | dz
— | == |=| +|==| |=| =sin@| —| + —
). \or)glay ), (06).(dv ), o Jg r \d0 ),
> Exercises 47, 48
Laplace’s equation in two dimensions
The Laplace equation in two dimensions is
2 2
a—f+a—f=0 (9.37)

o’ 9

269



270

Chapter 9 Functions of several variables

where f'= f(x, y) is a function of the cartesian coordinates of a point in a plane. The
Laplace equation occurs in many branches of the physical sciences, and is the
fundamental equation in ‘potential theory’, when a physical system is described in
terms of a potential function; for example, the gravitational and electrostatic potential
functions in a region free of matter satisfy the Laplace equation in three dimensions
(see Chapter 10). The equation in two dimensions is important in flow theories; for
example in the theory of fluid flow and of heat conduction.’

As in Example 9.17, the position of a point in a plane can be specified in terms
of the polar coordinates » and 6, where x=7cos 6 and y=rsin 6. The function f
can therefore be treated as a function of  and 6, f=f{(r, 0), and equation (9.37) can
be transformed from an equation in cartesian coordinates to an equation in polar
coordinates by the method described in Example 9.17. Example 9.18 shows how this
is done, with result

2 2 2 2
Of OF S 1y 1S

o’ o? ot rar 2 96?

The differential operator

0? 0?
= — 4 —

on? o’

7 190 1 9
= —+4 —_—

ol ror roe?

V2
(9.38)

(read as ‘del-squared’ or ‘nabla-squared’) is called the Laplacian operator (although
the symbol and the name are usually reserved for the three-dimensional form; see
Chapter 10). The Laplace equation is then

V=0 (9.39)

and a solution fof the equation as known as a harmonic function.

EXAMPLE 9.18 The two-dimensional Laplacian in polar coordinates

By the first of equations (9.36) in Example 9.17,

E)l_ ai_ sinea_f
ax_cosear r 00

5 Pierre Simon de Laplace (1749-1827). His Traité de mécanique céleste (Treatise on celestial mechanics) in 5
volumes (1799-1825) marked the culmination of the Newtonian view of gravitation. Legend has it that whilst at
the Ecole Militaire, where he taught elementary mathematics to the cadets, he examined, and passed, Napoleon in
1785.
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Then

’f d sinb 9 of sin6 of
o2 B [cos@ or r 80] (cos@ or r 090

r a0

=cos(9i coseal—ﬁal —ﬂi coseal—smeal
or r 00

9°f sin o sinb 0°f
=cos 0| cos —= ~Z -
Cos [cos o + 2 20 300

sin@| . _of 9°f cosO of sinf d*f
- —sin9 L 0 - < _ L
r [ - or eos 000r r 06 r o 96>

2 .2 .22 . B
:Coszea_f+51n OalJrsm 98_f+251n00050 lof of
o2 rooor 2 96% r r 060 drdf
Similarly,
f ., 9°f cos’@9f cos°@d°f 2sinfcosO|1 9 9f
——=sin" 0 ——+ =+ —_— |- =
o’ a9 r r 00 0rdo
Therefore

2 2 2 2
Of oS oL 1y 1S
o’ ot ot rar 2 9e?

> Exercise 49

EXAMPLE 9.19 Show that the function f=x*—y? satisfies the Laplace equation

(i) In cartesian coordinates,

2 2
al:zx, a_f=2 and al=_2y’ a_f=_2
ox o2 dy 8y2

2 2

Therefore, 8_f + a—f =0

o o’

(ii) In polar coordinates, f= r*(cos’0—sin’0) = r* cos 26,

2
al=2rc:052(9=£, a—f=200s20=ﬁ
or r o2 2
2
I sin 26, IS g2 c0s20=—4f
a0 06>
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SN VIS _2f 2f Af

Therefore, —— — =t -
arz ror r2 200> 2 2 2

» Exercises 50-52

EXAMPLE 9.20 Show that the function f=Inr, where r =+/x* + )*, satisfies the
Laplace equation.

Because the function depends on r only, df/d0=0 and the derivatives with respect
to r are total derivatives:

V=L 1
dr? r dr
Now df/dr=1/r and d*f/dr*=-1/r* Therefore V*f=0.

This example is important because it can be shown that the only solution of the
Laplace equation in two dimensions that depends on = +/x* + y* alone has the
general form f=a In 7+ b. This function occurs in potential theory in two dimensions.

9.7 Exact differentials

One of the fundamental equations of thermodynamics, combining both the first and
second laws, is

dU=TdS —pdV (9.40)
where U is the internal energy of a thermodynamic system, S is its entropy, and p, V,

and T are the pressure, volume, and temperature.* The quantity dU is the total
differential of U= U(S, V') as a function of S and V. It can therefore be written as

oUu oU
w2 (2]

so that, equating (9.40) and (9.41),

U U
g g, e

The expression on the right side of (9.40) is called an exact differential. In general, a
differential

F(x,y)dx+ G(x,y)dy (9.43)

* For a single closed phase with constant composition. More generally, the equation applies to each separate
phase, with additional terms if the amounts of substance are not constant.



9.7 Exact differentials

is exact when there exists a function z=2z(x, y) such that

F:[%j and Gz[%] (9.44)
ox » P ),

The differential can then be equated to the total differential of z:

Fdx + Gdy = dz = % dx + % dy (9.45)
ox y P ),

The general condition that a differential in two variables be exact is that the functions

Fand G satisfy
a_F = a_G (9.46)
). (ox ¥

By (9.44), each of these partial derivatives is equal to the mixed second derivative of z,
0%z/0xdy. The condition (9.46) is sometimes called the Euler reciprocity relation, and
is used in thermodynamics to derive a number of relations, called Maxwell relations,
amongst thermodynamic properties (see Example 9.22).° The significance of exactness
is discussed in the following section.

EXAMPLE 9.21 Test of exactness
(i) Fdx+Gdy= (x* —y2) dx+2xydy.

dy
(i) Fdx+Gdy=Qax+by)dx+(bx+2cy)dy.

F
We have (a—J =-2y and (aa—GJ =+2y, and the differential is not exact.
X x y

dy ox

It is readily verified that it is the total differential of ax* +bxy+ ¢y’

We have (B_F] =b= [B_G] , and the differential is exact.
X Yy

» Exercises 53-55

¢ The equality of the mixed second partial derivatives was used by Clairaut in 1739 to test a differential for
exactness (and also by Euler at about the same time). Alexis Claude Clairaut (1713-1765) was one of a family of
20, only one of whom survived the father. He read a paper on geometry to the Académie des Sciences at the age of
13, and was a member at 18 (a younger brother, known as ‘le cadet Clairaut’, published a book on the calculus in
1731 at the age of 15, and died of smallpox a year later). His Recherches sur les courbes a double courbure (Research
on curves of double curvature) in 1731 marked the beginning of the development of a cartesian geometry of three
dimensions.
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EXAMPLE 9.22 Maxwell relations

It follows from equations (9.42) that

or | _ U fop) _ U
v )g ovos’ as ), aSov

so that

()--(%),

This is one of four Maxwell relations of importance in thermodynamics. The other
three are derived from the differentials of the enthalpy H= U+ pV, the Helmholtz
energy A= U- TS, and the Gibbs energy G=H — T8S. For example, for the enthalpy
(and using (9.40) for dU),

dH=dU+ pdV+ Vdp=TdS + Vdp

The quantity dH is the total differential of / as a function of S and p, so that

{2, ol
oS » Pp )

and the corresponding Maxwell relation is

ar) (o
dp S_ aS »
Similarly,

U= —SdT - pdV — [a_] [a_]
T V

dG=—SIT+ Ve — [a_Sj [a_]
T p

> Exercise 56




9.8 Line integrals

9.8 Lineintegrals

Consider the function F(x) and the integral

b
J F(x)dx (9.47)

a

The integral was interpreted in Section 5.4 as the ‘area under the curve’ of the graph of
F(x) between x=a and x=b. An alternative interpretation is obtained by considering
the function F(x) as some property associated with the points x on a line. For example,
let F(x) bethe mass density of a straight rod of matter oflength b —a (see Section 5.6).
The differential mass in element dx is then dm=F(x)dx and the total mass is

M= JbF (x) dx. Similarly (see Section 5.7), if F(x) is the force acting on a body at

point x on a line, the differential work is dW = F(x)dx and the total work from a to b
is again the definite integral (9.47).

Y

[oe}

[ R S ———

Figure 9.7

In these examples, a function is defined on a straight line, chosen to be the x-axis.
More generally, let y=f{(x) representa curve Cin the xy-plane in the interval a <x<b,
as shown in Figure 9.7, and let the function F(x, y) be some property associated with
the points on the curve. The quantity

J F(x,y)dx
C

is called a curvilinear or line integral, and the curve Cis called the path of integration.”
If G(x, y) is a second function defined on the curve, the general line integral in the
plane is

I= J | Fx.y) dx+ Glx.y) dy | (9.48)
C

7 The concept and notation of the line integral was used by Maxwell in 1855 in his studies of electric fields.
James Clerk Maxwell (1831-1879), born in Edinburgh, ranks with Newton and Einstein in pre-quantal theoretical
physics. Building on the work of Michael Faraday, Maxwell presented his field equations in his Dynamical theory
of the electromagnetic field in 1864. The Dynamical theory of gases of 1859 describes the Maxwell distribution, with
applications to the theory of viscosity, the conduction of heat, and the diffusion of gases.

The line integral notation appeared in a physics text by Charles Delaunay (1816-1872) in 1856 for the work
done along a curve, and quickly became standard in physics.
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Line integrals are important in several branches of the physical sciences. For example,
when generalized to curves in three dimensions, they provide a method for repre-
senting and calculating the work done by a force along an arbitrary path in ordinary
space; we return to this topic in Chapter 16.

The line integral (9.48) can be converted into an ordinary integral over either
varjable when the equation of the curve C is known. Thus, given the curve y=f£{(x),

replacement of dy in (9.48) by % dx gives

b
1= J I:F(x,y) + G(x,y)ﬂ} dx (9.49)
dx

a

EXAMPLE 9.23 Find the value of the line integral (9.48) when F=—y, G=xy, and
Cistheline in Figure 9.8 from AtoB (x=1 to x=0).

The equation of the line is y=1—x. Then dy=—dx, and, by
equation (9.49),

J [—de+xydy]=JO[_(I—x)—xa_x)]dx
c

1
1
2
_ _ 42 _z
_Jo(l X7 dx 3 Figure 9.8

> Exercises 57, 58

In general, the value of a line integral depends on the path of integration between the
end points. This is demonstrated in the following example.

EXAMPLE 9.24 Find the value of the line integral (9.48) when F and G are as in
Example 9.23, but C is now the circular arc shown in Figure 9.9.

The equation of the circular arc is y=++/1—x?. Then

dy= X x=-Zdxand
2
I-x y

1=JC[—y dx + xy dy]

3 Figure 9.9
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1
(see Example 6.10 for JO\H—xz dx). The result is different from that obtained in

Example 9.23.

> Exercises 59, 60

The dependence of the line integral on the path can be understood, for example, in
terms of the work done on a body in moving it from A to B along the path. From the
discussion of work and potential energy in Section 5.7, we expect the work done to
depend on the path when the forces acting on the body are not conservative forces;
for example, when work is done against friction. In particular, net work is done
in moving the body around a closed path. A dependence on path is also found in
thermodynamics.

EXAMPLE 9.25 Work in thermodynamics

When changes in a thermodynamic system are reversible (Section 5.8), the quantity
TdS in equation (9.40),

dU=TdS - pdV

is identified with the heat absorbed by the system, and pdV with the (mechanical)
work done by the system. We consider the work done by the ideal gas on (i) expansion
from V,=V(p,, T)), at point A in Figure 9.10, along path C, +C, to V,=W(p,, T,)
at point B, and (ii) the return to A along C,+C,.

p
Cs
Paf--- < B
Cayy AC2
Pif--- >
! A C, 1
1 1
1 1
T
0 T, T,
Figure 9.10

(i) Path C,+C,
The work done along path C, is at constant pressure p=p, and, by equation (5.71),

W,=nR(T,~T)).

The work done along path C, is at constant temperature 7'=T7, and, by equation
(5.72),

W,=-nRT, In(p,/p,).
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Therefore

J pdV =W, +W,=nR| (T,~T,)~ T, In(p, /p))|
C,+C,
(ii) Path C,+C,
The work done along path C, is at constant pressure p = p,, and along path C, itis

at constant temperature 7'=T|. Therefore W,=nR(T,—T)), W,=-nRT In(p, /] D,)
and

f pdV ==nR| (T,~T))~T,In(p,/p,) |
Cy+Cy
The total work done by the gas around the closed path C=C, +C,+C;+C, isthen
§ pdV ==nR(Ty ~T)In(p, /p,)
C

and this is not zero unless either 7,=T, or p,=p,.

» Exercise 61

When forces are conservative and can be derived from a potential-energy function, as
in equation (5.57) of Section 5.7, the work is independent of the path, and no net work
is done around a closed path. In general, the value of aline integral is independent of the
path if the quantity in the square brackets in equation (9.48) is an exact differential ®
By the discussion of Section 9.7, there then exists a function z(x, y) such that

F(x,y)dx + G(x,y)dy =dz = a_z dx + % dy (9.50)
ox P ),

and the line integral (9.48) can be written as

oz oz
JCdZ = JC [g]y dx + [gjx dy (9.51)

Then, for a path C from A at (x,, ,) to Bat (x,, ,),
B
dz = [z]A =z(x,,¥,) = 2(x;,¥)) (9.52)
C

and this depends only on the values of z at the end points (we note that the value of the
integral changes sign if the direction of integration is changed to B to A). In terms of

# This independence of the path for the line integral of an exact differential was observed by Riemann in 1857.
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the graphical representation of z(x, y) discussed in Section 9.2, the line integral is
the change in ‘height’ above the xy-plane on the representative surface of z, and this
cannot depend on the path between the end points.

EXAMPLE 9.26 Independence of path for an exact differential

Volume is a function of pressure and temperature, V'=V(p, T), and the total
differential volume is (see Example 9.11 for fixed amount of substance)

dV:[a_Vj dT+[a_V] "
oT » ap T

Asin Example 9.25, we consider the paths C, +C, and C,+C, shown in Figure 9.10.

(i) Path C=C,+C;
The change in volume along path C, isat constant pressure p=p, (dp=0), so that

T,
o (ar) . (Pfov B T,
AVI—J [a—Tj dT—L[a—T] dr=[VpD) | =)V, T)
G )2 1 p=p
Path C, isatconstant 7=T, (dT=0), and
ING —J (a—V] dp= r[a—V] o =[V(p. 1) " =V(py )~ V(p, 1)
2 ., P )y , P rr, ], 2042 142

Therefore

AV =V T~V (o T [+ V(1) -V, Ty
= V(pzs Tz)_V(pla Ti)

(i) Path C=C,+C,. Path C, is at constant p, and path C, is at constant 7=T,.
Then, as above,

AV =[P T~V (0, T |+ [ V(0 T~V (5, T) |
= V(pla Tl)_ V(pzaTz)

Therefore AV A +AV,

'r_p =0 and the change in volume around the closed path
is zero.*

» Exercises 62, 63

* We note however that the line integral (9.48) around a closed path C is zero in general only if the differential
Fdx + Gdy is exact at all points on and within the closed path; further consideration of this point is beyond the
scope of this book.
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EXAMPLE 9.27 Change in entropy in thermodynamics

The change in the entropy when a thermodynamic system goes from a state with
pressure and temperature (p,, T,) to a state with pressure and temperature (p,, T,)
can be obtained from calorimetric measurements of the heat capacity and thermal
expansivity,

polar » V an

in the following way. Treating the entropy as a function of p and 7, the total differential
of entropy is

as] [BSJ
dS=| 2 ar+| = | dp
[BT » p )r

Then, because entropy is a function of state, the change on going from one state to
another is independent of the path:

N as
AS1%2 =S(p2,T2)—S(P1,T1)=J (a—T] dT‘f‘[g] dp
C P T

Choosing the path C= C,+C, shown in Figure 9.11,

AS,_,=AS,_+AS p

1-2 1-3 32

where AS, ., isatconstant p=p,:

AS1H3 :S(Pp Tz)_S(Pp Tl)

L
[ as-[1E)
C] Tl p=p1

and AS,_, isatconstant 7=T):

Figure 9.11

AS3_)2 = S(pp Tz) - S(pl, Tz)

Py
= J ds = J [B_SJ dp
c, p \OP T=T,

Now (Example 9.22), it follows from the differential enthalpy dH = TdS + Vdp that
(dividing dH by dT at constant p)
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aHj [asj
2l 2| =¢

Also, the Maxwell relation derived from the differential Gibbs energy is

oS 14
21 =g =,
P )r aT »

Therefore,

L C P>
ASl_>3=J T”dT (at p=p,), ASHz:—J oVdp (atT=T,)

h P

Experimentally, the heat capacity is measured at several temperatures between 7 and
T, atpressure p,,and the expansivity is measured at several pressures between p, and
p, at temperature T,. The integrals are evaluated either by plotting C, /T against T
and ol against p and measuring the area under the curve in each case, or by using a
numerical integration method (see Chapter 20).

9.9 Multiple integrals

A function of two independent variables, f(x, y), can be integrated with respect to
either, whilst keeping the other constant:

b d
Jf(x,y)dx or Jf(x,y)dy

EXAMPLE 9.28 Integrate f(x,y)=2xy+ 3y? with respect to x in the interval
a <x < b, and with respect to y in the interval c<y<d.

b
(i) J (2xy+3y2)dx=[x2y+3y2x}b = y(b* —a*)+3)*(b—a)

a

d d
(ii) J (2xy+3y2)dy=[xy2+y3] =x(d* -+ (d* =)

c

In addition to these ‘partial integrals’, the integral with respect to both x and y is also
defined:

d rb d b b d
JJ f(x,y)dxdy=J {J f(x,y)dx}dy=J U f(x, ) dy}dx (9.53)
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This is called a double integral and is evaluated by integrating first with respect to one
variable and then with respect to the other. The value of the integral does not depend
on the order in which the integrations are performed if the function is continuous
within the ranges of integration, but some care must be taken when discontinuities
are present.

EXAMPLE 9.29 Evaluate the integral (9.53) when f{(x, y)=2xy + 37

(i) Integrating first with respect to x, using the result of Example 9.28(i),

d rb d
J J (2xy+3y2)dxdy=J [y(bz—a2)+3y2(b—a)]dy

=%(d2 — A -a*)+(d® - 3)b-a)

(ii) Integrating first with respect to y, using the result of Example 9.28(ii),

b prd b
J J (2xy+3y2)dydxzj [x(dz—c2)+(d3—c3)]dx

a

=%(d2 — AP =a®)+(d =) b-a)

> Exercises 64, 65

When the order of integration is not given explicitly, some care must be taken to
associate each pair of integration limits with the appropriate variable. Thus, if a triple

integral is written as
ford b
I:J J J f(x,y,z)dxdydz

the convention is that the integration is to be carried out from the inside outward, with
(a, b) thelimits for x, (¢, d) fory,and (e, f) forz:

F o rdl b
I=J {J {J f(x,y,z)dx}dy}dz

The concepts and methods of integration discussed in Chapters 5 and 6 for integrals
over one variable apply to multiple integrals, with some changes in interpretation.
The double integral is discussed in some detail in the following sections. The special
case of the triple integral and its importance for the description of physical systems in
three dimensions are discussed in Chapter 10.
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9.10 The double integral

The double integral can be defined as the limit of a (double) sum in the same
way as the Riemann integral was defined in Section 5.4. Let f{(x, y) by a continuous
function of x and y in a rectangular region of the xy-plane, for a<x<b and c<y<d
(Figure 9.12).

Figure 9.12

Divide the interval x=a — b into m subintervals of width Ax =x —x_, and the
interval y=c —d into n subintervals of width Ay =y —y_; that is, divide the

rectangle into small rectangles of area A4 _=Ax Ay_. The integral (9.53) is then
defined as the limit

d rb n om
Jc f S y)dedy= lim 33 (x,.3,)A%, Ay, ©9.54)

N—500 s=1r=1
(when the limit exists).
The double summation (9.54) can be performed in either order: either as

Ax, = z v, Ax, (9.55)

r=1

Z[Zf(xr, y,) Ay,

r=1(s=1

where v is the sum over the elements in a vertical strip and the second sum is over
the vertical strips, or as

2 kz S(x,y)Ax, ]Ays =2 1Ay, (9.56)
s=1

s=1 [r=1

where £ is the sum over the elements in a horizontal strip and the second sum is over
the horizontal strips. These two orders of summation correspond to the two orders of
integration in (9.53).

Just as the integral in one variable was interpreted in Section 5.4 as the area under
the curve, the double integral can be interpreted as the ‘volume under the surface’s

283



284

Chapter 9 Functions of several variables

that is, the volume between the representative surface of the function f(x, y) and the
xy-plane.” Alternatively, the integral can be interpreted as a property of the rectangular
region in the xy-plane. For example, if f(x,y) is a surface mass density, the differential
mass in element of area dA =dx dy is dm=f(x, y)dA and the total mass is

d rb
M =J' f(x,y)dA =J J f(x,y)dxdy (9.57)
R cJa

where | ---dA means integration over the (rectangular) region. In the special case

R
of f(x,y) =1, the integral is the area of the rectangle:

d b b d
I dA=I J dxdy=J de dy=(b—-a)d—-c)
R cJa a c

More generally, the region in the xy-plane need not be rectangular. Let f{x, y) be
continuous within and on a boundary of a region R of the xy-plane.

Yy Yy
y = h(z)

Figure 9.13

The form of the integral over the region depends on how the boundary is defined. In
Figure 9.13a the boundary is made up of two sections: y=g(x) ‘below’ the extreme
points x=a and x=5, and y=/h(x) ‘above’ these points. Then, within R,

gx)<y<h(x) for a<x<b
and the integral over the region (the sum of vertical strips) is
b ( rh(x)
I= J S(x,y)dd= J { S, ) dy} dx (9.58a)
R a g(x)

In Figure 9.13b the boundary is made up of the two sections: x=p(y) to the left’ of
the extreme points y=c¢ and y=d, and x=¢g(y) to the ‘right’. Then, within R,
p(<x<q(y) for c<y<d

° The double integral as a volume was discussed by Clairaut in his Recherches of 1731. The double integral sign
notation (/f) was first used by Lagrange in 1760.
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and the integral (the sum of horizontal strips) is

d q(»)
[:J S(x, ) dA:j { f(x, ) dx}dy (9.58b)
R

¢ r(y)

EXAMPLE 9.30 Evaluate the integral of f(x, y)=1+2xy y
over the region R bounded by the line y=x and thecurve || __________

y=x2 (or x= \/;), as in Figure 9.14. Calculate also the
area of R.

(i) usingequation (9.58a) with g(x) =x? and h(x)=x, 9

1 X 0
1= 1+2xy)dyd
Jo{sz( ) y} o Figure 9.14
1 N 1 |
=J {[y+xy2:| 2}dx=J [x+x3—x2—x5}dx=z
¥ 0

0

8

U

(ii) using equation (9.58b) with p(y)=y and q(y) = \/;,

N
[=J {J (1+2xy) dx}dy
0y

1 \/— 1 1
[l o[

The area of the region R is

A:J;{J;dy}dx:J; (x—xz)dx:é

> Exercises 66-68

9.11 Change of variables

We saw in Section 6.3 that one of the principal general methods of evaluating
integrals is the method of substitution whereby, given a definite integral over the
variable x, a new variable of integration can be introduced by setting

x = x(u), dx = ﬁdu
du
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such that

b u(b) ( )dx
f(x) dx=J flx(u))— du
Ja u(a) du

Changes of variable are even more important for double (and higher) integrals
because both the function and the boundary of the region may be sources of difficulty
when expressed in terms gf} inappropriate variables. Consider, for example, the
integral of f(x,y)=e ™ """ overa circular region (Figure 9.15).

Figure 9.15

By equation (9.58a),

a +ya*—x*
2, 2,12
I=| f(x,y) dA:J U e dy}dx (9.59)
JR —a N

In this example, both the function and the boundary are expressed more simply in
terms of polar coordinates (7, 6). Thus,

fx,y)=f(rcos0,rsin ) =¢"

and the equation of the circle of radius a is r=a. It is
sensible therefore to make the substitution

x=rcos 6, y=rsin 0
[4
to change to polar coordinates. The corresponding
element of area, d4, can be deduced from Figure 9.16.
The shaded region has area Figure 9.16

AA=ArxrA@ + %(Ar)z A8

so that, for infinitesimal quantities, d4 =rdrd6. Then

J f(x,y)dxdy= J f(rcos0,rsin @) rdrdd (9.60)
R R
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The integral (9.59) is then

2n ra 2n a
1=J J e_rrdrdezj dexj e_"rdr:2n[1—e_"(a+l)}
0oJo 0 0

EXAMPLE 9.31 Evaluate the integral of f(r, )= ¢ sin” 6 over (i) the area of a
circle of radius @ and (ii) the whole plane.

. -2 2 e -2 .2
(i) e sin“0dA= e sin“Ordrdf
R 0oJo

Because the integrand is the product of a function of » and a function of 6,

2 .2 —2 .2
e sin” Or=(e”’ r)(sin” 0)

and because the limits of integration are constants, the double integral can be
factorized:

a 2n
I:J erzrdrxj sin’ 0 d@
0 0

Because sin’ 0 = %(1 —c0s26),
21

2n 1 2n 1 1
J sin20d9=—J (1-cos20)df=—|0—=sin20| ==
o 2J, 2 2 X

and, using the substitution u =r?, du=2rdr,

a az aZ
J e_rzrdI”:lJ e_”duzl[—e_”] =l(l—e_a2)
. 2 ), 2 0 2

i 2
Therefore, I = 5(1 —-e“ )

(ii) Letting @ — o,

2T oo
J J ¢ sin’0rdrdo="
0 0 2

» Exercises 69-71
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The general case

The transformation from cartesian to polar coordinates is a special case of the general
transformation of variables (of coordinate system). It is also the most important in
practice, and only a brief discussion of the general case is given here. Let

x =x(u, v), y=x(u, v) (9.61)
be continuous and differentiable functions of the variables u and v, such that for each

point (x, y) in a region R of the xy-plane there corresponds a unique point (u, v) in
the corresponding region R* of the uv-plane. Then

J J f(x, y)dxdy:JJ f(x(u, v), y(u,v)|J|dudv (9.62)
R R*

where |J| is the modulus of the Jacobian of the transformation,'’

yoey) _drdy ardy
C 9w, v) Judv Jvu

(9.63)

For example, if x=rcos 6 and y=rsin 6 then

ox dy dx dy

= o’ @+ rsin’O=r

and dA =dxdy — d A =rdrd6, as obtained geometrically from Figure 9.16. The Jacobian
is used in advanced formulations of thermodynamics for the transformation of
thermodynamic variables. The method can be generalized for three or more variables.

The integral J e dx

0
It was stated in Example 6.16 of Section 6.5 that this integral cannot be evaluated by
the methods described in Chapters 5 and 6. It can however by evaluated by means of
a ‘trick’ involving the transformation of a double integral from cartesian to polar

coordinates."! We have
o0 1 00
I=| e dx=— e dx
0 2 —0

because the integral is an even function of x (see Section 5.3). Also

1~ 2
I=— 7V d
| e

19 Carl Gustave Jacobi (1804-1851), born in Berlin, discussed the quantities called Jacobians in his De
determinantibus functionalibus (On functional determinants) of 1841. The general transformation of variables in a
double integral was given by Euler in 1769.

""" The integral was first evaluated by de Moivre in 1733. Laplace, following Euler, used the method described
here in 1774.
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because the value of a definite integral does not depend on the symbol used for the
variable of integration. Then

Izzij exzdxj eyzdy:iJ J ef(x2+y2)dxdy

and the double integral is over the whole xy-plane. A transformation to polar
coordinates then gives

5 1 2n oo o 1 2n 0 e -
I"=- e’ rdrdf=— do| e rdr=—
4)o Jo 4o 0 4

J e dx= g (9.64)

Therefore,

9.12 Exercises

Section 9.1

1. Find the value of the function f(x, y)= 2%+ 3xy —y2 +2x—-3y+4 for
@) (»=0,1) @) x,»=2,0 (i) (x»=0G,2)
2. Find the value of f(r, 6, ¢) = #* sin? @ cos? ¢+ 2 cos? O—r> sin 20sin ¢ for
O 6,9=01,7/2,0) (i) (,6,9)=2,n/4,n/6) (i) (v, 6, ¢)=(0, 7, /3).

Section 9.3
Find a—z and a—z for
ox dy
3. Z:2x2_y2 4. z=x2+2y2—3x+2y+3 5. Z:eZ.er}y
6. z=sin(x’ -7 7. z=¢" cos (xy)

Find all the nonzero partial derivatives of

8. z=x’— 3x2y + 4xy2 9. u=3x* +y2 + ny3
Find all the first and second partial derivatives of
10. z=2x"y+cos (x +y) 11. z=sin(x+y)e"”
Show that fYy :];x for

12. f=x’-3x%y+y° 13. f=x"cos(y—x) 14. f= ny 5
X +y
Show thatfxyz =];ZX=fzxy for
15. f=cos(x+2y+3z) 16. f=xye”*
or or or
17. If r= (2 +2+ 292 find 2, 2 2
rEbty D) ox dy oz
. %0 1 9%
18. If ¢=f(x—ct)+g(x + ct), where c is a constant, show that a—zz—za—z
X c” ot

19. If xyz+x*+y* +22=0, find [gyj .
X
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20. For the van der Waals equation

2
[p+nza](V—nb)—nRT:O
Vv

14 o |V Lo [ Op [ op
Find (i) (] , (i) [] . (iii) (j , (iv) [] .
or p.n ap T,n or V.n cld T,n

Section 9.4

Find the stationary points of the following functions:

21. 3—x2—xy—y2+2y 22. x3+y2—3x—4y+2 23. 4x3—3x2y+y3—9y

Determine the nature of of the stationary points of the functions in Exercises 21-23:

24, 3—x2—xy—y2+2y 25. x3+y2—3x—4y+2 26. 4x3—3x2y+y3—9y

27. Find the stationary value of the function f=2x*+ 3y?+ 62> subject to the constraint
x+y+z=1, (i) by using the constraint to eliminate z from the function, (ii) by the
method of Lagrange multipliers.

28. Find the maximum value of the function f=x?"2* subject to the constraint
X+ y2 +22=2% (i) by using the constraint to eliminate z from the function, (ii) by the
method of Lagrange multipliers.

29. (i) Find the stationary points of the function f= (x — 12+ (y—=2) " +(z-2) subject to
the constraint x>+ y2 + 22 =1. (ii) Show that these lie at the shortest and longest
distances of the point (1, 2, 2) from the surface of the sphere 2+ y2 +22=1.

30. (i) Show that the problem of finding the stationary values of the function

E(x,y,2)=a(x* +y* +2%) + 2b(xy + y2)
subject to the constraint x> +y?+z%=1 (a and b are constants) is equivalent to solving
the secular equations
(a—Mx+ by =0
bx +(@-Ay+ bz =0
by +(@-4)z=0
These equations have solutions for three possible values of the Lagrangian multiplier:
A =a, /12=a+\/§b, /13:a—x/5b
(ii) Find the stationary point corresponding to each value of A (assume x is positive).
(iii) Show that the three stationary values of E are identical to the corresponding

values of A. (This is the Hiickel problem for the allyl radical, CH,CHCH,; see also
Example 17.9).

Section 9.5

Find the total differential df:
31. f(x,y)zx2 +y2 32. f(x,y):3x2+sin(x—y) 33. f(x,y)=x3y2+lny
1
2

35. f(r, 0, ¢) =rsin Osin ¢
X+t +z

34. f(x,y,z)= >

36. Write down the total differential of the volume of a two-component system in terms of
changes in temperature 7, pressure p, and amounts n, and 7, of the components A and
B. Use the full notation with subscripts for constant variables.
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Section 9.6

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Given z=x"+ 2xy+ 3y2, where x=(1+ t)l/2 and y=(1- t)l/z, find % by
(i) substitution, (ii) the chain rule (9.21).

_) . di
Given u=e"", where x=2cost and y =3¢, use the chain rule to find 71:
. . du
Given u=In(x+y+z), where x=acost, y=bsint, and z=ct, find I

Given z=In(2x+3y), x=acos 0, y=a sin 6, use the chain rule to find Z—ZO .

qa

Given f=sin(u + v), where v=cos u, (i) find Zl, (ii) if u=¢, find 0
u

If z=x"y —sin y, find [gy] .
z

X

For the van der Waals gas, use the expressions for [g;] and [E)V] from Exercise 20
n T,n

dp
to find [apJ
oT Von

If z=x’+)” and u=xy, find (gZJ by (i) substitution, (ii) equation (9.30).
)y

u

>

Given z=xsiny and u=x>+2xy+3y? find [gZJ
y

If U=U(V,T) and p=p(V, T) are functions of Vand T'and if H= U+ pV, show that

(303 %), 1),

Given x=au+bv and y=bu— av, where a and b are constants, (i) if / is a function of x and

¥, express al and al in terms of al and af , (i) if /=x*+)7 find af
ou v v y ox ) P ), Ju )

and al in terms of u and .
v y

Given u=x"+y" and v=x"—)", where n is a constant,

(i) show that dx a—u l = a—y @ . (ii) If f is a function of x and y, express
u ax 2 |dv y ady .

(Bf] and [af] in terms of (8}‘] and [afJ . Hence, (iii) if /= u?— 2 find (af]
ox ) P ), ou ), v )

and (E)f] in terms of x and y.
P ),

If x=au+bv,y=bu—av,and f is a function of x and y (see Exercise 47(i)), show that

32f PL 2o L iy P | L T, 2 2y 9L
() avz—(a +b%) ax2+ay , (i) —— F =ab 0 ayz +(b a)axay.
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Show that the following functions of position in a plane satisfy Laplace’s equation:

B).
50. x°—10x*y%+5x* 51 [Ar+]sm9 52. r"cosnb,n=1,2,3, ...
r

Section 9.7

Test for exactness:
53. (4x+3y)dx+ (3x+8y)dy 54, (6x+5y+7)dx+ (4x+ 10y +8)dy
55. ycosxdx+sinxdy

56. Given the total differential dG =—SdT+ Vdp, show that a—S =— a—V .
op r oT b

Section 9.8

57. Evaluate the line integral J [xydx +2 ydy] on the line y=2x from x=0 to x=2.
c

58. When the path of integration is given in parametric form x=x(¢), y=)(¢) from t=¢, to
t=ty, the line integral can be evaluated as

g
J [Fdx+Ga’y}=J F@+GQ dt.
c ‘A dt dt

Evaluate J [(x2 +2)dx+ (3 + x)dy} on the curve with parametric equations x=¢,
c
y= ¢? from A(0,0) to B(1,1).
59. Evaluate J [xydx + 2ydy] on the curve y=x2 from x=0 to x=2 (see Exercise 57).
c

60. Evaluate the line integral J |:(x2 +2y)dx+ (% + x)dy} on the curve with parametric
c

equations x = 2, y=t from A(0,0) to B(1,1) (see Exercise 58).
61. The total differential of entropy as a function of 7"and p is (Example 9.27)

dS:[aSJ dr+(as] "
oT » dp T

C
Given that, a—S =L ﬁ and B—S =— a—V = —B for 1 mole of ideal gas,
or » T 2T dp T or , P

show that the (reversible) heat absorbed by the ideal gas round the closed path shown in
Figure 9.10 is equal to the work done by the gas; that is, § TdS = § pdV (see Example 9.25).
62. (i) Show that Fdx+ Gdy for F=9x*+4y* +4xy and G =8xy+2x>+3)* isan exact

differential. (ii) By choosing an appropriate path, evaluate J [F dx+ G dy] from
C

(x,¥)=1(0,0) to (1, 2). (iii) Show that the result in (ii) is consistent with the differential
as the total differential of

z(x,y)= xS+ 4xy2 + 2x2y +y3.



9.12 Exercises

63. Evaluate J [ny dx+(x* =) dy} on the circle with parametric equations x =cos 6,
c

y=sin 6, (i) from A(1,0) to B(0,1) and (ii) around a complete circle (6 =0 — 2n).
(iii) Confirm that the differential 2xy dx + (x* — y%) dy is exact.

Sections 9.9 -
64. Evaluate the integral J J (x*y + xy*)dxdy and show that the result is independent of
0J1

the order of integration.

T R
65. Evaluate the integral J J e cos® O sinb drdb.
0Jo

Sections 9.10

Evaluate the integral and sketch the region of integration:

2 pr2x a \/az—x2
66. J J (x2 +y2)dydx 67. j J xy2 dydx
0Jx 0Jo

68. (i) Show from a sketch of the region of integration that

2 r(2-y)2 1 r2-2x 0 ,(x+4)/2
J J X dxdyzj J x° dydx+J J x° dy dx,
0J 2y-4 0Jo -Jo

(ii) evaluate the integral.

Section 9.11

Transform to polar coordinates and evaluate:

1 pVl=x? ) 0 aus
69. J J' (x* + 2xy) dydx 70. J J e 2T (2 42 dxdy
00 —o0d —o

71. J J e, dx dy
0Jo
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10 Functions in 3 dimensions

10.1 Concepts

A function of three variables, f(x, y, z), in which the variables are the coordinates of a
point in ordinary three-dimensional space is called a function of position, a point
function, or a field. A great variety of physical quantities are described by such
functions. For example, the distribution of mass in a physical body is described by the
(volume) mass density, a function of position, the temperature at each point in a body
defines a temperature field, and the velocity at each point in a mass of moving fluid is
a vector function of position, a velocity field (see Chapter 16). Electric and magnetic
fields are vector functions of position, atomic and molecular wave functions are scalar
functions of position.

When a function of position is expressed in the form f(x, y, z) it is implied that
it is a function of the cartesian coordinates of a point." The value of a function at a
given point cannot however depend on the particular system of coordinates used
to specify its position. We saw in Chapter 9 that, for points in a plane, a function and
the region in which it is defined may sometimes (in fact, often) be expressed more
simply in terms of coordinates other than cartesian. The most important and most
widely used coordinates, other than the cartesian, are the spherical polar coordinates.
They are presented in Section 10.2. Functions of position are discussed in Section 10.3
and volume integrals in 10.4. The Laplacian operator, so important in the physical
sciences, is discussed in Section 10.5. In these, the discussion is restricted to the
cartesian and spherical polar coordinate systems. The general coordinate system
is the subject of Section 10.6. The use of vectors and matrices for the description
of systems and processes in three dimensions is discussed in Chapters 16, 18,
and 19.

10.2 Spherical polar coordinates

The position of a point in a three-dimensional space is specified uniquely by its three
coordinates in a given coordinate system. In the cartesian system shown in Figure 10.1,

! The analytical geometry of three dimensions has its origins in Clairaut’s Recherches of 1731, in which he gave
x*+y?+2z2=a? as the equation of a sphere of radius @, and in the second volume of Euler’s Introductio of 1748.
The systematic theory was developed by Monge in papers from 1771 and in two influential textbooks written
for his students at the Ecole Polytechnique. Gaspar Monge (1746-1818), the son of Jacques Monge, peddler,
knife-grinder, and respecter of education, developed a ‘descriptive geometry’ that formed the basis for modern
engineering drawing; the method was classified for a time as a military secret, and published in 1799 in the
textbook Géométrie descriptive. Monge was the first Director of the Ecole Polytechnique formed in 1794 by the
National Convention of the Revolution for the training of engineers and scientists (who show ‘a constant love of
liberty, equality, and a hatred of tyrants’). The Ecole became a model for colleges throughout Europe and the
United States. Teachers at the Ecole included Laplace, Lagrange, and Sylvestre Francois Lacroix (1765-1843),
whose textbook on the calculus was translated into English in 1816 and was influential (with other texts from the
Ecole) in bringing European methods to England and the United States. In the textbook Application de I'analyse
a la géométrie, 1807, Monge discussed the analytical geometry of two and three dimensions. He showed how the
coordinates of a point are determined by the perpendiculars from three coordinate planes.



10.2 Spherical polar coordinates

the position of the point P is specified by the ordered triple (x, y, z), the cartesian
coordinates. The coordinate x is the distance of P from the yz-plane, y is the distance
from the zx-plane, and z is the distance from the xy-plane.

z z (polar axis)

N
N

N P(r,0,0)

Figure 10.1 Figure 10.2

Other coordinate systems are normally defined in terms of the cartesian system.
The system of spherical polar coordinates is shown in Figure 10.2. The distance 7 of
the point from the origin is called the radial coordinate; it has possible values from 0
to +oo. The angle 6, the colatitude, is the angle between the radial line OP and the z-
axis; it has possible values 0 to 7. In this context the z-axis is called the polar axis. The
angle ¢, the longitude, is the angle between the x-axis and the line OQ, the projection
of OP in the xy-plane; it has possible values 0 to 2n. Changes in ¢ describe rotation
around the polar axis. The spherical polar and cartesian coordinates are related by the
equations

x=rsin @ cos ¢, y=rsin @sin ¢, z=rcos 6 (10.1)

As for polar coordinates in a plane (Section 3.5), conversion from spherical polar to
cartesian coordinates is straightforward.

EXAMPLE 10.1 Find the cartesian coordinates of the point whose spherical polar
coordinates are (7, 6, ¢)= (2, 1/6, n/4).

x=rsin Ocos ¢=2 sin(r/6) cos(n/4) = /2
y=rsin Osin ¢ =2 sin(r/6) sin(n/4) = 1/v2
z=rcos 0=2 cos(n/6) = /3

» Exercises 1-3
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The conversion from cartesian coordinates to spherical polar coordinates makes use
of the following relations:

tan~! (XJ if x>0
X
r2:x2+y2+zz, 920051[5], o= (10.2)
r
tan™! (Zj+ r if x<0
X

in which the inverse functions have their principal values (see Section 3.5).

EXAMPLE 10.2 Find the spherical polar coordinates of the point (x, y,z)=(-1, 2, -3).

r2=x2+y2+22= 14, r= J14

6=cos”(z/r) = cos " (=3//14) = 143.3°
p=tan '(y/x)+n=tan '(-2) + =~ 116.6°

> Exercises 4-9

10.3 Functions of position

A function of position, or field, is a function of the three coordinates within some
region of three-dimensional space. Let the region V (for volume) in Figure 10.3
represent, for example, a body with non-uniform temperature; the temperature is
a function of position,

T=f(x,y,2) z

Then, if the cartesian coordinates of the point P are
(xp, v, zp), the temperature at this point is

T =f(x,7,7,) y
For example, if f(x,y,z)=z"—x*—)* then

=z2—x2—y? Figure 10.3
Ty=2, =% =05 &
The temperature at a point cannot depend on the particular system of coordinates
used to specify the position of the point. If the spherical coordinates at P are (rp, 6, ¢p)

then, by equations (10.1),

2 2 2 2 2 2 2 2 2 2 2 s 2
T =r:cos —r_Ssin COos —r_Ssin S =r _(COS —Sm
p p Gp p OP ¢P p ep ¢P P( GP 913)
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The temperature field is therefore described equally well by the function
a(r, 6, 9) =r*(cos® 6—ssin® 6) such that, at any pointin V,

T=f(X,y,Z)=g(”s 99 (P)

In this example, the transformation from cartesian to spherical polar coordinates has
led to two simplifications of the representation of the field. Firstly, whereas 7' depends
on all three cartesian coordinates, x, y, and z, it only depends on two of the spherical
polar coordinates, » and 6, that is, the field is independent of the value of the angle
¢, and is therefore cylindrically symmetric about the polar (z) axis. The second
simplification is that the variables in the function g have been separated; that is, the
function g(r, 6) has been factorized as the product of a function of  and a function
of 0. Such simplifications are important for the evaluation of multiple integrals and
for the solution of partial differential equations.

EXAMPLE 10.3 Express in spherical polar coordinates: (i) (x*+y>+z B2

(ii) —(x +y +z )l/2 (111) (x +y +z )l/2

(i) (P+y*+2)"=r

(ii) i(x +yi 4z )l/2 (x2+y2+22)_1/2X2x=£=sinecos¢>
r

1/2

(iii) ai(x2 +y2 +z%) =ir=l
r r

> Exercises 10-13

Density functions

Consider the distribution of mass in a three-dimensional body (see Section 5.6 for
a linear distribution of mass). Let P be some point within the body, and let Am be
the mass in a volume Av surrounding the point P, as
shown in Figure 10.4. Theratio Am/Av is then the mass
per unit volume, or the average mass density, in Aw.
If the mass is not distributed uniformly throughout
the body, the value of this ratio depends not only on W
the position of the volume Awv but also on the size and B’

shape of Av. As the size of the volume is reduced to

zero, Av— 0, the ratio approaches a limit ‘ Y

p= lim | 2™ 103)
Av—0| Av Figure 10.4
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and the value of this limit is the density at the point P. We note that although p
is defined as the limit of a ratio it is not a derivative in the normal sense. We can
however consider the differential mass dm = pdv in volume element dv. The total
mass of the body is then the integral over the volume of the body,

M=J dm=J pdv (10.4)
v v

Such volume integrals are triple integrals over the three coordinates of the space and
are discussed in Section 10.4.

The concept of density is applicable to any property that is distributed over
a region. One important example is the probability density of a distribution in
probability theory and statistics, discussed in Chapter 21. Probability densities are
also used in quantum mechanics for the interpretation of wave functions and for the
computation of the properties of atoms and molecules.

EXAMPLE 10.4 Atomic orbitals and electron probability density

The solutions of the Schrédinger equation for an atom, the atomic orbitals, are nearly
always expressed in spherical polar coordinates. Some of the orbitals of the hydrogen
atom are listed in Table 10.1 (, is the bohr radius). Each orbital is the product of three
functions, one for each coordinate:

w(r, 6, 9)=R(r) - O(0) - P(¢) (10.5)

The radial function R(r) determines the size of the orbital, and the radial or ‘in-out’
motion of the electron in the orbital. The angular functions ©(6) and @(¢) determine
the shape of the orbital and the angular motion of the electron (its angular momentum).
These functions are discussed in greater detail in Chapter 14.

Table 10.1 Atomic orbitals of the hydrogen atom

[
v, = —7——=e "
1 naé
_ 1 —r/2a
v, = - 2-r/aye 0
4,/2na,

2 .
re”"?% sin@ cos ¢

1
14 = T
2 4./2na3
vy, = ¥re_r/2a° sin @ sin ¢
‘ 4\2na;
1 -
Vop, = T 50€ % 6030




10.4 Volume integrals

The physical interpretation of an orbital is in terms of an electron probability density;
for an electron in orbital y the quantity

lw(r, 6, 9)[* dv (10.6)

is interpreted as the probability of finding the electron in the volume element dv at
position (r, 6, ¢). The square modulus, |y * = yy*, is used because wave functions are
in general complex functions. The probability of finding the electron in a region V

is then the volume integral J ly | do.
v

10.4 Volume integrals

A triple, or three-fold, integral has the general form

Z V2 %
j f(x,y,z)dv= J J j f(x,y,z)dxdydz (10.7)
v aIndn

where V is a region in xyz-space. When the variables are the coordinates of a point in
ordinary space the integral is often called a volume integral. If the limits of integration
in (10.7) are constants then the region V is a rectangular box of sides x, —x,, y, =y,

22 _Zl'

EXAMPLE 10.5 Evaluate the integral of the function f(x,y,z)=14xyz over the
rectangular box of sides a, b, c shown in Figure 10.5.

The integral (10.7) is z

J f(X,y,Z)dv=J d’U+J xyz dv
\4 \% Vv o b y

Figure 10.5

Then

o foef [ [ive Tl

=axXbxc=V

This is a general result; the integral JV dv is the volume of the region V.

c rb ra a b c
(ii) J xyzdsz J J xyz dxdydzzj xde ydyJ zdz
v 0JoJo 0 0 0
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The factorization of the triple integral is allowed because the integrand is the product
of three functions, one for each variable, and the limits of integration are constants
(see Example 9.31). Then

S
Xyzdv=—X-—X—=—
v 2 2 2 8

> Exercises 14-17

Spherical polar coordinates

The volume integral in spherical polar coordinates is
® 0,
J f(r,G,q))dv:J J j f(r,9,¢)rzsin9drd9d¢ (10.8)
v ¢ J 6 Jn

The form of the volume element
dv=r?sin O dr d0 d¢ (10.9)

can be understood in terms of Figure 10.6.
The region Av is a section of spherical shell
of thickness Ar between radii » and r+Ar,

angles 6 and 6+A6, and angles ¢ and NN
¢+ A¢. It can be shown (see Example 10.6) \\ AN
that the volume of the region is N

Av= {rzAr+ r(Ar)? + %(A r)31

x[cos@—cos(@ +A9)]XA¢

For small A-values this volume is approxi-
mately equal to the volume of a rectangular
box of sides Ar, rAB, r sin 6A¢,

Av=r’sin 6ArAOA$  (10.10) =

and the volume element (10.9) is obtained Figure 10.6
for infinitesimal quantities.



10.4 Volume integrals

EXAMPLE 10.6 Find the volume Av in Figure 10.6 and show that it reduces to the
approximate expression (10.10) for small A-values.

0+Ap rO+AO ~r+Ar
AU:J J J 7 sin@drd0d¢
[ 6 r
r+Ar

r+Ar , 0+A0 o+A¢ 1’3 0+ A0 o+A¢
:J r drj smedej d¢= 3 [_0059]9 |:¢:|¢

r 6 ¢ r
= {ﬁm +r(Ar) + %(Arf}[cose— cos(6 +A9)]A¢

When Ar is small enough, the terms in (Ar)* and (Ar)’ canbe neglected. When A is
small,

cos(0+ AB)=cos OBcos AB—sin Osin A@= cos 80— sin GAO
since cos A@— 1 and sin A@ — A@ as AO— 0. Therefore, for small A-values,
Av=r? sin OAr A A¢

We note that this does not provide a proof of (10.9), since the volume element is used
for the construction of the volume integral.

EXAMPLE 10.7 Evaluate the integral of the function f(r, 6, ¢) =1+ % cos? Osin’ ¢
over a sphere of radius a and centre at the origin.

The integral can be evaluated in two parts, as in Example 10.5:

( fdv=J dv+J r* cos® @sin’ ¢ dv
\' \' \'

J

The ranges of integration are 7=0 —a, 0=0 > w,and ¢=0 — 2x. Then

2 AT pa
(i) Mm:J erzsinedrd6d¢
JV 0 0J0

a m 2n 3
=J rzer sin@d@j d¢:a—x2x2n:im3
0 0 0 3 3

and this is the volume of the sphere.

2T AT pa
(ii) J r? cos® Osin® ¢ dv =J J J r*cos® OsinBsin® ¢ drd@de
Y 0JoJo

a T 2n
=J r4drj cosngmedeJ sin? ¢d¢
0 0 0

aS
=—X=-XT7
5 3

» Exercises 18,19
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Integrals over all space

When the region V is the whole three-dimensional space, the volume integral is
+00 ;40 400
J fdv= J J J f(x,y,z) dxdydz in cartesians (10.11)
\ —0J —0J o

2T M poo
= J J J f(r,0,0) r*sin Odr dO d¢ in spherical polars (10.12)
0oJoJo

These integrals are important, for example, in quantum chemistry for the evaluation
of atomic and molecular properties from wave functions obtained as solutions of the
Schrédinger equation.

EXAMPLE 10.8 The integral over all space of the electron probability density of
the 1s orbital of the hydrogen atom, ‘I/IZS = (l/nag)e_zr/a” (see Table 10.1), is

1 2 AT oo
Jwi dv=—3[ J J ¢ 12 sin@dr d0 do
TayJo JoJo
o T 2n
=L3J e 2yt er sinedGJ d¢
Tay Jo 0 0

The integral over the angles

n 2n
J sinGdGJ do=4n (10.13)
0 0

is the complete solid angle around a point. Then, making use of the standard integral

® _ar .n n+l
J e “r"dr=n!/a"",
0

wasdvz%x 2 s x4n=1
nay (2/ay)

This result is consistent with the interpretation of |y|* dv as the probability of
finding the electron in element dv. The total probability, the probability of finding
the electron somewhere, is the integral over all space, and must by unity. In fact, the
coefficients of the orbitals in Table 10.1 have been chosen for this to be true. The
orbitals are said to be normalized (to unity).

> Exercises 20-22




10.4 Volume integrals

Average values

We shall see in Chapter 21 that if x is a continuous variable in the interval a <x <5,
and if p(x) dx is the probability that the variable have value between x and x + dkx,
then the quantity

b
f =J f(x)p(x)dx (10.14)

is the average value of the function f{(x) in the interval. The generalization to functions
of more than one variable involves the corresponding multiple integral. For example,
let f(x,y,z) be a function of position in three dimensions, and let p(x, y, z) dx dy dz
be the probability that the x-coordinate have value between x and x + dx, that the
y-coordinate have value between y and y + dy, and that the z-coordinate have value
between z and z + dz. The average value of the function is then the volume integral
over all space

+o 4+ ~4oo
j_‘zj J J f(x,y,2)p(x,y,z) dxdydz (10.15)
The corresponding expression in spherical polar coordinates is
2T AT,
7:J J J 1(r,0,0)p(r,0,0) r*sin@dr dOd¢ (10.16)
0JoJo

If the probability density is the modulus square of a wave function in quantum
mechanics, p=|y [, the average value

f=Jf|w2 dv (10.17)

is usually called the expectation value of f in the state y.

EXAMPLE 10.9 Find the average distance of the electron from the nucleus in (i) the
Ls orbital and (ii) the 2p_ orbital of the hydrogen atom (see Table 10.1 in Example 10.4).

In these cases, f(r, 6, ¢) =r in equation (10.17), and

F=Jr|1//|2dv

. 1 /e
0 yr=—seln,
TCaO

1

2T AM poo
71.9=—3J I J 1% 13 sin0drdo dg
na,Jo JoJo
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and, after integration over the angles (see equation (10.13)),

* ]
7 :iJ e_zr/%r3dr2i 3 3

X———="q
Is 0
@ Jo a (2/a,)" 2
(ii) v, = ere_r/ao cos’ 0
P 32na)

0

© T 2n
1 —r .
7, = J P e er coszesmGdGJ do
p. 5
32rca0 0 0 0

1 2
= 5><5!ag><—><21t=5a0
321ta0 3

» Exercises 23, 24

10.5 The Laplacian operator

The Laplacian operator in two dimensions was discussed in Section 9.6. The operator
in three dimensions is:

in cartesian coordinates,
2 2 2
0 0 0
=— 4 — B —

& +
o’ 9 o

(10.18)

in spherical polar coordinates,

2
V2 _Li(rz ij++i(singij+;l (10.19a)

ol 7 5in? 0 0%

2 2 2
:8_+2i+i 0 N cosf 9 N 1 0 (10.19b)

ot T o y290* r?sing 90 rsin® O 09°

The transformation from cartesian to spherical polar coordinates is achieved in
the same way as that described in Example 9.18 for the two-dimensional case. The
operator in spherical polar coordinates is usually quoted in the slightly more compact
form (10.19a), and the expanded form (10.19b) is obtained by use of the product rule
of differentiation. For example,

Vo ,00) 1[5 o) *F 20
— 2= — 4y | =+ == 10.20
72 or [r ar] 2 [r o e or o * r or ( )

7

The Laplacian operator occurs in the equations of motion concerned with wave
motion and potential theory in both classical mechanics (as in Maxwell’s equations



10.5 The Laplacian operator

of electromagnetic theory) and quantum mechanics (as in Schrodinger’s wave
mechanics, see Chapter 14).

EXAMPLE 10.10 Evaluate V*f for f(r)=e¢ ™ in (i) spherical polar coordinates and
(ii) cartesian coordinates.

(i) Because f(7) is a function of the radial coordinate only it follows that

al—o ai—O S e az—deZ—fZefr

89 o a(Z) ’ ar B dr ’ arz drz
Then
2
g2 2 (2]
4 rdr r r

(ii) In cartesian coordinates,

sz:az_f+az_f+az_f
ol 9 o’

P S N ﬁzf’ ﬁzl, o _z
ox r dy r

Then, by the chain rule,

1df x* df+ﬁd2f

r dr }/’3 dr r2 drz

Y_dor_xd  FL_0[(xdf
ox drox rdr’ o ox|rdr

The derivatives with respect to y and z are obtained in the same way. Then

) 3 dr 72 dar?

r r

vzf:az_f+az_f+azf:[i_(x2+y2+zz)]£+[x2+y2+z2]d2f

so that, because x* + )% + 2% =2,

2
vzf=zﬂ+df=[_z+1je—r

rdr g r

We note that the use of cartesian coordinates in this case naturally involves, via
the chain rule, a transformation to spherical polar coordinates.

» Exercises 25-27
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EXAMPLE 10.11 Evaluate V*f for f(r, 6, ¢) = re”?sin O cos 0.

Using the form (10.19a),

sz:u[rzazj ! [ af] A
P2 or o) r?sing 26 90 ) ?sin’ 0 9¢>

The function f has the factorized form

f(r, 0,¢)= (refr/ 2)(sin 6)(cos @) = R(r) X O(6) X D(¢)

so that

of _ (dR(r)

> o ] 0(6) (9)

f RG- )(d@(e)]axw

Ed dd(9)
i >@(e)( 2o J

and, therefore,

vip=| L4 2 Rllgg,| L 41,90
72 dr dr sinf do deo

r2sin’ @

RcD {dzcb} RO
+

d¢’
Now
R=re"/% 14 rzd—R = £4—2—2 e = l+£—z R(r)
#2 dr dr 4 7 4 42 r
29 2 20 2
0 = siné: .1 i sin@d—g _ cos 9' sin 9:cos 0 —sin 9@(0)
sin@ d@ do sin@ sin2 @
2
d = cos ¢; d—(f=—005¢=—‘p(¢)
d¢
Therefore,

1 2 2 cos’@—sin’6 1 1 2
Vif= S-S ——— -——— [ROD=|S-=|f
4 r r<sin“ @ r“sin” @ 4 r



10.6 Other coordinate systems

This result can be rearranged to give the equation

1o, 1), 1
[_EV ‘;Jf— 5/

and this is essentially the Schrodinger equation of the hydrogen atom, with f the 2p_
orbital. The result of Example 10.10 is the same equation for the 1s orbital.

» Exercises 28-33

EXAMPLE 10.12 Show that the function f(r) = 1/r satisfies the Laplace equation
in three dimensions.

The Laplace equation is
V=0

As in Example 10.10, the function does not depend on the angles 8 and ¢. Therefore,

_df L2

V2
S 4t rdr

Now df/dr=—1/r?, d*f/dr* =2/r. Therefore

T_2_2_0 (r20)
dr ]/’3 r3

We note that this demonstration is not valid when =0, and this singular point
requires special treatment in physical applications.

This example shows that the gravitational and Coulomb potential functions satisfy
the Laplace equation (see Example 9.20 for the two-dimensional case).

> Exercises 34-37

10.6 Other coordinate systems

In addition to the cartesian and spherical polar coordinates, other systems of
coordinates have been found useful for the description of physical systems. The most
important of these are of the type called orthogonal curvilinear coordinates.

In the cartesian system (Figure 10.1), the position of a point P(x, y, z) is defined
by the intersection of three mutually perpendicular surfaces (planes); x = constant

? Curvilinear coordinates were introduced by Lamé in his Sur les coordonnées curvilignes et leurs diverses
applications. Gabriel Lamé (1795-1870), engineer and professor at the Ecole Polytechnique, made contributions
to the theory of the elasticity of solids and was involved in the construction of the first railways in France.
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(parallel to the Oyz—plane), y = constant (parallel to the Ozx—plane), and z = constant
(parallel to the Oxy-plane). The coordinate axes through the point are the lines of
intersection of these planes, and are also perpendicular.

In spherical polar coordinates, the position of P(r, 6, ¢) is again defined by the
intersection of three coordinate surfaces; r=constant, 8= constant, and ¢= constant.
The surface r=constant is that of a sphere of radius r. The surface 8= constant is
that of the right circular cone with 